MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK EMELT SZINT Sorozatok

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK EMELT SZINT Sorozatok"

Átírás

1 MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK EMELT SZINT Sorozatok A szürkített hátterű feladatrészek em tartozak az éritett témakörhöz, azoba szolgálhatak fotos iformációval az éritett feladatrészek megoldásához! a 1) Egy 2) számsorozatról a következőket tudjuk: - a harmadik tagtól kezdve mide tag kiszámítható a következő rekurzív képlet segítségével: ; a a 12a az és ebbe a sorredbe egy számtai sorozat 3 egymást követő tagja; sorozat első öt tagjáak összege 682. a 1, a - az a 2 a 9a 3 1 Mekkora eek a számsorozatak a hatodik tagja? a) Legye a (16 pot) egy mértai sorozat, melyek első tagja 5, háyadosa 3. Meyi a valószíűsége, hogy ha eek a mértai sorozatak az első 110 tagjából egyet véletleszerűe kiválasztuk, akkor a kiválasztott tag 11- gyel osztva 1 maradékot ad? (6 pot) b) Legye egy számtai sorozat, amelyek az első tagja 5, és b differeciája 3. Mekkora a valószíűsége, hogy ha eek a számtai sorozatak az első 110 tagjából egye kiválasztuk, akkor a kiválasztott tag 11-gyel osztva 1 maradékot ad? (7 pot) 3) Egy pozitív tagokból álló mértai sorozat első három tagjáak összege 26. Ha az első taghoz egyet, a másodikhoz hatot, a harmadikhoz hármat aduk, akkor ebbe a sorredbe egy számtai sorozat első három tagját kapjuk. Adja meg eek a számtai sorozatak az első három tagját! (14 pot) 4) Legye pozitív egész. Adottak az alábbi sorozatok: a b c, ahol, ahol, ahol a 2 2 b c si cos 2 2 ; ; Vizsgálja meg midhárom sorozat korlátosság és mootoitás szempotjából! Válaszoljo midhárom esetbe, hogy a sorozat korlátos vagy em, illetve mooto vagy em! (Válaszát idokolja!) Korlátos esetbe adjo meg egy alsó és egy felső korlátot! (16 pot)

2 5) Egy bak a Godoskodás evű megtakarítási formáját ajálja újszülöttek családjáak. A megtakarításra vállalkozó családok a gyermek születését követő év első baki apjá számlát yithatak forit összeggel. Mide következő év első baki apjá szité foritot kell befizetiük a számlára. Az utolsó befizetés aak az évek az első apjá törtéhet, amely évbe a gyermekük betölti 18. életévét. A bak év végé a számlá lévő összeg utá évi 8%-os kamatot ad, amit a következő év első baki apjá ír jóvá. A gyermek a 18. születésapját követő év első baki apjá férhet hozzá a számlához. a) Mekkora összeg va ekkor a számlá? A válaszát egész foritra kerekítse! (8 pot) A gyermek a 18. születésapját követő év első baki apjá felveheti a számlájá lévő teljes összeget. Ha em veszi, választhatja a következő lehetőséget is: Hat éve keresztül mide év első baki apjá azoos összeget vehet fel. Az első részletet a 18. születésapját követő év első baki apjá veheti fel. A hatodik pézfelvétellel a számla kiürül. Ha ezt a lehetőséget választja, akkor a bak az első pézfelvételtől számítva mide év végé a számlá lévő összeg utá évi 5%-os kamatot garatál, amit a következő év első baki apjá jóváír. b) Ebbe az esetbe mekkora összeget vehet fel alkalmakét? A válaszát egész foritra kerekítse! (8 pot) 6) Az a mértai és b számtai sorozatak is 1 az első tagja, és midkét orozat hatodik tagja 1. a) Sorolja fel midkét sorozat első öt tagját! (4 pot) b) Milye pozitív egész -ekre lesz a két sorozat első tagjáak összege ugyaakkora? (9 pot) 7) Egy mértai sorozat első három tagjáak összege 91. A hatodik, hetedik és a yolcadik tag összege Háy tizehárom-jegyű tagja va a sorozatak? (13 pot) 8) A főiskolások műveltségi vetélkedője a következő eredméyel zárult. A verseye iduló égy csapatból a győztes csapat potszáma 4 3 -szorosa a második helye végzett csapat potszámáak. A egyedik, harmadik és második helyezett potjaiak száma egy mértai sorozat három egymást követő tagja, és a egyedik helyezettek 25 potja va. A égy csapat között kiosztott potszámok összege 139. a) Határozza meg az egyes csapatok által elért potszámot! (8 pot) Mid a égy csapatak öt-öt tagja va. A vetélkedő utá az iduló csapatok tagjai között három egyforma értékű köyvutalváyt sorsolak ki (mideki legfeljebb egy utalváyt yerhet). b) Mekkora a valószíűsége aak, hogy az utalváyokat három olya főiskolás yeri, akik midhárma más-más csapat tagjai? (5 pot) - 2 -

3 9) Két egyees hasábot építük, H1-et és H2-t. Az építéshez haszált égyzetes oszlopok (égyzet alapú egyees hasábok) egybevágok, magasságuk kétszer akkora, mit az alapélük. A H1 hasáb építésekor a szomszédos égyzetes oszlopokat az oldallapjukkal illesztjük össze, a H2 hasáb építésekor pedig a égyzet alaplapjukkal- az ábra szerit. a) A H1 és H2 egyees hasábok felszíéek háyadosa A A H1 H2 0,8. Háy égyzetes oszlopot haszáltuk az egyes hasábok építéséhez, ha H1-et és H2-t ugyaayi égyzetes oszlopból építettük fel? (8 pot) b) Igazolja, hogy korlátos! sorozat szigorú mooto övekvő és (8 pot) 10) a) Egy derékszögű háromszög oldalhosszai egy számtai sorozat egymást követő tagjai, a legrövidebb oldala 4 egység hosszú. Számítsa ki a háromszög másik két oldaláak hosszát! (5 pot) b) Egy háromszög oldalhosszai egy számtai sorozat egymást követő tagjai, a legrövidebb oldala 4 egység hosszú. Tudjuk, hogy a háromszög em szabályos. Igazolja, hogy a háromszögek ics 60 -os szöge! (11 pot) 11) Egy övekvő számtai sorozat első három tagjáak összege 60. Az első tagot 64-gyel övelve, a másik két tagot változatlaul hagyva, egy mértai sorozat első három tagjához jutuk. Meyi a két sorozat első három tagja? (13 pot) 12) Péter agypapája mide évbe félretett émi pézösszeget egy perselybe uokája számára Ft-tal kezdte a takarékoskodást jauár 1-jé. Ezutá mide év első apjá hozzátett az addig összegyűlt összeghez, mégpedig az előző évbe félretettél 1000 Ft-tal többet jauár 1-jé a agypapa bele tette a perselybe a megfelelő összeget, majd úgy dötött, hogy a perselyt most uokájáak most adja át. a) Mekkora összeget kapott Péter? (5 pot) b) Péter agypapája ajádékából vett éháy apróságot, de elhatározta, hogy a kapott összeg agyobb részét jauár 1.-jé bakszámlára teszi. Be is tett Ft-ot évi 4%-os kamatos kamatra (a kamatok mide évbe, év végé hozzáadódak a tőkéhez). Legalább háy évig kell Péterek vária, hogy a számlájá legalább Ft legye úgy, hogy közbe em fizet be erre a számlára? (9 pot) 13) A Robotvezérelt Elektromos Kisautók Nemzetközi Verseyé a verseyzők akkumulátorral hajtott modellekkel idulak. A magyar verseyautó az első órába 45 kilométert tesz meg. Az akkumulátor teljesítméyéek csökkeése miatt az autó a második órába kevesebb utat tesz meg, mit az első órába, a harmadik órába kevesebbet, mit a másodikba, és így tovább: az idulás utái -edik órába megtett útja midig 95,5%-a az 1 -edik órába megtett útjáak ( és 1). a) Háy kilométert tesz meg a 10. órába a magyarok verseyautója? Válaszát egész kilométerre kerekítve adja meg! (4 pot) - 3 -

4 14) A verseye több kategóriába lehet iduli. Az egyik kategória verseyszabályai lehetővé teszik az akkumulátorcserét versey közbe is. A magyar csapat mérökei kiszámították, hogy abba az órába még em érdemes akkumulátort cseréli, amelyikbe az autó legalább 20 km-t megtesz. b) Az idulástól számítva legkorábba háyadik órába érdemes akkumulátort cseréli? (6 pot) A Végkimerülés kategóriába a résztvevők azo verseyezek, hogy akkumulátorcsere és feltöltés élkül mekkora utat tudak megtei az autók. A világrekordot egy japá csapat járműve tartja 1100 km-rel. c) Képes-e megdötei a magyar verseyautó a világrekordot a Végkimerülés kategóriába? (6 pot) a) Egy bak olya hitelkostrukciót ajál, amelybe api kamatlábat számolak úgy, hogy az adott hitelre megállapított éves kamatlábat 365- tel elosztják. Egy adott évbe a hitelfelvételt követőe mide apra kiszámolják a api kamat értékét, majd ezeket december 31-é összeadják, és csak ekkor tőkésítik (azaz a felvett hitel értékéhez adják). Ez a bak egy adott évbe évi 8%-os kamatlábat állapított meg. Éva abba az évbe a március 1-jé felvett Ft utá október 1-jé újabb Ft hitelt vett fel. A két kölcsö felvétele utá meyi kamatot tőkésít a bak december 31-é? (A hitelfelvétel apjá és az év utolsó apjá is számítaak api kamatot.) (5 pot) b) Ádám is vett fel hiteleket ettől a baktól évi 8%-os kamatos kamatra. Az egyik év jauár 1-jé éppe Ft tartozása volt. Több hitelt em vett fel, és attól kezdve 10 éve keresztül mide év végé befizette az azoos összegű törlesztőrészletet. (A törlesztőrészlet összegét a bak már az éves kamattal megövelt tartozásból voja le.) Mekkora volt ez a törlesztőrészlet, ha Ádám a 10 befizetés utá teljese visszafizette a felvett hitelt? Válaszát ezer foritra kerekítve adja meg! (9 pot) 15) Egy 1 méter oldalú égyzetbe egy második égyzetet rajzoltuk úgy, hogy a belsőégyzet mide csúcsa illeszkedje a külső égyzet egy-egy oldalára. A belső és a külső égyzet oldalaiak aráya 5:7. a) Milye aráyba osztja két részre a belső égyzet csúcsa a külső égyzet oldalát? Az aráy potos értékét adja meg! (10 pot) A belső égyzetbe egy újabb, harmadik égyzetet rajzoluk úgy, hogy a harmadik és a második égyzet oldalaiak aráya is 5:7. Ezt az eljárást aztá godolatba végtele sokszor megismételjük. b) Mekkora lesz a kapott égyzetek kerületeiek az összege, ha a kiidulási égyzet kerülete is tagja a (végtele sok tagú) összegek? (6 pot) - 4 -

5 16) Az ABCDEF szabályos hatszögbe a rövidebb átló hossza 5 2. a) Számolja ki a hatszög területéek potos értékét! (6 pot) b) Az ABCDEF hatszög oldalfelező potjai által meghatározott szabályos hatszög területét jelölje, a területű hatszög oldalfelező potjai által meghatározott szabályos hatszög területét a t t 1 t 1 sorozatot. Számítsa ki a értékkel számoljo!) t 2 lim t1 t2... t, és így tovább, képezve ezzel határértékét! (Potos (10 pot) 17) Kiga 10. születésapja óta kap havi zsebpézt a szüleitől. Az első összeget a 10. születésapjá adták a szülők, és mide hóapba 50 Ft-tal többet adak, mit az azt megelőző hóapba. Egy bizoyos hóapba, amikor éppe 1850 Ft volt a havi zsebpéze, összeadta az addig kapott összes zsebpézét. Az összeg Ft lett. Meyi volt Kiga iduló zsebpéze, és háy hóap telt el a 10. születésapja óta? (12 pot) 18) Egy dolgozó az év végi prémiumkét kapott kamatoztati a következő yárig, hat hóapo át. Két kedvező ajálatot kapott. Vagy kéthavi lekötést választ kéthavi 1,7%-os kamatra, kéthavokéti tőkésítés mellett, vagy foritot átváltja euróra, és az összeget havi 0,25%-os kamattal köti le hat hóapra, havi tőkésítés mellett. a) Meyi péze lee hat hóap utá a foritszámlá az első esetbe? (Az eredméyt Ft-ra kerekítve adja meg!) (3 pot) b) Ha ekkor éppe 252 foritot ért egy euró, akkor háy eurót vehete fel hat hóap múlva a második ajálat választása eseté? (Az eredméyt két tizedesjegyre kerekítve adja meg!) (4 pot) c) Legalább háy százalékkal kellee változia a 252 forit/euró árfolyamak a félév alatt, hogy a második választás legye kedvezőbb? (Az eredméyt két tizedesjegyre kerekítve adja meg!) (5 pot) Ft-ját akarja 19) Adrás edzőtáborba készül egy úszóverseyre, 20 apo át. Azt tervezte, apota métert úszik. De az első apo a tervezettél 10%-kal többet, a második apo pedig az előző apiál 10%-kal kevesebbet teljesített. A 3. apo ismét 10%-kal övelte előző api adagját, a 4. apo 10%-kal kevesebbet edzett, mit az előző apo és így folytatta, páratla sorszámú apo 10%-kal többet, pároso 10%-kal kevesebbet teljesített, mit a megelőző apo. a) Háy métert úszott le Adrás a 6. apo? (4 pot) b) Háy métert úszott le összese a 20 ap alatt? (6 pot) c) Az edzőtáborozás 20 apjából véletleszerűe kiválasztuk két szomszédos apot. Mekkora a valószíűsége, hogy Adrás e két apo együttese legalább métert teljesített? (6 pot) - 5 -

6 20) Egy övekvő számtai sorozat első három tagjából álló adathalmaz szóráségyzete 6. a) Igazolja, hogy a sorozat differeciája 3-mal egyelő! (4 pot) Adrás, Barbara, Cili, Dezső és Edit rokook. Cili 3 évvel idősebb Barbaráál, Dezső 6 évvel fiatalabb Barbaráál, Edit pedig 9 évvel idősebb Ciliél. Dezső, Barbara és Edit életkora (ebbe a sorredbe) egy mértai sorozat három egymást követő tagja, Adrás, Barbara és Cili életkora (ebbe a sorredbe) egy számtai sorozat három szomszédos tagja. b) Háy éves Adrás? (6 pot) Adrás, Barbara, Cili, Dezső, Edit és Feri moziba meek. c) Háyféleképpe foglalhatak helyet hat egymás melletti széke úgy, hogy a három láy e három egymás melletti széke üljö? (6 pot) 21) Állítsuk a pozitív egész számokat övekvő sorredbe, majd botsuk redre 1- gyel övekvő elemszámú csoportokra, az alábbi módo kezdve: 1, 2;3, 4;5;6, 7;8;9;10,... a) A 100-adik csoportak melyik szám az első eleme? (5 pot) b) Az 1851 háyadik csoport háyadik eleme? (9 pot) 22) Éva egy -es táblázat bal felső mezőjétől kezdve, balról jobbra haladva, sorról sorra beírta egy számtai sorozat első 49 tagját úgy, hogy a tagok sorredjét em változtatta meg. (A sorozat 1. tagja a bal felső sarokba került, a 8. tag a második sor első mezőjébe, a 49. tag pedig a jobb alsó sarokba áll.) a) Meyi a táblázatba írt 49 szám összege, ha Éva a harmadik sor harmadik mezőjébe 91-et, az ötödik sor ötödik mezőjébe pedig a 11-et írta? (5 pot) Péter a táblázat mide sorából kiválasztja a számtai sorozat egy-egy tagját úgy, hogy a hét kiválasztott szám közül semelyik kettő e legye egy oszlopba. b) Igazolja, hogy akárhogya is választja ki Péter így a számokat, a hét szám összege mide esetbe ugyaayi lesz! (6 pot) c) Határozza meg aak a valószíűségét, hogy a 91 és a 11 is a Péter által kiválasztott számok között lesz! (5 pot) 23) Egy pézitézet a tőle felvett H forit összegű hitel visszafizetésekor havi % p 0, ezért az adós havi törlesztőrészletét a 7 7 p -os kamattal számol q q 1 t H képlettel számítja ki (mide hóapba ekkora összeget kell q 1 p visszafizeti). A képletbe q 1, az pedig azt jeleti, hogy összese 100 háy hóapig fizetjük a törlesztőrészletet (ez a hitel futamideje). a) Fogyasztási cikkek vásárlására 1,6 millió forit hitelt vettük fel a pézitézettől; a havi kamat 2%. Összese háy foritot fizetük vissza, ha 72 hóap alatt törlesztjük a felvett hitelt? Válaszát ezer foritra kerekítve adja meg! (4 pot) - 6 -

7 b) Legkevesebb háy hóapos futamidőre vehetük fel egy 2 millió foritos hitelt, ha legfeljebb 60 ezer foritot tuduk havota törlesztei, és a havi kamat 2%-os? (8 pot) c) Számítsa ki a lim határértékét, ha és t q 1,02 H (4 pot) - 7 -

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉPSZINT Függvények

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉPSZINT Függvények MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉPSZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek megoldásához!

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK EMELT SZINT Sorozatok

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK EMELT SZINT Sorozatok MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK EMELT SZINT Sorozatok A szürkített hátterű feladatrészek em tartozak az éritett témakörhöz, azoba szolgálhatak fotos iformációval az éritett feladatrészek megoldásához!

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Trigonometria

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Trigonometria 005-05 MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Trigonometria A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett

Részletesebben

Azonosító jel: Matematika emelt szint

Azonosító jel: Matematika emelt szint I. 1. Hatjegyű pozitív egész számokat képezünk úgy, hogy a képzett számban szereplő számjegy annyiszor fordul elő, amekkora a számjegy. Hány ilyen hatjegyű szám képezhető? 11 pont írásbeli vizsga 1012

Részletesebben

Boldva és Vidéke Taka r ékszövetkezet

Boldva és Vidéke Taka r ékszövetkezet A Takarékszövetkezet jelen ben szereplő, változó kamatozású i termékei esetében i kamatváltozást tesz közzé, az állandó (fix) kamatozású i termékek esetében pedig a 2014.06.15-től lekötésre kerülő ekre

Részletesebben

Boldva és Vidéke Taka r ékszövetkezet

Boldva és Vidéke Taka r ékszövetkezet A Takarékszövetkezet jelen ben szereplő, változó kamatozású i termékei esetében i kamatváltozást tesz közzé, az állandó (fix) kamatozású i termékek esetében pedig a 2014.08.13-tól lekötésre kerülő ekre

Részletesebben

BOLYAI MATEMATIKA CSAPATVERSENY DÖNTŐ 2004. 5. osztály

BOLYAI MATEMATIKA CSAPATVERSENY DÖNTŐ 2004. 5. osztály 5. osztály Ha egy négyzetet az ábrán látható módon feldarabolunk, akkor a tangram nevű ősi kínai játékot kapjuk. Mekkora a nagy négyzet területe, ha a kicsié 8 cm 2? (A kis négyzet egyik csúcsa a nagy

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK EMELT SZINT Sorozatok

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK EMELT SZINT Sorozatok MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK EMELT SZINT Sorozatok A szürkített hátterű feladatrészek em tartozak az éritett témakörhöz, azoba szolgálhatak fotos iformációval az éritett feladatrészek megoldásához!

Részletesebben

BOLYAI MATEMATIKA CSAPATVERSENY FŐVÁROSI DÖNTŐ SZÓBELI (2005. NOVEMBER 26.) 5. osztály

BOLYAI MATEMATIKA CSAPATVERSENY FŐVÁROSI DÖNTŐ SZÓBELI (2005. NOVEMBER 26.) 5. osztály 5. osztály Írd be az ábrán látható hat üres körbe a 10, 30, 40, 60, 70 és 90 számokat úgy, hogy a háromszög mindhárom oldala mentén a számok összege 200 legyen! 50 20 80 Egy dobozban háromféle színű: piros,

Részletesebben

1. Írja fel prímszámok szorzataként a 420-at! 2. Bontsa fel a 36 000-et két részre úgy, hogy a részek aránya 5 : 4 legyen!

1. Írja fel prímszámok szorzataként a 420-at! 2. Bontsa fel a 36 000-et két részre úgy, hogy a részek aránya 5 : 4 legyen! 1. Írja fel prímszámok szorzataként a 40-at! 40 =. Bontsa fel a 36 000-et két részre úgy, hogy a részek aránya 5 : 4 legyen! A részek: 3. Egy sejttenyészetben naponta kétszereződik meg a sejtek száma.

Részletesebben

FANTASZTIKUS KOMBINATORIKA. Adva van n különböző elem. A kiválasztás sorrendje számít VARIÁCIÓ. mateking.hu

FANTASZTIKUS KOMBINATORIKA. Adva van n különböző elem. A kiválasztás sorrendje számít VARIÁCIÓ. mateking.hu FANTASZTIKUS KOMBINATORIKA Adva va külöböző elem Kiválasztuk k darabot Vesszük az összes elemet és sorba rakjuk A kiválasztás sorredje számít A kiválasztás sorredje em számít PERMUTÁCIÓ P matekig.hu Ha

Részletesebben

Koordináta - geometria I.

Koordináta - geometria I. Koordináta - geometria I. DEFINÍCIÓ: (Helyvektor) A derékszögű koordináta - rendszerben a pont helyvektora az origóból a pontba mutató vektor. TÉTEL: Ha i az (1; 0) és j a (0; 1) pont helyvektora, akkor

Részletesebben

Párhuzamos programozás

Párhuzamos programozás Párhuzamos programozás Rendezések Készítette: Györkő Péter EHA: GYPMABT.ELTE Nappali tagozat Programtervező matematikus szak Budapest, 2009 május 9. Bevezetés A számítástechnikában felmerülő problémák

Részletesebben

BOLYAI MATEMATIKA CSAPATVERSENY ORSZÁGOS DÖNTŐ SZÓBELI (2012. NOVEMBER 24.) 3. osztály

BOLYAI MATEMATIKA CSAPATVERSENY ORSZÁGOS DÖNTŐ SZÓBELI (2012. NOVEMBER 24.) 3. osztály 3. osztály Két szám összege 33. Mennyi ennek a két számnak a különbsége, ha az egyik kétszerese a másiknak? Hány olyan háromjegyű szám van, amelyben a számjegyek összege legalább 25? 4. osztály A Zimrili

Részletesebben

Ingatlanfinanszírozás és befektetés

Ingatlanfinanszírozás és befektetés Nyugat-Magyarországi Egyetem Geoiformatikai Kar Igatlameedzser 8000 Székesfehérvár, Pirosalma u. 1-3. Szakiráyú Továbbképzési Szak Igatlafiaszírozás és befektetés 2. Gazdasági matematikai alapok Szerzı:

Részletesebben

HÁZI FELADAT NÉV:.. Beadási határidı: az elsı ZH-ig (2010. március 30. 8:00). Olvassa el az útmutatást is! KOMBINATORIKA

HÁZI FELADAT NÉV:.. Beadási határidı: az elsı ZH-ig (2010. március 30. 8:00). Olvassa el az útmutatást is! KOMBINATORIKA HÁZI FELADAT NÉV:.. NEPTUN KÓD: CSOPORT: Beadási határidı: az elsı ZH-ig (010. március 0. 8:00). Olvassa el az útmutatást is! KOMBINATORIKA 1. Egy irádulás sorá tizeöt tauló elhelyezésére három szoba áll

Részletesebben

Emelt szintű érettségi feladatsorok és megoldásaik Összeállította: Szászné Simon Judit; dátum: 2005. november. I. rész

Emelt szintű érettségi feladatsorok és megoldásaik Összeállította: Szászné Simon Judit; dátum: 2005. november. I. rész Szászné Simon Judit, 005. november Emelt szintű érettségi feladatsorok és megoldásaik Összeállította: Szászné Simon Judit; dátum: 005. november. feladat I. rész Oldjuk meg a valós számok halmazán a x 5x

Részletesebben

Az aktiválódásoknak azonban itt még nincs vége, ugyanis az aktiválódások 30 évenként ismétlődnek!

Az aktiválódásoknak azonban itt még nincs vége, ugyanis az aktiválódások 30 évenként ismétlődnek! 1 Mindannyiunk életében előfordulnak jelentős évek, amikor is egy-egy esemény hatására a sorsunk új irányt vesz. Bár ezen események többségének ott és akkor kevésbé tulajdonítunk jelentőséget, csak idővel,

Részletesebben

5. Kombinatorika. 8. Legfeljebb hány pozitív egész számot adhatunk meg úgy, hogy semelyik kettő összege és különbsége se legyen osztható 2015-tel?

5. Kombinatorika. 8. Legfeljebb hány pozitív egész számot adhatunk meg úgy, hogy semelyik kettő összege és különbsége se legyen osztható 2015-tel? 5. Kombiatorika I. Feladatok. Háyféleképpe olvashatók ki az alábbi ábrákról a PAPRIKAJANCSI, a FELADAT és a MATEMATIKASZAKKÖR szavak, ha midig a bal felső sarokból kell iduluk, és mide lépésük csak jobbra

Részletesebben

A skatulya-elv alkalmazásai

A skatulya-elv alkalmazásai 1 A skatulya-elv alkalmazásai Számelmélet 1. Az első 4n darab pozitív egész számot beosztjuk n számú halmazba. Igazoljuk, hogy mindig lesz három olyan szám, amelyek ugyanabban a halmazban vannak és valamely

Részletesebben

Ha a síkot egyenes vagy görbe vonalakkal feldaraboljuk, akkor síkidomokat kapunk.

Ha a síkot egyenes vagy görbe vonalakkal feldaraboljuk, akkor síkidomokat kapunk. Síkidomok Ha a síkot egyenes vagy görbe vonalakkal feldaraboljuk, akkor síkidomokat kapunk. A határoló vonalak által bezárt síkrész a síkidom területe. A síkidomok határoló vonalak szerint lehetnek szabályos

Részletesebben

MATEMATIKA ÍRÁSBELI VIZSGA 2011. május 3.

MATEMATIKA ÍRÁSBELI VIZSGA 2011. május 3. MATEMATIKA ÍRÁSBELI VIZSGA I. rész Fontos tudnivalók A megoldások sorrendje tetszőleges. A feladatok megoldásához szöveges adatok tárolására és megjelenítésére nem alkalmas zsebszámológépet és bármelyik

Részletesebben

A döntő feladatai. valós számok!

A döntő feladatai. valós számok! OKTV 006/007. A döntő feladatai. Legyenek az x ( a + d ) x + ad bc 0 egyenlet gyökei az x és x valós számok! Bizonyítsa be, hogy ekkor az y ( a + d + abc + bcd ) y + ( ad bc) 0 egyenlet gyökei az y x és

Részletesebben

Felvételi 2013 Felvételi tájékoztató 2013

Felvételi 2013 Felvételi tájékoztató 2013 Felvételi 2013 A döntést segítő kiadványok Felsőoktatási felvételi tájékoztató 2013. szeptemberben induló képzésekre honlap : www.felvi.hu Felvételi tájoló 2013. (Felvi-rangsorokkal) Képzési szintek A:

Részletesebben

18. Differenciálszámítás

18. Differenciálszámítás 8. Differeciálszámítás I. Elméleti összefoglaló Függvéy határértéke Defiíció: Az köryezetei az ] ε, ε[ + yílt itervallumok, ahol ε > tetszőleges. Defiíció: Az f függvéyek az véges helye vett határértéke

Részletesebben

Vektorok összeadása, kivonása, szorzás számmal, koordináták, lineáris függetlenség

Vektorok összeadása, kivonása, szorzás számmal, koordináták, lineáris függetlenség Vektoralgebra Vektorok összeadása, kivonása, szorzás számmal, koordináták, lineáris függetlenség Feladatok: 1) A koordinátarendszerben úgy helyezzük el az egységkockát, hogy az origó az egyik csúcsba essék,

Részletesebben

G Szabályfelismerés 2.2. 2. feladatcsomag

G Szabályfelismerés 2.2. 2. feladatcsomag ÖSSZEFÜÉSEK Szabályfelismerés 2.2 Alapfeladat Szabályfelismerés 2. feladatcsomag összefüggés-felismerő képesség fejlesztése szabályfelismeréssel megkezdett sorozat folytatása a felismert szabály alapján

Részletesebben

VI.Kombinatorika. Permutációk, variációk, kombinációk

VI.Kombinatorika. Permutációk, variációk, kombinációk VI.ombiatorika. ermutációk, variációk, kombiációk VI..ermutációk ismétlés élkül és ismétléssel (sorredi kérdések) l..) Az,, számjegyekből, ismétlés élkül, háy háromjegyű szám írható? F. 6 db. va. A feti

Részletesebben

Debreceni Egyetem, Közgazdaság- és Gazdaságtudományi Kar. Feladatok a Gazdasági matematika I. tárgy gyakorlataihoz. Halmazelmélet

Debreceni Egyetem, Közgazdaság- és Gazdaságtudományi Kar. Feladatok a Gazdasági matematika I. tárgy gyakorlataihoz. Halmazelmélet Debrecei Egyetem Közgazdaság- és Gazdaságtudomáyi Kar Feladatok a Gazdasági matematika I. tárgy gyakorlataihoz a megoldásra feltétleül ajálott feladatokat jelöli e feladatokat a félév végére megoldottak

Részletesebben

Otthonteremtési kamattámogatásos használt lakásvásárlási hitel

Otthonteremtési kamattámogatásos használt lakásvásárlási hitel Rábaközi Takarékszövetkezet Otthonteremtési kamattámogatásos használt lakásvásárlási hitel Adósok által fizetendő * Használt lakás vásárlásra 4,30% 4,30% 4,30% 4,48% adósok kamattámogatásra nem jogosultak.

Részletesebben

10. évfolyam, harmadik epochafüzet

10. évfolyam, harmadik epochafüzet 0. évfolyam, harmadik epochafüzet (Sorozatok, statisztika, valószíűség) Tulajdoos: MÁSODIK EPOCHAFÜZET TARTALOM I. Sorozatok... 4 I.. Sorozatok megadása, defiíciója... 4 I.. A számtai sorozat... 0 I...

Részletesebben

MATEMATIKA ÍRÁSBELI VIZSGA EMELT SZINT% ÉRETTSÉGI VIZSGA 2013. május 7. MINISZTÉRIUMA. 2013. május 7. 8:00 EMBERI ERFORRÁSOK

MATEMATIKA ÍRÁSBELI VIZSGA EMELT SZINT% ÉRETTSÉGI VIZSGA 2013. május 7. MINISZTÉRIUMA. 2013. május 7. 8:00 EMBERI ERFORRÁSOK I. rész II. rész a feladat sorszáma maximális pontszám elért pontszám maximális pontszám 1. 11 2. 13 51 3. 13 4. 14 16 16 64 16 16 8 nem választott feladat Az írásbeli vizsgarész pontszáma 115 elért pontszám

Részletesebben

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Geometria IV.

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Geometria IV. Geometria IV. 1. Szerkessz egy adott körhöz egy adott külső ponton átmenő érintőket! Jelöljük az adott kört k val, a kör középpontját O val, az adott külső pontot pedig P vel. A szerkesztéshez azt használjuk

Részletesebben

Térgeometria feladatok. 2. Egy négyzetes oszlop magassága háromszor akkora, mint az alapéle, felszíne 504 cm 2. Mekkora a testátlója és a térfogata?

Térgeometria feladatok. 2. Egy négyzetes oszlop magassága háromszor akkora, mint az alapéle, felszíne 504 cm 2. Mekkora a testátlója és a térfogata? Térgeometria feladatok Téglatest 1. Egy téglatest éleinek aránya 2 : 3 : 5, felszíne 992 cm 2. Mekkora a testátlója és a 2. Egy négyzetes oszlop magassága háromszor akkora, mint az alapéle, felszíne 504

Részletesebben

MATEMATIKA ÉRETTSÉGI 2012. május 8. EMELT SZINT I.

MATEMATIKA ÉRETTSÉGI 2012. május 8. EMELT SZINT I. MATEMATIKA ÉRETTSÉGI 01. május 8. EMELT SZINT I. 1) Egy 011-ben készült statisztikai összehasonlításban az alábbiakat olvashatjuk: Ha New York-ban az átlagfizetést és az átlagos árszínvonalat egyaránt

Részletesebben

A PÉNZ IDİÉRTÉKE. Egy jövıbeni pénzösszeg jelenértéke:

A PÉNZ IDİÉRTÉKE. Egy jövıbeni pénzösszeg jelenértéke: A PÉNZ IDİÉRTÉKE A péz értéke többek között az idı függvéye. Ha idıbe késıbb jutuk hozzá egy jövedelemhez, akkor elveszítjük aak lehetıségét, hogy az eltelt idıbe azt befektessük, azaz elesük aak hozamától,

Részletesebben

Arany Dániel Matematikai Tanulóverseny 2011/2012-es tanév első (iskolai) forduló haladók I. kategória

Arany Dániel Matematikai Tanulóverseny 2011/2012-es tanév első (iskolai) forduló haladók I. kategória Bolyai János Matematikai Társulat Arany Dániel Matematikai Tanulóverseny 011/01-es tanév első (iskolai) forduló haladók I. kategória Megoldások és javítási útmutató 1. Az ábrán látható ABC derékszögű háromszög

Részletesebben

n akkor az n elem összes ismétléses ... k l k 3 k 1! k 2!... k l!

n akkor az n elem összes ismétléses ... k l k 3 k 1! k 2!... k l! KOMBINATORIKAI ALAPFOGALMAK A ombiatoria általába a véges halmazora voatozó redezési és leszámlálási feladatoal foglalozi. Az elemi ombiatoria legtöbb esetbe a övetező ét érdés egyiére eresi a választ:

Részletesebben

MATEMATIKA ÍRÁSBELI VIZSGA 2012. május 8.

MATEMATIKA ÍRÁSBELI VIZSGA 2012. május 8. MATEMATIKA ÍRÁSBELI VIZSGA 2012. május 8. I. rész Fontos tudnivalók A feladatok megoldásához szöveges adatok tárolására és megjelenítésére nem alkalmas zsebszámológépet és bármelyik négyjegyű függvénytáblázatot

Részletesebben

EMELT SZINTŰ ÍRÁSBELI VIZSGA

EMELT SZINTŰ ÍRÁSBELI VIZSGA ÉRETTSÉGI VIZSGA 2005. május 10. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA Az írásbeli vizsga időtartama: 240 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI MINISZTÉRIUM Matematika emelt szint írásbeli

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA, MATEmATIkA I 15 XV DIFFERENCIÁLSZÁmÍTÁS 1 DERIVÁLT, deriválás Az f függvény deriváltján az (1) határértéket értjük (feltéve, hogy az létezik és véges) Az függvény deriváltjának jelölései:,,,,,

Részletesebben

I. FEJEZET BICIKLIHIÁNYBAN

I. FEJEZET BICIKLIHIÁNYBAN I FEJEZET BICIKLIHIÁNYBAN 1 Az alapfeladat 1 Feladat Két település közti távolság 40 km Két gyerekek ezt a távolságot kellee megteie a lehetőlegrövidebb időalattakövetkező feltételek mellett: Va egy biciklijük

Részletesebben

Kerékpárlabda kvalifikációs szabályzat

Kerékpárlabda kvalifikációs szabályzat Kerékpárlabda kvalifikációs szabályzat Érvényesség kezdete: Junior kategória 2016 június 1 Felnőtt kategória 2016 január 1 Tartalom I. Célja... 3 II. Szabályozás... 3 1) A versenyek meghatározása... 3

Részletesebben

Vektoralgebrai feladatok

Vektoralgebrai feladatok Vektoralgebrai feladatok 1. Vektorok összeadása és szorzatai, azok alkalmazása 1.1 a) Írja fel a és vektorokat az és átlóvektorok segítségével! b) Milyen hosszú az + ha =1? 1.2 Fejezze ki az alábbi vektorokat

Részletesebben

MATEMATIKA HETI 3 ÓRA

MATEMATIKA HETI 3 ÓRA EURÓPAI ÉRETTSÉGI 010 MATEMATIKA HETI 3 ÓRA IDŐPONT : 010. június 4. A VIZSGA IDŐTARTAMA : 3 óra (180 perc) MEGENGEDETT SEGÉDESZKÖZÖK : Európai képletgyűjtemény Nem programozható, nem grafikus kalkulátor

Részletesebben

1. forduló. MEGOLDÁSOK Pontszerző Matematikaverseny 2015/2016-os tanév

1. forduló. MEGOLDÁSOK Pontszerző Matematikaverseny 2015/2016-os tanév MEGOLDÁSOK Pontszerző Matematikaverseny 2015/2016-os tanév 1. forduló 1. feladat: Jancsi és Juliska Matematikai Memory-t játszik. A játék lényege, hogy négyzet alakú kártyákra vagy műveletsorokat írnak

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Sorozatok

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Sorozatok MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Sorozatok A szürkített hátterű feladatrészek em tartozak az éritett témakörhöz, azoba szolgálhatak fotos iformációval az éritett feladatrészek

Részletesebben

FELVÉTELI TÁJÉKOZTATÓ

FELVÉTELI TÁJÉKOZTATÓ FELVÉTELI TÁJÉKOZTATÓ 2016 / 2017. tanév OM azonosító 031 966 Iskolánk a nemzeti köznevelési törvényben előírt létszámok alapján alakítja ki az osztálylétszámokat, tanulócsoportokat. Az iskola felvételi

Részletesebben

Az NHB Növekedési Hitel Bank Zrt. tájékoztatója a lakossági kölcsönök feltételeiről Érvényes: 2016. május 01-től 2016. május 31-ig

Az NHB Növekedési Hitel Bank Zrt. tájékoztatója a lakossági kölcsönök feltételeiről Érvényes: 2016. május 01-től 2016. május 31-ig Az NHB Növekedési Hitel Bank Zrt. tájékoztatója a lakossági kölcsönök feltételeiről Érvényes: 2016. május 01-től 2016. május 31-ig Igényelhető kölcsönök Lakossági szabadfelhasználású jelzálogkölcsön Termék

Részletesebben

H I R D E T M É N Y 2015. június 15-től érvényes betéti kamatok

H I R D E T M É N Y 2015. június 15-től érvényes betéti kamatok H I R D E T M É N Y 2015. június 15-től érvényes betéti kamatok Évi bruttó kamat % EBKM % 1./ Lakossági folyószámla -lekötés nélkül sávos kamatozással 150.000 Ft-ig 0.00% 0.00% 150.001 Ft-tól 0.15% 0.15%

Részletesebben

H I R D E T M É N Y. A RAKAMAZ ÉS VIDÉKE KÖRZETI TAKARÉKSZÖVETKEZET által lakosságnak nyújtott hitelek kamatairól és felszámított egyéb költségeiről

H I R D E T M É N Y. A RAKAMAZ ÉS VIDÉKE KÖRZETI TAKARÉKSZÖVETKEZET által lakosságnak nyújtott hitelek kamatairól és felszámított egyéb költségeiről H I R D E T M É N Y A RAKAMAZ ÉS VIDÉKE KÖRZETI TAKARÉKSZÖVETKEZET által lakosságnak nyújtott hitelek kamatairól és felszámított egyéb költségeiről Érvényes: 2016. április 1.-től 1.) Fogyasztási hitel

Részletesebben

6. osztály 10. gyakorló feladatsor Kompetencia alapú feladatok. Átlagos jegyára k. Nézőszám

6. osztály 10. gyakorló feladatsor Kompetencia alapú feladatok. Átlagos jegyára k. Nézőszám 6. osztály 10. gyakorló feladatsor Kompetencia alapú feladatok 1. Egy futballklub vezetősége szerette volna elérni, hogy minél több néző jöjjön ki a mérkőzésekre, és ezzel minél nagyobb bevételre tehessenek

Részletesebben

SJ5000+ MENÜBEÁLLÍTÁSOK. E l e c t r o p o i n t K f t., 1 0 4 4 B u d a p e s t, M e g y e r i ú t 1 1 6. F s z. 1. Oldal 1

SJ5000+ MENÜBEÁLLÍTÁSOK. E l e c t r o p o i n t K f t., 1 0 4 4 B u d a p e s t, M e g y e r i ú t 1 1 6. F s z. 1. Oldal 1 SJ5000+ MENÜBEÁLLÍTÁSOK E l e c t r o p o i n t K f t., 1 0 4 4 B u d a p e s t, M e g y e r i ú t 1 1 6. F s z. 1. Oldal 1 FIGYELMEZTETÉS! A vízálló tok gombjai nagyon erős rugóval vannak ellátva, ezért

Részletesebben

Érettségi feladatok Algoritmusok egydimenziós tömbökkel (vektorokkal) 1/6. Alapműveletek

Érettségi feladatok Algoritmusok egydimenziós tömbökkel (vektorokkal) 1/6. Alapműveletek Érettségi feladatok Algoritmusok egydimenziós tömbökkel (vektorokkal) 1/6 A tömbök deklarálásakor Pascal és C/C++ nyelvekben minden esetben meg kell adni az indexelést (Pascal) vagy az elemszámot (C/C++).

Részletesebben

LAKÁSCÉLÚ TÁMOGATÁSOK (ÉRVÉNYES: 2016.03.04-TŐL)

LAKÁSCÉLÚ TÁMOGATÁSOK (ÉRVÉNYES: 2016.03.04-TŐL) LAKÁSCÉLÚ TÁMOGATÁSOK (ÉRVÉNYES: 2016.03.04-TŐL) A Hirdetményben foglalt időpontok előtt befogadott lakáscélú támogatásokra vonatkozó kondíciókat a Hirdetmény 11. sz. melléklete tartalmazza. 9.1. az új

Részletesebben

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika emelt szit 06 ÉRETTSÉGI VIZSGA 006 május 9 MATEMATIKA EMELT SZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI MINISZTÉRIUM Matematika emelt szit Fotos tudivalók Formai előírások:

Részletesebben

a legjobb kezekben K&H Csoport

a legjobb kezekben K&H Csoport a legjobb kezekbe A K&H Biztosító 1992 óta működik Magyarországo, és közel félmillió ügyfelet szolgál ki. A K&H Biztosító a magyar piac sajátosságait figyelembe véve alakította ki szolgáltatási palettáját,

Részletesebben

FELADATOK a Bevezetés a matematikába I tárgyhoz

FELADATOK a Bevezetés a matematikába I tárgyhoz FELADATOK a Bevezetés a matematiába I tárgyhoz a számítástechia taár főisolai és a programozó matematius szao számára 2004 ovember 4 FIGYELEM: a számtech szaosoa csa a övetező feladato ellee: 2,6,7,8,9-13,16-25,27,31-33

Részletesebben

2008. október 13-ától kezdıdıen az EUR és CHF alapú hitelek igénylésére vonatkozó új kérelmek befogadását a Bank határozatlan idıre felfüggeszti.

2008. október 13-ától kezdıdıen az EUR és CHF alapú hitelek igénylésére vonatkozó új kérelmek befogadását a Bank határozatlan idıre felfüggeszti. Érvényes: 2008. október 13-ától Kondíciós lista magánszemélyek részére III/2/b. Hitel termékek Biztosítékkal fedezett hitelek - jelzálogfedezető hitelek 2008. október 13-ától kezdıdıen az EUR és alapú

Részletesebben

Pályázat címe: Pályázati azonosító: Kedvezményezett: Szegedi Tudományegyetem Cím: 6720 Szeged, Dugonics tér 13. www.u-szeged.hu www.palyazat.gov.

Pályázat címe: Pályázati azonosító: Kedvezményezett: Szegedi Tudományegyetem Cím: 6720 Szeged, Dugonics tér 13. www.u-szeged.hu www.palyazat.gov. Pályázat címe: Új geerációs sorttudomáyi kézés és tartalomfejlesztés, hazai és emzetközi hálózatfejlesztés és társadalmasítás a Szegedi Tudomáyegyeteme Pályázati azoosító: TÁMOP-4...E-5//KONV-05-000 Sortstatisztika

Részletesebben

PÉNZÜGYI SZÁMÍTÁSOK. I. Kamatos kamat számítása

PÉNZÜGYI SZÁMÍTÁSOK. I. Kamatos kamat számítása PÉNZÜGYI SZÁMÍTÁSOK I. Kamatos kamat számítása Kamat: a kölcsönök után az adós által időarányosan fizetendő pénzösszeg. Kamatláb: 100 pénzegység egy meghatározott időre, a kamatidőre vonatkozó kamata.

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA, MATEmATIkA I 10 X DETERmINÁNSOk 1 DETERmINÁNS ÉRTELmEZÉSE, TULAJdONSÁGAI A másodrendű determináns értelmezése: A harmadrendű determináns értelmezése és annak első sor szerinti kifejtése: A

Részletesebben

MATEMATIKA VERSENY --------------------

MATEMATIKA VERSENY -------------------- Vonyarcvashegyi Eötvös Károly Általános Iskola 2014. 8314 Vonyarcvashegy, Fő u. 84/1. 2. osztály MATEMATIKA VERSENY -------------------- név Olvasd el figyelmesen, majd oldd meg a feladatokat! A részeredményeket

Részletesebben

Sorozatok Megoldások. - a harmadik tagtól kezdve minden tag kiszámítható a következő rekurzív képlet segítségével: an = an

Sorozatok Megoldások. - a harmadik tagtól kezdve minden tag kiszámítható a következő rekurzív képlet segítségével: an = an 00-0XX Emelt szit Sorozatok Megoldások ) Egy ( a ) számsorozatról a következőket tudjuk: - a harmadik tagtól kezdve mide tag kiszámítható a következő rekurzív képlet segítségével: a = a + a ; - az a, a

Részletesebben

képzetes t. z = a + bj valós t. a = Rez 5.2. Műveletek algebrai alakban megadott komplex számokkal

képzetes t. z = a + bj valós t. a = Rez 5.2. Műveletek algebrai alakban megadott komplex számokkal 5. Komplex számok 5.1. Bevezetés Taulmáyaik sorá többször volt szükség az addig haszált számfogalom kiterjesztésére. Először csak természetes számokat ismertük, később haszáli kezdtük a törteket, illetve

Részletesebben

Tartalomjegyzék. Pemutáció 5 Ismétléses permutáció 8 Variáció 9 Ismétléses variáció 11 Kombináció 12 Ismétléses kombináció 13

Tartalomjegyzék. Pemutáció 5 Ismétléses permutáció 8 Variáció 9 Ismétléses variáció 11 Kombináció 12 Ismétléses kombináció 13 Tartalomjegyzék I Kombiatorika Pemutáció Ismétléses permutáció 8 Variáció 9 Ismétléses variáció Kombiáció Ismétléses kombiáció II Valószíségszámítás M/veletek eseméyek között 6 A valószí/ség fogalma 8

Részletesebben

a) Az első sorozatban az első tagtól kezdve felírjuk a tagok 11-gyel való osztás maradékát: 5; 4; 1; 3; 9; 5;

a) Az első sorozatban az első tagtól kezdve felírjuk a tagok 11-gyel való osztás maradékát: 5; 4; 1; 3; 9; 5; MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Sorozatok A szürkített hátterű feladatrészek em tartozak az éritett témakörhöz, azoba szolgálhatak fotos iformációval az éritett feladatrészek

Részletesebben

Előre is köszönjük munkádat és izgatottan várjuk válaszaidat! A Helleresek

Előre is köszönjük munkádat és izgatottan várjuk válaszaidat! A Helleresek A Heller Farkas Szakkollégium 2016-os felvételi kérdőívét tartod a kezedben, amely által megteheted az első lépést a Helleres úton. Az írásbeli kérdőív kitöltése után a felvételi következő lépése egy szóbeli

Részletesebben

MINTA. Fizetendô összeg: 62 136,00 HUF. Telefonon: 06 40 / 20 99 20 ben: Interneten:

MINTA. Fizetendô összeg: 62 136,00 HUF. Telefonon: 06 40 / 20 99 20  ben: Interneten: Részszámla Számla. eredeti példány / oldal Elszámolási idôszak: 00.0. - 00.09.. Partnerszám: 000009 Fizetési határidô: 00.09.0. Vevô neve, címe: Minta út. Fizetendô összeg:, Minta út. Szerzôdéses folyószámla

Részletesebben

Az új építőipari termelőiár-index részletes módszertani leírása

Az új építőipari termelőiár-index részletes módszertani leírása Az új építőipari termelőiár-idex részletes módszertai leírása. Előzméyek Az elmúlt évekbe az építőipari árstatisztikába egy új, a korábba haszálatos költségalapú áridextől eltérő termelői ár alapú idexmutató

Részletesebben

Statisztika 2016. március 11. A csoport Neptun kód

Statisztika 2016. március 11. A csoport Neptun kód Statisztika 2016. március 11. A csoport Név Neptun kód 1. Egy közösségben az élelmiszerre fordított kiadások az alábbiak szerint alakultak: osszeg (ezer Ft) csalad(db) 20 7 20:1 30 12 30:1 40 20 40:1 50

Részletesebben

Analízis elo adások. Vajda István. 2012. október 3. Neumann János Informatika Kar Óbudai Egyetem. Vajda István (Óbudai Egyetem)

Analízis elo adások. Vajda István. 2012. október 3. Neumann János Informatika Kar Óbudai Egyetem. Vajda István (Óbudai Egyetem) Vajda István Neumann János Informatika Kar Óbudai Egyetem / 40 Fogalmak A függvények értelmezése Definíció: Az (A, B ; R ) bináris relációt függvénynek nevezzük, ha bármely a A -hoz pontosan egy olyan

Részletesebben

Minta 1. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI FELADATSOR

Minta 1. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI FELADATSOR 1. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI FELADATSOR A feladatok megoldására 240 perc fordítható, az idő leteltével a munkát be kell fejeznie. A feladatok megoldási sorrendje tetszőleges. A II. részben kitűzött

Részletesebben

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló gimnáziuma) Térgeometria III.

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló gimnáziuma) Térgeometria III. Térgeometria III. 1. Szabályos háromoldalú gúla alapéle 1 cm, oldaléle 1 cm. Milyen magas a gúla? Tekintsük a következő ábrát: Az alaplap szabályos ABC, így a D csúcs merőleges vetülete a háromszög S súlypontja.

Részletesebben

54 345 03 0000 00 00 Munkaerőpiaci szervező, elemző Munkaerőpiaci szervező, elemző 54 345 06 0000 00 00 Személyügyi gazdálkodó és fejlesztő

54 345 03 0000 00 00 Munkaerőpiaci szervező, elemző Munkaerőpiaci szervező, elemző 54 345 06 0000 00 00 Személyügyi gazdálkodó és fejlesztő A 10/2007 (II. 27.) SzMM rendelettel módosított 1/2006 (II. 17.) OM rendelet Országos Képzési Jegyzékről és az Országos Képzési Jegyzékbe történő felvétel és törlés eljárási rendjéről alapján. Szakképesítés,

Részletesebben

Azonosító jel: MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA. 2011. május 3. 8:00. Az írásbeli vizsga időtartama: 240 perc NEMZETI ERŐFORRÁS MINISZTÉRIUM

Azonosító jel: MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA. 2011. május 3. 8:00. Az írásbeli vizsga időtartama: 240 perc NEMZETI ERŐFORRÁS MINISZTÉRIUM ÉRETTSÉGI VIZSGA 2011. május 3. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA 2011. május 3. 8:00 Az írásbeli vizsga időtartama: 240 perc NEMZETI ERŐFORRÁS MINISZTÉRIUM Pótlapok száma Tisztázati Piszkozati Matematika

Részletesebben

Tartalom. 1. fejezet Bevezetés: ismerkedés a mérleggel...7

Tartalom. 1. fejezet Bevezetés: ismerkedés a mérleggel...7 Tartalom 1. fejezet Bevezetés: ismerkedés a mérleggel...7 2. fejezet Gazdasági események hatása mérlegre és az eredményre...39 2.1. Alapvetõ gazdasági események hatása a mérlegre...39 2.2. Alapvetõ és

Részletesebben

Útmutató a vízumkérő lap kitöltéséhez

Útmutató a vízumkérő lap kitöltéséhez Útmutató a vízumkérő lap kitöltéséhez A vízumkérő lap ( Visa application form of the People s Republic of China, Form V. 2013 ) az egyik legfontosabb dokumentum, amit a kínai vízumra való jelentkezésnél

Részletesebben

Számtani- és mértani sorozatos feladatok (középszint)

Számtani- és mértani sorozatos feladatok (középszint) Számtani- és mértani sorozatos feladatok (középszint) (KSZÉV Minta (2) 2004.05/II/16) a) Egy számtani sorozat első tagja 9, különbsége pedig 4. Adja meg e számtani sorozat első 5 tagjának az összegét!

Részletesebben

I. rész. Pótlapok száma Tisztázati Piszkozati. Név:...osztály:... Matematika kisérettségi. 2012. május 15. Fontos tudnivalók

I. rész. Pótlapok száma Tisztázati Piszkozati. Név:...osztály:... Matematika kisérettségi. 2012. május 15. Fontos tudnivalók Matematika kisérettségi 2012. május 15. I. rész Fontos tudnivalók 1. A feladatok megoldására 30 percet fordíthat, az id elteltével a munkát be kell fejeznie. 2. A megoldások sorrendje tetsz leges. 3. A

Részletesebben

Kérdések és feladatok

Kérdések és feladatok Kérdések és feladatok 1. A mesében több szám is szerepel. Próbáld meg felidézni ezeket, majd töltsd ki a táblázatot! Ügyelj, hogy a páros és a páratlan számok külön oszlopba kerüljenek! Hány napos volt

Részletesebben

Már nem értékesített hiteltípusok és korábban folyósított hitelek kondíciói Egyéb hitelek (Érvényes: 2015.12.01-től)

Már nem értékesített hiteltípusok és korábban folyósított hitelek kondíciói Egyéb hitelek (Érvényes: 2015.12.01-től) Már nem értékesített hiteltípusok és korábban folyósított hitelek kondíciói Egyéb hitelek (Érvényes: 2015.12.01-től) Tartalomjegyzék Szellemi szabadfoglalkozásúak részére nyújtott (már nem értékesített)

Részletesebben

A követelés-elengedés eredményeként az Ön tartozása <tartozás csökkenésének mértéke> forinttal csökken.

A követelés-elengedés eredményeként az Ön tartozása <tartozás csökkenésének mértéke> forinttal csökken. KITÖLTÉSI ÚTMUTATÓ AZ MNB 14/2015. (X. 27.) AJÁNLÁSÁNAK MELLÉKLETEIHEZ 1. Az ajánlás 1. számú mellékletben szereplő táblázat adattartalma Tájékoztatjuk, hogy a szerződés módosítása esetén a fent megjelölt

Részletesebben

31 521 09 1000 00 00 Gépi forgácsoló Gépi forgácsoló

31 521 09 1000 00 00 Gépi forgácsoló Gépi forgácsoló Az Országos Képzési Jegyzékről és az Országos Képzési Jegyzékbe történő felvétel és törlés eljárási rendjéről szóló 133/2010. (IV. 22.) Korm. rendelet alapján. Szakképesítés, szakképesítés-elágazás, rész-szakképesítés,

Részletesebben

WALTER-LIETH LIETH DIAGRAM

WALTER-LIETH LIETH DIAGRAM TBGL0702 Meteorológia és klimatológia II. Bíróné Kircsi Andrea Egyetemi tanársegéd DE Meteorológiai Tanszék [ C] A diagram fejlécében fel kell tüntetni: - az állomás nevét, - tengerszint feletti magasságát,

Részletesebben

FELADATOK A KALKULUS C. TÁRGYHOZ

FELADATOK A KALKULUS C. TÁRGYHOZ FELADATOK A KALKULUS C. TÁRGYHOZ. HALMAZOK RELÁCIÓK FÜGGVÉNYEK. Bizoyítsuk be a halmaz-műveletek alapazoosságait! 2. Legye adott az X halmaz legye A B C X. Ha A B := (A B) (B A) akkor bizoyítsuk be hogy

Részletesebben

MATEMATIKA FELADATLAP a 6. évfolyamosok számára

MATEMATIKA FELADATLAP a 6. évfolyamosok számára 6. évfolym AMt1 feldtlp MATEMATIKA FELADATLAP 6. évfolymosok számár 2012. jnuár 20. 15:00 ór NÉV: SZÜLETÉSI ÉV: HÓ: NAP: Tolll dolgozz! Zseszámológépet nem hsználhtsz. A feldtokt tetszés szerinti sorrenden

Részletesebben

Lineáris algebra gyakorlat

Lineáris algebra gyakorlat Lineáris algebra gyakorlat 3 gyakorlat Gyakorlatvezet : Bogya Norbert 2012 február 27 Bogya Norbert Lineáris algebra gyakorlat (3 gyakorlat) Tartalom Egyenletrendszerek Cramer-szabály 1 Egyenletrendszerek

Részletesebben

Jelek tanulmányozása

Jelek tanulmányozása Jelek tanulmányozása A gyakorlat célja A gyakorlat célja a jelekkel való műveletek megismerése, a MATLAB környezet használata a jelek vizsgálatára. Elméleti bevezető Alapműveletek jelekkel Amplitudó módosítás

Részletesebben

HÁLÓZATSEMLEGESSÉG - EGYSÉGES INTERNET SZOLGÁLTATÁS-LEÍRÓ TÁBLÁZAT

HÁLÓZATSEMLEGESSÉG - EGYSÉGES INTERNET SZOLGÁLTATÁS-LEÍRÓ TÁBLÁZAT HÁLÓZATSEMLEGESSÉG - EGYSÉGES INTERNET SZOLGÁLTATÁS-LEÍRÓ TÁBLÁZAT - 2016.04.01 után kötött szerződésekre Díjcsomag neve Go Go+ Go EU Go EU+ Kínált letöltési sebesség - 3G 42 Mbit/s 42 Mbit/s 42 Mbit/s

Részletesebben

Gépjármű finanszírozással kapcsolatos szabályozási stratégia elemei

Gépjármű finanszírozással kapcsolatos szabályozási stratégia elemei Gépjármű finanszírozással kapcsolatos szabályozási stratégia elemei Gépjármű finanszírozás változásai 2010. április 14. Dr. Farkas Ádám Elnök Pénzügy Szervezetek Állami Felügyelete Érintett jogszabályok

Részletesebben

a hitelről és a lízingről tudni kell Amit

a hitelről és a lízingről tudni kell Amit Amit a hitelről és a lízingről tudni kell Szeretné megismerni a hitel és a lízing közötti alapvető különbségeket? Kíváncsi, melyik megoldás lenne optimális az Ön számára? Tanulmányozza át füzetünket, és

Részletesebben

KONDÍCIÓS LISTA. Devizabelföldi magánszemélyek. Devizanem éves Kamat 22,13 % THM 1. 500.000 Ft, 3 év futamidő THM 1. 3 millió Ft, 5 év futamidő

KONDÍCIÓS LISTA. Devizabelföldi magánszemélyek. Devizanem éves Kamat 22,13 % THM 1. 500.000 Ft, 3 év futamidő THM 1. 3 millió Ft, 5 év futamidő KONDÍCIÓS LISTA Devizabelföldi magánszemélyek eire vonatkozóan Hatályos: 2016.július 1-től 2016. július 1-jén vagy azt követően igényelt kölcsönökre vonatkozó feltételek: éves Kamat 22,13 % 24,89 % 24,89

Részletesebben

J E G Y Z Ő K Ö N Y V

J E G Y Z Ő K Ö N Y V J E G Y Z Ő K Ö N Y V Készült: Kulturális, Oktatási és Szociális Bizottságának 2015. április 30. napján 15 00 órától a Rakamazi Közös Önkormányzati Hivatal tanácstermében megtartott üléséről. Jelen vannak:

Részletesebben

Tagállamok - Szolgáltatásra irányuló szerződés - Szerződés odaítélése - Gyorsított tárgyalásos eljárás. HU-Szombathely: Banki szolgáltatások

Tagállamok - Szolgáltatásra irányuló szerződés - Szerződés odaítélése - Gyorsított tárgyalásos eljárás. HU-Szombathely: Banki szolgáltatások /7 Ez a hirdetmény a TED weboldalán: http://ted.europa.eu/udl?uri=ted:notice:2666-200:text:hu:html HU-Szombathely: Banki szolgáltatások 200/S 7-2666 SZERZŐDÉS ODAÍTÉLÉSÉRŐL SZÓLÓ HIRDETMÉNY Szolgáltatás

Részletesebben

MATEMATIKA ÉRETTSÉGI 2009. október 20. EMELT SZINT

MATEMATIKA ÉRETTSÉGI 2009. október 20. EMELT SZINT MATEMATIKA ÉRETTSÉGI 009. október 0. EMELT SZINT ) Oldja meg az alábbi egyenleteket! a), ahol és b) log 0,5 0,5 7 6 log log 0 I., ahol és (4 pont) (7 pont) log 0,5 a) Az 0,5 egyenletben a hatványozás megfelelő

Részletesebben

Rudas Tamás: A hibahatár a becsült mennyiség függvényében a mért pártpreferenciák téves értelmezésének egyik forrása

Rudas Tamás: A hibahatár a becsült mennyiség függvényében a mért pártpreferenciák téves értelmezésének egyik forrása Rudas Tamás: A hibahatár a becsült meyiség függvéyébe a mért ártrefereciák téves értelmezéséek egyik forrása Megjelet: Agelusz Róbert és Tardos Róbert szerk.: Mérésről mérésre. A választáskutatás módszertai

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉPSZINT Sorozatok

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉPSZINT Sorozatok MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉPSZINT Sorozatok A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek megoldásához!

Részletesebben

JELZÁLOGLEVÉL KAMATTÁMOGATÁS MELLETT NYÚJTOTT LAKÁSCÉLÚ KÖLCSÖNÖK

JELZÁLOGLEVÉL KAMATTÁMOGATÁS MELLETT NYÚJTOTT LAKÁSCÉLÚ KÖLCSÖNÖK Lakossági Hitelek kondíciói Érvényes: Hatályos: 2016. június 01 -tól/től visszavonásig JELZÁLOGLEVÉL KAMATTÁMOGATÁS MELLETT NYÚJTOTT LAKÁSCÉLÚ KÖLCSÖNÖK Magánszemélyek részére Jelzáloglevél kamattámogatás

Részletesebben

H I R D E T M É N Y. Az OTP BANK SZEMÉLYI KÖLCSÖN, FÉSZEKRAKÓ ÉS KÖZALKALMAZOTTI SZEMÉLYI KÖLCSÖN

H I R D E T M É N Y. Az OTP BANK SZEMÉLYI KÖLCSÖN, FÉSZEKRAKÓ ÉS KÖZALKALMAZOTTI SZEMÉLYI KÖLCSÖN H I R D E T M É N Y Az OTP BANK SZEMÉLYI KÖLCSÖN, FÉSZEKRAKÓ ÉS KÖZALKALMAZOTTI SZEMÉLYI KÖLCSÖN FELFÜGGESZTETT TERMÉKÉNEK Feltételeiről Közzététel: 2009. október 1. Hatályos 2009. október 1-től. (Jelen

Részletesebben