Analízis III Parciális differenciálegyenletek

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Analízis III Parciális differenciálegyenletek"

Átírás

1 Analízis III Parciális differenciálegyenletek Lineáris, másodrendű PDE-k január Bevezető A parciális differemciálegyenlet egy olyan összefüggés, ahol az ismeretlen egy többváltozós valós függvény. Az egyenletben szerepelhet maga a függvény (u), parciális deriváltjai: a függvény gradiense, Hesse-mátrixa... Az ismeretlen függény koordinátái közott néha van egy kiválasztott t, ami az idő fizikai mennyiségnek felel meg, a többi pedig x k a hely koordinátáit adják meg. Definíció Legyen α egy multiindex: α = (α 1, α 2, α 3,..., α n ), α i N {0}. Ekkor a D α differenciál operátor hatása az u(x) n változós függvényre: ahol α = n i=1 α i. D α u := α α 1 x1 α 2 x2... α n xn u Definíció A PDE rendje max α, ahol a PDE külonböző D α u-k között egy összefüggés. Definíció A Laplace operátor egy speciális differenciál operátor, mely a (helykoordináták szerinti) második deriváltak összege: n u = k=1 u x k x k (Jelölésben a parciális deriváltat alsó indexbe írjuk, tehát például: u x k x k = 2 u x 2 k Köszönet Lőrincz Máté-nak, aki az előadásokat 2011 tavaszán legépelte ) 1

2 Alapkérdések Megoldható-e a PDE? Ha igen, létezik-e egyértelmű megoldás? Jelenleg nem áll rendelkezésünkre olyan általános elmélet, melynek segítségével az összes PDE-t meg tudnánk oldani, sőt, úgy sejtjük, hogy ilyen elmélet nem is létezik. Stabil-e a megoldás? Stabil megoldásról akkor beszélünk, ha az folytonosan függ a PDE paramétereitől és a kezdeti feltételektől. 2. Alap PDE-k A PDE-ket két nagy csoportra oszthatjuk: lineárisra és nemlineárisra. Lineáris PDE-k Transzport egyenlet, u = u(x, t) =? u t + b u x = 0 Laplace-egyenlet u = 0 Helmholz-egyenlet u = λu Itt a λ-t is keressük, egyben sajátérték probléma is. Hővezetés egyenlete Itt u függ az időtől is: u t = u Schrödinger egyenlet i u t = u Hullámegyenlet u tt = u Stb... Nemlineáris PDE-k grad u = 1 2

3 Minimális felület ( ) grad u div = grad u 2 Stb... A nemlineáris egyenletek lehetnek jól- és rosszul kondícionáltak. (well- and ill-posed) Jól-kondícionált PDE-ről akkor beszélünk, ha létezik egyértelmű, elegendően folytonos megoldás. A rosszul kondícionált ennek az ellentéte, például a káosz. Ezek az egyenletek írják le többek között a természtben előforduló ugrásszerű válztozásokat is. 3. Laplace egyenlet Ez az egyik leggyakrabban előfordulú PDE. u = u(x 1, x 2,..., x n ) egy n-változós függvény, melyet valamely Ω R n nyílt, sima határú tartományon keresünk. A tartomány belsejében: n u = u x k x k = 0. (1) k=1 A fenti (1) egyenlettel együtt adott egy peremfeltétel is. értjük, amikor u(x)-ről valami ismert, ha x Ω. Peremfeltétel alatt azt Három fajta peremfeltételt különböztetünk meg: 1. Dirichlet feltétel u(x) = f(x), x Ω. Példa: Ha egy rugalmas membránt kifeszítünk egy keretre és tudni akarjuk, hogy a membránnak mi lesz a felülete, akkor f(x) a keretet leíró függvény. 2. Neumann feltétel Megadjuk, hogy u-nak mennyi a határra merőleges deriváltja. u n =< grad u, n >= f(x), x Ω, n Ω. Az előző példa szerint itt nem a keretet leíró függvényt ismerjük, hanem azt, hogy a membránt milyen erővel húzzuk. 3. Harmadik típusú vagy kevert (mixed) peremfeltétel αu(x) + βu n(x) = f(x), x Ω, α, β R. 3

4 A fentiek mind jól kondícionált feladatok, ha a peremfeltételben szereplő függvények elegendően simák. Nem létezik általános megoldás. Bizonyos típusú Ω-k esetén tudunk megoldásról beszélni Téglalap alakú tartomány A megoldást a változók szétválasztásával határozzuk meg. A módszert egy egyszerű példán mutatjuk be, n = 2 esetén. Ω = {(x, y) : 0 < x < 1, 0 < y < 1}. Legyenek adottak a következő peremfeltételek: Keressük a megoldást u(x, y) = X(x) Y (y) alakban! Ekkor a PDE-t így írhatjuk fel: Innen átosztva azt kapjuk, hogy u(x, 0) = 0 (2) u(0, y) = 0 (3) u(1, y) = 0 (4) u(x, 1) = f(x) (5) X Y + Y X = 0. Y (y) Y (y) = X (x) X(x). A két oldalon szereplő függvények változói egészen mások. Ezért az egyenlőség csak akkor teljesülhet, ha mindkét oldal konstans. Ez azt jelenti, hogy λ R: Y (y) Y (y) = X (x) X(x) = λ. λ segítségével a kiinduló PDE helyett két közönséges DE-t írhatunk: A kezdeti feltételekből azt kajuk, hogy (Y (1)-ről egyelőre nem tudunk semmit.) Y = λy X = λx X(0) = X(1) = 0, Y (0) = 0 4

5 λ-t pozitív konstansként, λ = k 2 alakban keressük. (HF: Vajon miért nem lehet λ negatív???) Ekkor: A fenti egyenletek általános megoldásai: X (x) = k 2 X(x) Y (y) = k 2 Y (y) X(x) = C 1 cos(kx) + C 2 sin(kx) Y (y) = C 3 e ky +C 4 e ky Írjuk vissza X-et és Y -t u-ba: u(x, y) = X(x) Y (y) = (C 1 cos(kx) + C 2 sin(kx)) (C 3 e ky +C 4 e ky ) A kezdeti feltételekből határozzuk meg a konstansokat. Először foglalkozzunk a nulla kezdeti feltételekkel. A (3) feltétel szerint u(0, y) = 0, így (C 1 cos(k0) + C 2 sin(k0)) (C 3 e ky +C 4 e ky ) = 0, azaz C 1 (C 3 e ky +C 4 e ky ) = 0. Ez esetben C 1 -nek nullának kell lenni, hiszen C 3 e ky +C 4 e ky mindenhol nem lehet nulla. C 1 = 0 A (3) feltétel szerint u(x, 0) = 0, ez azt jelenti, hogy amiből az következik, hogy C 2 sin(kx) (C 3 e k0 +C 4 e k0 ) = 0, C 3 = C 4 Ha C 2 -t nullának választottuk volna, akkor a u(x, 1) = f(x) kezdeti feltételt nem teljesíthettük volna. Így csak a szorzat másik tagja egyenlő nullával. Már csak két konstans maradt az egyenletben (C 2 és C 3 ), de ezeket könnyen egyesíthetjük: ahol B = C 2 C 3. u(x, y) = C 2 sin(kx) (C 3 e ky C 3 e ky ) u(x, y) = B sin(kx) (e ky e ky ) Az u(1, y) = 0 feltétel miatt sin(k) = 0, ezért k = nπ lehet csak, n N. Az egyszerűsítés kedvéért használjuk ki, hogy 1 2 ( e nπy e nπy) = sh(nπy). 5

6 Összegezzük, eddig mire jutottunk. Megkaptuk u(x, y)-ra az alábbi általános alakot: u(x, y) = B sin(nπx) sh(nπy) Mivel homogén lineáris differenciálegyenlet megoldását keressük, ezért a megoldások lineáris kombinációja is megoldás, így megoldás lesz - ha a sor konvergens - az alábbi általános alakú függvény: u(x, y) = B n sin(nπx) sh(nπy) A megoldás utolsó lépése lesz a konkrét B n együtthatók meghatározása. Ehhez az eddig használatlan u(x, 1) = f(x) kezdeti feltételt fogjuk figyelembe venni: u(x, 1) = B n sin(nπx) sh(nπ1) = f(x) Az egyelőre ismeretlen együtthatók f azon Fourier sorfejtése alapján határozhaók meg, melyben csak a sinus-os tagok szerepelnek. Lényegében az történik, hogy megszorozzuk a fenti egyenletet sin(mπx)-szel, ahol m egy természetes szám: sin(mπx) B n sin(nπx) sh(nπ) = sin(mπx) f(x), majd átszorozva: B n sin(mπx) sin(nπx) sh(nπ) = sin(mπx) f(x). Integráljuk mindkét oldalt 0 és 1 között x szerint. A konvergencia kérdésére most nem térünk ki, ez a Fourier sorfejtés elméletében szerepelt. A baloldalon egyetlen tag fog megmaradni, a többi 0 lesz. B m sh(mπ) 1 2 = B m = sin(mπx) f(x) dx sin(mπx) f(x) dx sh(mπ) 3.2. Kör alakú tartomány Legyen n = 2 és Ω = {(x, y) : x 2 + y 2 < 1}. Ebben a részben a feladat az, hogy a Laplace-egyenletet az egységkörön oldjuk meg úgy, hogy az u függvény értéke ismert a kör határán: u(x, y) = 0, x 2 + y 2 < 1 6

7 u(x, y) = g(x, y), x 2 + y 2 = 1. Ezt a legegyszerűbben polár-koordinátákkal tehetjük meg. A Laplace-egyenlet polárkoordinátákban Ehhez először át kell írnunk a Laplace-egyenletet polár-koordinátákba. Maga a művelet nem nehéz, csak hosszú. Nem fogom ismertetni a teljes számítást, csak az elindulást mutatom be, és a végeredményt. Először át kell térni polár-koordinátákba az alábbi képletekkel: x = r cos(θ) y = r sin(θ) Legyen W a Laplace egyenlet megoldása polárkoordinátákban: W (r, θ) = u(r cos(θ), r sin(θ)). Ezután meg kell határozni a Laplace-egyenletben lévő parciális deriváltakat. Így: W = u u cos(θ) + r x y sin(θ) 2 W = 2 u r 2 x 2 cos2 (θ) + 2 u y sin(θ) u cos(θ) sin(θ) 2 x y W = u u r( sin(θ)) + θ x y r cos(θ) 2 W = 2 u θ 2 x 2 r2 sin 2 (θ) + x u r( cos(θ)) + 2 u y 2 r2 cos(θ) + u r( sin(θ)) y A végeredmény: Feladat megoldása 2 W r 2 A PDE polárkoordinátákban: + 1 r W r + 1 r 2 2 W 2 θ = 0. W rr + 1 r W r + 1 r 2 W θθ = 0 ahol W értéke az egységkörön (peremfeltétel): W (1, θ) = h(θ), W (1, θ) = g(cos(θ), sin(θ)) =: h(θ). Kikötés: u a vizsgált tartományban (itt az egységkör) korlátos. Ez később fontos lesz. 7

8 Itt is érdemes szorzat alakban keresni a megoldást: W (r, θ) = R(r)T (θ) A szorzatot az egyenletbe behelyettesítve: R (r)t (θ) + 1 r R (r)t (θ) + 1 r 2 R(r)T (θ) = 0 R (r) + 1 r R (r) + 1 r 2 R(r)T (θ) T (θ) = 0 Innen átrendezve azt kapjuk, hogy Ez is csak úgy lehet, ha λ R: T (θ) T (θ) = r2 R (r) + rr(r). R(r) λ = T (θ) T (θ) = r2 R (r) + rr(r). R(r) Meggondolandó, hogy csak λ = k 2 > 0 eset lehetséges. A fentiekből következik, hogy a PDE helyettesíthető két közönséges DE-tel: r 2 R (r) + rr (r) k 2 R(r) = 0 T (θ) + k 2 T (θ) = 0 Ezeket a differenciálegyenleteket pedig az alábbi függvények fogják megoldani: R(r) = C 1 r k + C 2 r k T (θ) = C 3 cos(kθ) + C 4 sin(kθ) Egyből megállapíthatjuk, hogy C 2 = 0, mert és kikötés volt, hogy u korlátos. lim r 0 r k = Ezért a partikuláris megoldást ilyen alakú: W (r, θ) = r n (A n cos(nθ) + B n sin(nθ)), A konkrét megoldás meghatározásához a kezdeti feltételt kell figyelembe venni. Ha a peremen adott függvény Fourier sorfejtése h(θ) = (A n cos(nθ) + B n sin(nθ)) akkor W (r, θ) = r n (A n cos(nθ) + B n sin(nθ)), és ebből az eredeti u(x, y) alak visszaállítható. 8

9 4. Hővezetés egyenlete A hővezetés egyenlete n dimenzióban: u t = u, t 0, x Ω R n ahol Ω nyílt tartomány. időpontban. u(x, t) jelenti az adott pontban mért hőmérséklet a t Mielőtt rátérünk a konkrét példára, nézzük meg, mit tudunk kiolvasni a fenti egyenletből! Először is, szerepel benne az idő szerinti derivált, tehát valami időtől függő, úgynevezett dinamikus rendszert ír le. Ez igaz a hővezetésre, hiszen a hőterjedésnek valóban van sebessége. Másodszor, az idő szerinti derivált egyenlő a helykoordináták szerinti második deriváltak összegével. Mit is jelent esetünkben a második derivált? Ez esetben mi a hőmérsékletet deriváljuk hely szerint. Az első derivált két, egymáshoz nagyon közeli pont hőmérsékletkülönbségét adja meg. A második derivált a hőmérsékletkülönbség változását adja meg, ami a hőátadás sebességével arányos. Összefoglalva: A fenti összefüggés azt jelenti, hogy idő szerint annyira változik egy adott pont hőmérséklete, amilyen gyorsan a hőátadás zajlik az adott pont és környezete között. Ha végiggondoljuk, ez tényleg így van Hővezetés végtelen hosszú rúdban Legyen n = 1, Ω = IR. Ekkor az egyenlet: u t = ku xx, x IR, t > 0. (6) k > 0 a rúd fizikai konstansa. Legyen a kezdeti érték feltétel u(x, 0) = f(x), a rúd hőmérséklete a kiindulási időpillanatban. A peremfeltételt azzal helyettesítjük, hogy lim u(x, t) = 0, t 0. x ± Vegyük (6) egyenlet Fourier transzformáltját az x változó szerint: F(u t(x, t), s) = kf(u xx(x, t), s), ami a Fourier transzformáció alaptulajdonságai szerint így írható: t F(u(x, t), s) = ks2 F(u(x, t), s). A t szerint deriválásnál a frekvenciatartomány s változója konstans. A fenti egyenlet egy ODE-t ad, melynek megoldása: F(u(x, t), s) = C(s)e ks2t, 9

10 ahol C(s) független t-től. A kezdeti feltételből: F(f(x), s) = F(u(x, 0), s) = C(s), ezért f ismeretéből C(s) is meghatározható. Analízis 2-ből tanultuk, hogy F(e x2 /2, s) = e s2 /2, így könnyen felíhatjuk azt a függvényt, aminek Fourier traszformáltja e ks2t : 1 F( e x2 4kt, s) = e ks 2 t 2kt Összegezve azt kaptuk, hogy a keresett függvény Fourier transzformáltjára teljesül, hogy 1 F(u(x, t), s) = F(f(x), s) F( e x2 /4kt ) = 1 F(f(x) e x2 4kt, s) 2kt 2π A konvolúció Fourier transzformáltjáról azt tanultuk, hogy F(f g, s) = 2π F(f, s) F(g, s) Tehát a hövezetési feladat megoldása a végtelen hosszú rúdban: u(x, t) = f(x) e x2 4kt = f(y)e (x y)2 4kt dy Hővezetés véges rúdban Legyen n = 1, Ω = (0, 1), Ω = {0, 1}. Az egyszerűség kedvéert k = 1-t terkintünk. Ekkor az egyenlet: u t = u xx, x (0, 1), t > 0. (7) A kezdeti érték feltétel és a peremfeltétel u(x, 0) = f(x), x (0, 1), (8) u(0, t) = u(1, t) = 0, t 0. (9) Ezt is a változók szétválasztásával oldhatjuk meg. A megoldást u(x, t) = X(x)T (t) szorzat alakban keressük. A (7) egyenlet ilyen alakú lesz: T (t)x(x) = X (x)t (t), 10

11 ahonnan átrendezássel azt kapjuk, hogy T (t) T (t) = X (x) X(x). Mivel a két oldalon a függvények változói különbozőek, egyenlőség csak akkor fordulhat elő, ha mindkét oldal konstans. Ezért λ IR: ami két közönséges DE-t ad. λ = T (t) T (t) = X (x) X(x), (10) általános megoldása T (t) = ce λt, c IR. A peremfeltételeket behelyettesítve azt kapjuk, hogy Ezért T (t) = λt (t) (10) X (x) = λx(x). (11) u(0, t) = X(0)T (t) = 0, u(1, t) = X(1)T (t) = 0, t > 0. X(1) = X(0) = 0. (12) Ha λ pozitív, azaz λ = α 2, akkor (11) általános megoldása Így X(x) = Ae αx + Be αx. X(0) = A + B = 0, X(1) = Ae α + Be α = 0. Ebből A = B = 0 adódik, ezért ebben az esetben nincs nem-triviális megoldás. Tehát λ negatív, λ = α 2. Ekkor A (11) általános megoldása Így X(x) = A cos(αx) + B sin(αx). X(0) = A = 0, X(1) = B sin(α) = 0. Ez csak akkor lehet nem-triviális, ha α = nπ, n IN. Azt kaptuk, hogy λ = n 2 π 2 alakú. A (11) DE hozzá tartozó alapmegoldása pedig X(x) = sin(nπx). Az eredeti (7) számú PDE λ = n 2 π 2 -hez tartozó alapmegoldása: u(x, t) = Ae n2 π 2t sin(nπx). Az általános megoldás a különböző lehetséges λ-k hoz tartozó alapmegoldások lineáris kombinációjaként áll elő. u(x, t) = A n e n2 π 2t sin(nπx) A n -et f Fourier-sorából tudjuk meghatározni. Mivel a [0, 1] intervallumban mozgunk, ez lehet tisztán szinuszos, vagy tisztán koszinuszos is. A [0, 1] intervallumon {sin(nx), n IN} és {cos(nx), n IN} önállóan is bázist alkot. Nekünk most a tiszta szinuszos előállítás a célravezető. 11

12 4.3. Hővezetés visszafelé Oldjuk meg az előző feladatot úgy is, hogy az időben nem előre, hanem visszafelé haladunk úgy, hogy a 0. időpillanatban a rúd hőmérsékletét az f(x) 0 függvény írja le. Először is, mit várunk? A rúd végtelen ideig hűlt, hiszen a két végéről hűtjük (a peremfeltételek nullák) és mégis nullától különböző a hőmérséklete. Ez azt jelenti, hogy kezdetben végtelenül forrónak kellett lennie, vagyis a megoldásnak a -ben fel kell robbannia. Nézzük meg, mit mond a matematikai megoldás! Legyen U(x, t) = u(x, t). Az inverz hővezetést leíró egyenlet így néz ki: U t = U xx. Látható, hogy bejött egy negatív előjel. Ennek megoldását levezetve az előzőek szerint, ugyanúgy megkapjuk a végtelen szummát, de a hatványkitevőben egy pozitív szám lesz: U(x, t) = A n e +n2 π 2t sin(nπx) Ebből látszik, hogy ez a megoldás valóban felrobban minden x-re t esetén. 12

3. Lineáris differenciálegyenletek

3. Lineáris differenciálegyenletek 3. Lineáris differenciálegyenletek A közönséges differenciálegyenletek két nagy csoportba oszthatók lineáris és nemlineáris egyenletek csoportjába. Ez a felbontás kicsit önkényesnek tűnhet, a megoldásra

Részletesebben

I. Fejezetek a klasszikus analízisből 3

I. Fejezetek a klasszikus analízisből 3 Tartalomjegyzék Előszó 1 I. Fejezetek a klasszikus analízisből 3 1. Topológia R n -ben 5 2. Lebesgue-integrál, L p - terek, paraméteres integrál 9 2.1. Lebesgue-integrál, L p terek................... 9

Részletesebben

Utolsó el adás. Wettl Ferenc BME Algebra Tanszék, Wettl Ferenc (BME) Utolsó el adás / 20

Utolsó el adás. Wettl Ferenc BME Algebra Tanszék,   Wettl Ferenc (BME) Utolsó el adás / 20 Utolsó el adás Wettl Ferenc BME Algebra Tanszék, http://www.math.bme.hu/~wettl 2013-12-09 Wettl Ferenc (BME) Utolsó el adás 2013-12-09 1 / 20 1 Dierenciálegyenletek megoldhatóságának elmélete 2 Parciális

Részletesebben

Parciális dierenciálegyenletek

Parciális dierenciálegyenletek Parciális dierenciálegyenletek 2009. május 25. A félév lezárásaként néhány alap-deníciót és alap-példát szeretnék adni a Parciális Dierenciálegynletek (PDE) témaköréb l. Épp csak egy kis izelít t. Az alapfeladatok

Részletesebben

4. Laplace transzformáció és alkalmazása

4. Laplace transzformáció és alkalmazása 4. Laplace transzformáció és alkalmazása 4.1. Laplace transzformált és tulajdonságai Differenciálegyenletek egy csoportja algebrai egyenletté alakítható. Ennek egyik eszköze a Laplace transzformáció. Definíció:

Részletesebben

y + a y + b y = r(x),

y + a y + b y = r(x), Definíció 1 A másodrendű, állandó együtthatós, lineáris differenciálegyenletek általános alakja y + a y + b y = r(x), ( ) ahol a és b valós számok, r(x) pedig adott függvény. Ha az r(x) függvény az azonosan

Részletesebben

Differenciálegyenletek

Differenciálegyenletek DE 1 Ebben a részben I legyen mindig pozitív hosszúságú intervallum DE Definíció: differenciálegyenlet Ha D n+1 nyílt halmaz, f:d folytonos függvény, akkor az y (n) (x) f ( x, y(x), y'(x),..., y (n-1)

Részletesebben

Differenciálegyenletek megoldása próbafüggvény-módszerrel

Differenciálegyenletek megoldása próbafüggvény-módszerrel Differenciálegyenletek megoldása próbafüggvény-módszerrel Ez még nem a végleges változat, utoljára módosítva: 2012. április 9.19:38. Elsőrendű egyenletek Legyen adott egy elsőrendű lineáris állandó együtthatós

Részletesebben

Differenciálegyenletek. Vajda István március 4.

Differenciálegyenletek. Vajda István március 4. Analízis előadások Vajda István 2009. március 4. Függvényegyenletek Definíció: Az olyan egyenleteket, amelyekben a meghatározandó ismeretlen függvény, függvényegyenletnek nevezzük. Függvényegyenletek Definíció:

Részletesebben

KOVÁCS BÉLA, MATEMATIKA II.

KOVÁCS BÉLA, MATEMATIKA II. KOVÁCS BÉLA MATEmATIkA II 10 X PARCIÁLIS DIFFERENCIÁLEGYENLETEk 1 Elsőrendű kvázilineáris parciális DIFFERENCIÁLEGYENLETEk Elméleti alapok Elsőrendű kvázilineáris parciális differenciálegyenlet általános

Részletesebben

1. Számsorok, hatványsorok, Taylor-sor, Fourier-sor

1. Számsorok, hatványsorok, Taylor-sor, Fourier-sor . Számsorok, hatványsorok, Taylor-sor, Fourier-sor Vizsgálja meg a következő végtelen sorokat konvergencia szempontjából. Tétel. (Cauchy-féle belső konvergenciakritérium) A a n végtelen sor akkor és csakis

Részletesebben

Meghatározás: Olyan egyenlet, amely a független változók mellett tartalmaz egy vagy több függvényt és azok deriváltjait.

Meghatározás: Olyan egyenlet, amely a független változók mellett tartalmaz egy vagy több függvényt és azok deriváltjait. Közönséges differenciálegyenletek Meghatározás: Olyan egyenlet, amely a független változók mellett tartalmaz egy vagy több függvényt és azok deriváltjait. Célunk a függvény meghatározása Egyetlen független

Részletesebben

Hatványsorok, Fourier sorok

Hatványsorok, Fourier sorok a Matematika mérnököknek II. című tárgyhoz Hatványsorok, Fourier sorok Hatványsorok, Taylor sorok Közismert, hogy ha 1 < x < 1 akkor 1 + x + x 2 + x 3 + = n=0 x n = 1 1 x. Az egyenlet baloldalán álló kifejezés

Részletesebben

BIOMATEMATIKA ELŐADÁS

BIOMATEMATIKA ELŐADÁS BIOMATEMATIKA ELŐADÁS 6. Differenciálegyenletekről röviden Debreceni Egyetem, 2015 Dr. Bérczes Attila, Bertók Csanád A diasor tartalma 1 Bevezetés 2 Elsőrendű differenciálegyenletek Definíciók Kezdetiérték-probléma

Részletesebben

Feladatok a Diffrenciálegyenletek IV témakörhöz. 1. Határozzuk meg következő differenciálegyenletek általános megoldását a próba függvény módszerrel.

Feladatok a Diffrenciálegyenletek IV témakörhöz. 1. Határozzuk meg következő differenciálegyenletek általános megoldását a próba függvény módszerrel. Feladatok a Diffrenciálegyenletek IV témakörhöz 1 Határozzuk meg következő differenciálegyenletek általános megoldását a próba függvény módszerrel (a) y 3y 4y = 3e t (b) y 3y 4y = sin t (c) y 3y 4y = 8t

Részletesebben

Tizenegyedik gyakorlat: Parciális dierenciálegyenletek Dierenciálegyenletek, Földtudomány és Környezettan BSc

Tizenegyedik gyakorlat: Parciális dierenciálegyenletek Dierenciálegyenletek, Földtudomány és Környezettan BSc Tizenegyedi gyaorlat: Parciális dierenciálegyenlete Dierenciálegyenlete, Földtudomány és Környezettan BSc A parciális dierenciálegyenlete elmélete még a özönséges egyenleteénél is jóval tágabb, így a félévben

Részletesebben

Differenciálegyenletek december 13.

Differenciálegyenletek december 13. Differenciálegyenletek 2018. december 13. Elsőrendű DE Definíció. Az elsőrendű differenciálegyenlet általános alakja y = f (x, y), ahol f (x, y) adott kétváltozós függvény. Minden y = y(x) függvény, amire

Részletesebben

DIFFERENCIÁLEGYENLETEK. BSc. Matematika II. BGRMA2HNND, BGRMA2HNNC

DIFFERENCIÁLEGYENLETEK. BSc. Matematika II. BGRMA2HNND, BGRMA2HNNC BSC MATEMATIKA II. MÁSODRENDŰ LINEÁRIS DIFFERENCIÁLEGYENLETEK BSc. Matematika II. BGRMAHNND, BGRMAHNNC MÁSODRENDŰ DIFFERENCIÁLEGYENLETEK Egy explicit közönséges másodrendű differenciálegyenlet általános

Részletesebben

Feladatok az 5. hétre. Eredményekkel és teljesen kidolgozott megoldásokkal az 1,2,3.(a),(b),(c), 6.(a) feladatokra

Feladatok az 5. hétre. Eredményekkel és teljesen kidolgozott megoldásokkal az 1,2,3.(a),(b),(c), 6.(a) feladatokra Feladatok az 5. hétre. Eredményekkel és teljesen kidolgozott megoldásokkal az 1,,3.(a),(b),(), 6.(a) feladatokra 1. Oldjuk meg a következő kezdeti érték feladatot: y 1 =, y(0) = 3, 1 x y (0) = 1. Ha egy

Részletesebben

Felügyelt önálló tanulás - Analízis III.

Felügyelt önálló tanulás - Analízis III. Felügyelt önálló tanulás - Analízis III Kormos Máté Differenciálható sokaságok Sokaságok Röviden, sokaságoknak nevezzük azokat az objektumokat, amelyek egy n dimenziós térben lokálisan k dimenziósak Definíció:

Részletesebben

DIFFERENCIÁLEGYENLETEK. BSc. Matematika II. BGRMA2HNND, BGRMA2HNNC

DIFFERENCIÁLEGYENLETEK. BSc. Matematika II. BGRMA2HNND, BGRMA2HNNC 016.03.1. BSC MATEMATIKA II. ELSŐ ÉS MÁSODRENDŰ LINEÁRIS DIFFERENCIÁLEGYENLETEK BSc. Matematika II. BGRMAHNND, BGRMAHNNC AZ ELSŐRENDŰ LINEÁRIS DIFFERENCIÁLEGYENLET FOGALMA Az elsőrendű közönséges differenciálegyenletet

Részletesebben

sin x = cos x =? sin x = dx =? dx = cos x =? g) Adja meg a helyettesítéses integrálás szabályát határozott integrálokra vonatkozóan!

sin x = cos x =? sin x = dx =? dx = cos x =? g) Adja meg a helyettesítéses integrálás szabályát határozott integrálokra vonatkozóan! Matematika előadás elméleti kérdéseinél kérdezhető képletek Analízis II Határozatlan integrálszámítás g) t = tg x 2 helyettesítés esetén mivel egyenlő sin x = cos x =? g) t = tg x 2 helyettesítés esetén

Részletesebben

Differenciálegyenletek megoldása Laplace-transzformációval. Vajda István március 21.

Differenciálegyenletek megoldása Laplace-transzformációval. Vajda István március 21. Analízis előadások Vajda István 2009. március 21. A módszer alkalmazásának feltételei: Állandó együtthatós, lineáris differenciálegyenletek megoldására használhatjuk. A módszer alkalmazásának feltételei:

Részletesebben

Analízis III. gyakorlat október

Analízis III. gyakorlat október Vektoranalízis Analízis III. gyakorlat 216. október Gyakorló feladatok és korábbi zh feladatok V1. Igazolja az alábbi "szorzat deriválási" szabályt: div(ff) = F, f + f div(f). V2. Legyen f : IR 3 IR kétszer

Részletesebben

1.9. B - SPLINEOK B - SPLINEOK EGZISZTENCIÁJA. numerikus analízis ii. 34. [ a, b] - n legfeljebb n darab gyöke lehet. = r (m 1) n = r m + n 1

1.9. B - SPLINEOK B - SPLINEOK EGZISZTENCIÁJA. numerikus analízis ii. 34. [ a, b] - n legfeljebb n darab gyöke lehet. = r (m 1) n = r m + n 1 numerikus analízis ii 34 Ezért [ a, b] - n legfeljebb n darab gyöke lehet = r (m 1) n = r m + n 1 19 B - SPLINEOK VOLT: Ω n véges felosztás S n (Ω n ) véges dimenziós altér A bázis az úgynevezett egyoldalú

Részletesebben

Kétváltozós függvények differenciálszámítása

Kétváltozós függvények differenciálszámítása Kétváltozós függvények differenciálszámítása 13. előadás Farkas István DE ATC Gazdaságelemzési és Statisztikai Tanszék Kétváltozós függvények p. 1/1 Definíció, szemléltetés Definíció. Az f : R R R függvényt

Részletesebben

valós számot tartalmaz, mert az ilyen részhalmazon nem azonosság.

valós számot tartalmaz, mert az ilyen részhalmazon nem azonosság. 2. Közönséges differenciálegyenlet megoldása, megoldhatósága Definíció: Az y függvényt a valós számok H halmazán a közönséges differenciálegyenlet megoldásának nevezzük, ha az y = y(x) helyettesítést elvégezve

Részletesebben

Gauss-Jordan módszer Legkisebb négyzetek módszere, egyenes LNM, polinom LNM, függvény. Lineáris algebra numerikus módszerei

Gauss-Jordan módszer Legkisebb négyzetek módszere, egyenes LNM, polinom LNM, függvény. Lineáris algebra numerikus módszerei A Gauss-Jordan elimináció, mátrixinvertálás Gauss-Jordan módszer Ugyanazzal a technikával, mint ahogy a k-adik oszlopban az a kk alatti elemeket kinulláztuk, a fölötte lévő elemeket is zérussá lehet tenni.

Részletesebben

Matematika A2 vizsga mgeoldása június 4.

Matematika A2 vizsga mgeoldása június 4. Matematika A vizsga mgeoldása 03. június.. (a (3 pont Definiálja az f(x, y függvény határértékét az (x 0, y 0 helyen! Megoldás: Legyen D R, f : D R. Legyen az f(x, y függvény értelmezve az (x 0, y 0 pont

Részletesebben

Matematika II. 1 sin xdx =, 1 cos xdx =, 1 + x 2 dx =

Matematika II. 1 sin xdx =, 1 cos xdx =, 1 + x 2 dx = Matematika előadás elméleti kérdéseinél kérdezhető képletek Matematika II Határozatlan Integrálszámítás d) Adja meg az alábbi alapintegrálokat! x n 1 dx =, sin 2 x dx = d) Adja meg az alábbi alapintegrálokat!

Részletesebben

λx f 1 (x) e λx f 2 (x) λe λx f 2 (x) + e λx f 2(x) e λx f 2 (x) Hasonlóan általában is elérhető sorműveletekkel, hogy csak f (j)

λx f 1 (x) e λx f 2 (x) λe λx f 2 (x) + e λx f 2(x) e λx f 2 (x) Hasonlóan általában is elérhető sorműveletekkel, hogy csak f (j) Matematika A3 gyakorlat Energetika és Mechatronika BSc szakok, 016/17 ősz 10 feladatsor: Magasabbrendű lineáris differenciálegyenletek (megoldás) 1 Határozzuk meg az e λx, xe λx, x e λx,, x k 1 e λx függvények

Részletesebben

Feladatok megoldásokkal a 9. gyakorlathoz (Newton-Leibniz formula, közelítő integrálás, az integrálszámítás alkalmazásai 1.

Feladatok megoldásokkal a 9. gyakorlathoz (Newton-Leibniz formula, közelítő integrálás, az integrálszámítás alkalmazásai 1. Feladatok megoldásokkal a 9. gyakorlathoz (Newton-Leibniz formula, közelítő integrálás, az integrálszámítás alkalmazásai.). Feladat. Határozzuk meg az alábbi integrálokat: a) x x + dx d) xe x dx b) c)

Részletesebben

Mátrix-exponens, Laplace transzformáció

Mátrix-exponens, Laplace transzformáció 2016. április 4. 2016. április 11. LINEÁRIS DIFFERENCIÁLEGYENLET RENDSZEREK ÉS A MÁTRIX-EXPONENS KAPCSOLATA Feladat - ismétlés Tegyük fel, hogy A(t) = (a ik (t)), i, k = 1,..., n és b(t) folytonos mátrix-függvények

Részletesebben

Baran Ágnes, Burai Pál, Noszály Csaba. Gyakorlat Differenciálegyenletek

Baran Ágnes, Burai Pál, Noszály Csaba. Gyakorlat Differenciálegyenletek Matematika Mérnököknek 2. Baran Ágnes, Burai Pál, Noszály Csaba Gyakorlat Differenciálegyenletek Baran Ágnes, Burai Pál, Noszály Csaba Matematika Mérnököknek 2. 1.-2. Gyakorlat 1 / 42 Numerikus differenciálás

Részletesebben

Fourier sorok február 19.

Fourier sorok február 19. Fourier sorok. 1. rész. 2018. február 19. Függvénysor, ismétlés Taylor sor: Speciális függvénysor, melynek tagjai: cf n (x) = cx n, n = 0, 1, 2,... Állítás. Bizonyos feltételekkel minden f előállítható

Részletesebben

Bevezetés az algebrába 2 Differencia- és differenciálegyenlet-rendszerek

Bevezetés az algebrába 2 Differencia- és differenciálegyenlet-rendszerek Bevezetés az algebrába 2 Differencia- és differenciálegyenlet-rendszerek Algebra Tanszék B U D A P E S T I M Ű S Z A K I M A T E M A T I K A É S G A Z D A S Á G T U D O M Á N Y I I N T É Z E T E G Y E

Részletesebben

Feladatok a Gazdasági matematika II. tárgy gyakorlataihoz

Feladatok a Gazdasági matematika II. tárgy gyakorlataihoz Debreceni Egyetem Közgazdaságtudományi Kar Feladatok a Gazdasági matematika II tárgy gyakorlataihoz a megoldásra ajánlott feladatokat jelöli e feladatokat a félév végére megoldottnak tekintjük a nehezebb

Részletesebben

Konjugált gradiens módszer

Konjugált gradiens módszer Közelítő és szimbolikus számítások 12. gyakorlat Konjugált gradiens módszer Készítette: Gelle Kitti Csendes Tibor Vinkó Tamás Faragó István Horváth Róbert jegyzetei alapján 1 LINEÁRIS EGYENLETRENDSZEREK

Részletesebben

KOVÁCS BÉLA, MATEMATIKA II.

KOVÁCS BÉLA, MATEMATIKA II. KOVÁCS BÉLA MATEmATIkA II 8 VIII Elsőrendű DIFFERENCIÁLEGYENLETEk 1 Alapvető ÖSSZEFÜGGÉSEk Elsőrendű differenciálegyenlet általános és partikuláris megoldása Az vagy (1) elsőrendű differenciálegyenlet

Részletesebben

15. LINEÁRIS EGYENLETRENDSZEREK

15. LINEÁRIS EGYENLETRENDSZEREK 15 LINEÁRIS EGYENLETRENDSZEREK 151 Lineáris egyenletrendszer, Gauss elimináció 1 Definíció Lineáris egyenletrendszernek nevezzük az (1) a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a

Részletesebben

(1 + (y ) 2 = f(x). Határozzuk meg a rúd alakját, ha a nyomaték eloszlás. (y ) 2 + 2yy = 0,

(1 + (y ) 2 = f(x). Határozzuk meg a rúd alakját, ha a nyomaték eloszlás. (y ) 2 + 2yy = 0, Feladatok az 5. hétre. Eredményekkel és kidolgozott megoldásokkal. Oldjuk meg az alábbi másodrend lineáris homogén d.e. - et, tudva, hogy egy megoldása az y = x! x y xy + y = 0.. Oldjuk meg a következ

Részletesebben

Differenciálegyenletek numerikus integrálása április 9.

Differenciálegyenletek numerikus integrálása április 9. Differenciálegyenletek numerikus integrálása 2018. április 9. Differenciálegyenletek Olyan egyenletek, ahol a megoldást függvény alakjában keressük az egyenletben a függvény és deriváltjai szerepelnek

Részletesebben

Differenciaegyenletek

Differenciaegyenletek Differenciaegyenletek Losonczi László Debreceni Egyetem, Közgazdaság- és Gazdaságtudományi Kar Debrecen, 2009/10 tanév, I. félév Losonczi László (DE) Differenciaegyenletek 2009/10 tanév, I. félév 1 / 11

Részletesebben

6. feladatsor: Inhomogén lineáris differenciálegyenletek (megoldás)

6. feladatsor: Inhomogén lineáris differenciálegyenletek (megoldás) Matematika Ac gyakorlat Vegyészmérnöki, Biomérnöki, Környezetmérnöki szakok, 017/18 ősz 6. feladatsor: Inhomogén lineáris differenciálegyenletek (megoldás) 1. Írjunk fel egy olyan legalacsonyabbrendű valós,

Részletesebben

Szélsőérték feladatok megoldása

Szélsőérték feladatok megoldása Szélsőérték feladatok megoldása A z = f (x,y) függvény lokális szélsőértékének meghatározása: A. Szükséges feltétel: f x (x,y) = 0 f y (x,y) = 0 egyenletrendszer megoldása, amire a továbbiakban az x =

Részletesebben

Matematika III. harmadik előadás

Matematika III. harmadik előadás Matematika III. harmadik előadás Kézi Csaba Debreceni Egyetem, Műszaki Kar Debrecen, 2013/14 tanév, I. félév Kézi Csaba (DE) Matematika III. harmadik előadás 2013/14 tanév, I. félév 1 / 13 tétel Az y (x)

Részletesebben

Nemlineáris programozás 2.

Nemlineáris programozás 2. Optimumszámítás Nemlineáris programozás 2. Többváltozós optimalizálás feltételek mellett. Lagrange-feladatok. Nemlineáris programozás. A Kuhn-Tucker feltételek. Konvex programozás. Sydsaeter-Hammond: 18.1-5,

Részletesebben

Matematika szigorlat június 17. Neptun kód:

Matematika szigorlat június 17. Neptun kód: Név Matematika szigorlat 014. június 17. Neptun kód: 1.. 3. 4. 5. Elm. Fel. Össz. Oszt. Az eredményes szigorlat feltétele elméletből legalább 0 pont, feladatokból pedig legalább 30 pont elérése. A szigorlat

Részletesebben

HÁZI FELADATOK. 2. félév. 1. konferencia Komplex számok

HÁZI FELADATOK. 2. félév. 1. konferencia Komplex számok Figyelem! A feladatok megoldása legyen áttekinthet és részletes, de férjen el az arra szánt helyen! Ha valamelyik HÁZI FELADATOK. félév. konferencia Komple számok Értékelés:. egység: önálló feladatmegoldás

Részletesebben

MATE-INFO UBB verseny, március 25. MATEMATIKA írásbeli vizsga

MATE-INFO UBB verseny, március 25. MATEMATIKA írásbeli vizsga BABEŞ-BOLYAI TUDOMÁNYEGYETEM, KOLOZSVÁR MATEMATIKA ÉS INFORMATIKA KAR MATE-INFO UBB verseny, 218. március 25. MATEMATIKA írásbeli vizsga FONTOS TUDNIVALÓK: 1 A feleletválasztós feladatok,,a rész esetén

Részletesebben

Matematika I. NÉV:... FELADATOK:

Matematika I. NÉV:... FELADATOK: 24.2.9. Matematika I. NÉV:... FELADATOK:. A tanult módon vizsgáljuk az a = 3, a n = 3a n 2 (n > ) rekurzív sorozatot. pt 2n 2 + e 2. Definíció szerint és formálisan is igazoljuk, hogy lim =. pt n 3 + n

Részletesebben

Megoldott feladatok november 30. n+3 szigorúan monoton csökken, 5. n+3. lim a n = lim. n+3 = 2n+3 n+4 2n+1

Megoldott feladatok november 30. n+3 szigorúan monoton csökken, 5. n+3. lim a n = lim. n+3 = 2n+3 n+4 2n+1 Megoldott feladatok 00. november 0.. Feladat: Vizsgáljuk az a n = n+ n+ sorozat monotonitását, korlátosságát és konvergenciáját. Konvergencia esetén számítsuk ki a határértéket! : a n = n+ n+ = n+ n+ =

Részletesebben

Kettős integrál Hármas integrál. Többes integrálok. Sáfár Orsolya május 13.

Kettős integrál Hármas integrál. Többes integrálok. Sáfár Orsolya május 13. 2015 május 13. Kétváltozós függvény kettősintegráljának definíciója Legyen f (x, y), R 2 R korlátos függvény egy T korlátos és mérhető területű tartományon. Vegyük a T tartomány egy felosztását T 1, T

Részletesebben

Az egyenlőtlenség mindkét oldalát szorozzuk meg 4 16-al:

Az egyenlőtlenség mindkét oldalát szorozzuk meg 4 16-al: Bevezető matematika kémikusoknak., 04. ősz. feladatlap. Ábrázoljuk számegyenesen a következő egyenlőtlenségek megoldáshalmazát! (a) x 5 < 3 5 x < 3 x 5 < (d) 5 x

Részletesebben

KOVÁCS BÉLA, MATEMATIKA II.

KOVÁCS BÉLA, MATEMATIKA II. KOVÁCS BÉLA MATEmATIkA II 9 IX Magasabbrendű DIFFERENCIÁLEGYENLETEk 1 Alapvető ÖSSZEFÜGGÉSEk n-ed rendű differenciálegyenletek Az alakú ahol n-edrendű differenciálegyenlet általános megoldása tetszőleges

Részletesebben

Matematika III előadás

Matematika III előadás Matematika III. - 3. előadás Vinczéné Varga Adrienn Debreceni Egyetem Műszaki Kar, Műszaki Alaptárgyi Tanszék Előadáskövető fóliák Vinczéné Varga Adrienn (DE-MK) Matematika III. 2016/2017/I 1 / 19 Skalármezők

Részletesebben

Differenciálegyenletek

Differenciálegyenletek Differenciálegyenletek Losonczi László Debreceni Egyetem, Közgazdaság- és Gazdaságtudományi Kar Debrecen, 2011/12 tanév, I. félév Losonczi László (DE) Differenciálegyenletek 2011/12 tanév, I. félév 1 /

Részletesebben

LNM folytonos Az interpoláció Lagrange interpoláció. Lineáris algebra numerikus módszerei

LNM folytonos Az interpoláció Lagrange interpoláció. Lineáris algebra numerikus módszerei Legkisebb négyzetek módszere, folytonos eset Folytonos eset Legyen f C[a, b]és h(x) = a 1 φ 1 (x) + a 2 φ 2 (x) +... + a n φ n (x). Ekkor tehát az n 2 F (a 1,..., a n ) = f a i φ i = = b a i=1 f (x) 2

Részletesebben

2. Fourier-elmélet Komplex trigonometrikus Fourier-sorok. 18 VEMIMAM244A előadásjegyzet, 2010/2011

2. Fourier-elmélet Komplex trigonometrikus Fourier-sorok. 18 VEMIMAM244A előadásjegyzet, 2010/2011 8 VEMIMAM44A előadásjegyzet, /. Fourier-elmélet.. Komplex trigonometrikus Fourier-sorok Tekintsük az [, ], C Hilbert-teret, ahol a skaláris szorzat definíciója f, g ftgt dt. Tekintsük a [, ] intervallumon

Részletesebben

January 16, ψ( r, t) ψ( r, t) = 1 (1) ( ψ ( r,

January 16, ψ( r, t) ψ( r, t) = 1 (1) ( ψ ( r, Közelítő módszerek January 16, 27 1 A variációs módszer A variációs módszer szintén egy analitikus közelítő módszer. Olyan esetekben alkalmazzuk mikor ismert az analitikus alak amelyben keressük a sajátfüggvényt,

Részletesebben

2 (j) f(x) dx = 1 arcsin(3x 2) + C. (d) A x + Bx + C 5x (2x 2 + 7) + Hx + I. 2 2x F x + G. x

2 (j) f(x) dx = 1 arcsin(3x 2) + C. (d) A x + Bx + C 5x (2x 2 + 7) + Hx + I. 2 2x F x + G. x I feladatsor Határozza meg az alábbi függvények határozatlan integrálját: a fx dx = x arctg + C b fx dx = arctgx + C c fx dx = 5/x 4 arctg 5 x + C d fx dx = arctg + C 5/ e fx dx = x + arctg + C f fx dx

Részletesebben

Matematika III előadás

Matematika III előadás Matematika III. - 2. előadás Vinczéné Varga Adrienn Debreceni Egyetem Műszaki Kar, Műszaki Alaptárgyi Tanszék Előadáskövető fóliák Vinczéné Varga Adrienn (DE-MK) Matematika III. 2016/2017/I 1 / 23 paramétervonalak,

Részletesebben

A KroneckerCapelli-tételb l következik, hogy egy Bx = 0 homogén lineáris egyenletrendszernek

A KroneckerCapelli-tételb l következik, hogy egy Bx = 0 homogén lineáris egyenletrendszernek 10. gyakorlat Mátrixok sajátértékei és sajátvektorai Azt mondjuk, hogy az A M n mátrixnak a λ IR szám a sajátértéke, ha létezik olyan x IR n, x 0 vektor, amelyre Ax = λx. Ekkor az x vektort az A mátrix

Részletesebben

Vektorok, mátrixok, lineáris egyenletrendszerek

Vektorok, mátrixok, lineáris egyenletrendszerek a Matematika mérnököknek I. című tárgyhoz Vektorok, mátrixok, lineáris egyenletrendszerek Vektorok A rendezett valós számpárokat kétdimenziós valós vektoroknak nevezzük. Jelölésükre latin kisbetűket használunk.

Részletesebben

Lineáris algebra numerikus módszerei

Lineáris algebra numerikus módszerei Hermite interpoláció Tegyük fel, hogy az x 0, x 1,..., x k [a, b] különböző alappontok (k n), továbbá m 0, m 1,..., m k N multiplicitások úgy, hogy Legyenek adottak k m i = n + 1. i=0 f (j) (x i ) = y

Részletesebben

Differenciálegyenletek numerikus megoldása

Differenciálegyenletek numerikus megoldása a Matematika mérnököknek II. című tárgyhoz Differenciálegyenletek numerikus megoldása Fokozatos közeĺıtés módszere (1) (2) x (t) = f (t, x(t)), x I, x(ξ) = η. Az (1)-(2) kezdeti érték probléma ekvivalens

Részletesebben

RENDSZERTECHNIKA 8. GYAKORLAT

RENDSZERTECHNIKA 8. GYAKORLAT RENDSZERTECHNIKA 8. GYAKORLAT ÜTEMTERV VÁLTOZÁS Gyakorlat Hét Dátum Témakör Házi feladat Egyéb 1 1. hét 02.09 Ismétlés, bevezetés Differenciálegyenletek mérnöki 2 2. hét 02.16 szemmel 1. Hf kiadás 3 3.

Részletesebben

x 2 e x dx c) (3x 2 2x)e 2x dx x sin x dx f) x cosxdx (1 x 2 )(sin 2x 2 cos 3x) dx e 2x cos x dx k) e x sin x cosxdx x ln x dx n) (2x + 1) ln 2 x dx

x 2 e x dx c) (3x 2 2x)e 2x dx x sin x dx f) x cosxdx (1 x 2 )(sin 2x 2 cos 3x) dx e 2x cos x dx k) e x sin x cosxdx x ln x dx n) (2x + 1) ln 2 x dx Integrálszámítás II. Parciális integrálás. g) i) l) o) e ( + )(e e ) cos h) e sin j) (sin 3 cos) m) arctg p) arcsin e (3 )e sin f) cos ( )(sin cos 3) e cos k) e sin cos ln n) ( + ) ln. e 3 e cos 3 3 cos

Részletesebben

First Prev Next Last Go Back Full Screen Close Quit

First Prev Next Last Go Back Full Screen Close Quit Többváltozós függvények (2) First Prev Next Last Go Back Full Screen Close Quit 1. Egyváltozós függvények esetén a differenciálhatóságból következett a folytonosság. Fontos tudni, hogy abból, hogy egy

Részletesebben

5. fejezet. Differenciálegyenletek

5. fejezet. Differenciálegyenletek 5. fejezet Differenciálegyenletek 5.. Differenciálegyenletek 5... Szeparábilis differenciálegyenletek 5.. Oldjuk meg az alábbi differenciálegyenleteket, és ábrázoljunk néhány megoldást. a) y = x. b) y

Részletesebben

Bevezetés az algebrába 2

Bevezetés az algebrába 2 B U D A P E S T I M Ű S Z A K I M A T E M A T I K A É S G A Z D A S Á G T U D O M Á N Y I I N T É Z E T E G Y E T E M Bevezetés az algebrába 2 BMETE91AM37 Mátrixfüggvények H607 2018-05-02 Wettl Ferenc

Részletesebben

SCHRÖDINGER-EGYENLET SCHRÖDINGER-EGYENLET

SCHRÖDINGER-EGYENLET SCHRÖDINGER-EGYENLET SCHRÖDINGER-EGYENLET A Scrödinger-egyenlet a kvantummecanika mozgásegyenlet, Newton II. törvényével analóg. Nem vezetető le korábbi elvekből, de intuitívan bevezetető. Egy atározott energiával és impulzussal

Részletesebben

ANALÍZIS II. Példatár

ANALÍZIS II. Példatár ANALÍZIS II. Példatár Többszörös integrálok 3. április 8. . fejezet Feladatok 3 4.. Kett s integrálok Számítsa ki az alábbi integrálokat:...3. π 4 sinx.. (x + y) dx dy (x + y) dy dx.4. 5 3 y (5x y y 3

Részletesebben

Boros Zoltán február

Boros Zoltán február Többváltozós függvények differenciál- és integrálszámítása (2 3. előadás) Boros Zoltán 209. február 9 26.. Vektorváltozós függvények differenciálhatósága és iránymenti deriváltjai A továbbiakban D R n

Részletesebben

Numerikus módszerek II. zárthelyi dolgozat, megoldások, 2014/15. I. félév, A. csoport. x 2. c = 3 5, s = 4

Numerikus módszerek II. zárthelyi dolgozat, megoldások, 2014/15. I. félév, A. csoport. x 2. c = 3 5, s = 4 Numerikus módszerek II. zárthelyi dolgozat, megoldások, 204/5. I. félév, A. csoport. Feladat. (6p) Alkalmas módon választva egy Givens-forgatást, határozzuk meg az A mátrix QR-felbontását! Oldjuk meg ennek

Részletesebben

Matematika II képletek. 1 sin xdx =, cos 2 x dx = sh 2 x dx = 1 + x 2 dx = 1 x. cos xdx =,

Matematika II képletek. 1 sin xdx =, cos 2 x dx = sh 2 x dx = 1 + x 2 dx = 1 x. cos xdx =, Matematika II előadás elméleti kérdéseinél kérdezhető képletek Matematika II képletek Határozatlan Integrálszámítás x n dx =, sin 2 x dx = sin xdx =, ch 2 x dx = sin xdx =, sh 2 x dx = cos xdx =, + x 2

Részletesebben

1. Bevezetés Differenciálegyenletek és azok megoldásai

1. Bevezetés Differenciálegyenletek és azok megoldásai . Bevezetés.. Differenciálegyenletek és azok megoldásai Differenciálegyenlet alatt olyan függvény egyenleteket értünk, melyekben független változók, függvények és azok deriváltjai szerepelnek. Legegyszerűbb

Részletesebben

86 MAM112M előadásjegyzet, 2008/2009

86 MAM112M előadásjegyzet, 2008/2009 86 MAM11M előadásjegyzet, 8/9 5. Fourier-elmélet 5.1. Komplex trigonometrikus Fourier-sorok Tekintsük az [,], C Hilbert-teret, azaz azoknak a komplex értékű f : [,] C függvényeknek a halmazát, amelyek

Részletesebben

Lineáris egyenletrendszerek

Lineáris egyenletrendszerek Lineáris egyenletrendszerek Lineáris egyenletrendszernek nevezzük az a 11 x 1 + a 12 x 2 +... +a 1n x n = b 1 a 21 x 1 + a 22 x 2 +... +a 2n x n = b 2.. a k1 x 1 + a k2 x 2 +... +a kn x n = b k n ismeretlenes,

Részletesebben

Gazdasági matematika II. vizsgadolgozat megoldása, június 10

Gazdasági matematika II. vizsgadolgozat megoldása, június 10 Gazdasági matematika II. vizsgadolgozat megoldása, 204. június 0 A dolgozatírásnál íróeszközön kívül más segédeszköz nem használható. A dolgozat időtartama: 90 perc. Ha a dolgozat első részéből szerzett

Részletesebben

2. (b) Hővezetési problémák. Utolsó módosítás: február25. Dr. Márkus Ferenc BME Fizika Tanszék

2. (b) Hővezetési problémák. Utolsó módosítás: február25. Dr. Márkus Ferenc BME Fizika Tanszék 2. (b) Hővezetési problémák Utolsó módosítás: 2013. február25. A változók szétválasztásának módszere (5) 1 Az Y(t)-re vonakozó megoldás: Így: A probléma megoldása n-re összegzés után: A peremfeltételeknek

Részletesebben

Differenciálegyenletek

Differenciálegyenletek a Matematika mérnököknek II. című tárgyhoz Differenciálegyenletek Példák differenciálegyenletekre Newton második törvénye Egy tömegpont gyorsulása egyenesen arányos a rá ható erővel és fordítottan arányos

Részletesebben

A fontosabb definíciók

A fontosabb definíciók A legfontosabb definíciókat jelöli. A fontosabb definíciók [Descartes szorzat] Az A és B halmazok Descartes szorzatán az A és B elemeiből képezett összes (a, b) a A, b B rendezett párok halmazát értjük,

Részletesebben

0-49 pont: elégtelen, pont: elégséges, pont: közepes, pont: jó, pont: jeles

0-49 pont: elégtelen, pont: elégséges, pont: közepes, pont: jó, pont: jeles Matematika szigorlat, Mérnök informatikus szak I. 2013. jan. 10. Név: Neptun kód: Idő: 180 perc Elm.: 1. f. 2. f. 3. f. 4. f. 5. f. Fel. össz.: Össz.: Oszt.: Az elérhető pontszám 40 (elmélet) + 60 (feladatok)

Részletesebben

Függvény határérték összefoglalás

Függvény határérték összefoglalás Függvény határérték összefoglalás Függvény határértéke: Def: Függvény: egyértékű reláció. (Vagyis minden értelmezési tartománybeli elemhez, egyértelműen rendelünk hozzá egy elemet az értékkészletből. Vagyis

Részletesebben

n n (n n ), lim ln(2 + 3e x ) x 3 + 2x 2e x e x + 1, sin x 1 cos x, lim e x2 1 + x 2 lim sin x 1 )

n n (n n ), lim ln(2 + 3e x ) x 3 + 2x 2e x e x + 1, sin x 1 cos x, lim e x2 1 + x 2 lim sin x 1 ) Matek szigorlat Komplex számok Sorozat határérték., a legnagyobb taggal egyszerűsítünk n n 3 3n 2 + 2 3n 2 n n + 2 25 n 3 9 n 2 + + 3) 2n 8 n 3 2n 3,, n n5 + n 2 n 2 5 2n + 2 3n 2) n+ 2. e-ados: + a )

Részletesebben

1. Parciális függvény, parciális derivált (ismétlés)

1. Parciális függvény, parciális derivált (ismétlés) Operációkutatás NYME Gazdaságinformatikus mesterképzés El adó: Kalmár János (kalmar[kukac]inf.nyme.hu) Többváltozós széls érték számítás Parciális függvény, parciális derivált Széls érték korlátos zárt

Részletesebben

Fourier transzformáció

Fourier transzformáció a Matematika mérnököknek II. című tárgyhoz Fourier transzformáció Fourier transzformáció, heurisztika Tekintsük egy 2L szerint periodikus függvény Fourier sorát: f (x) = a 0 2 + ( ( nπ ) ( nπ )) a n cos

Részletesebben

Határozatlan integrál

Határozatlan integrál Határozatlan integrál Boros Zoltán Debreceni Egyetem, TTK Matematikai Intézet, Anaĺızis Tanszék Debrecen, 207. február 20 27. Primitív függvény, határozatlan integrál A továbbiakban legyen I R intervallum.

Részletesebben

6. Differenciálegyenletek

6. Differenciálegyenletek 312 6. Differenciálegyenletek 6.1. A differenciálegyenlet fogalma Meghatározni az f függvény F primitív függvényét annyit jelent, mint találni egy olyan F függvényt, amely differenciálható az adott intervallumon

Részletesebben

Differenciál egyenletek (rövid áttekintés)

Differenciál egyenletek (rövid áttekintés) Differeniál egyenletek (rövid áttekintés) Differeniálegyenlet: olyan matematikai egyenlet, amely egy vagy több változós ismeretlen függvény és deriváltjai közötti kasolatot írja le. Fontosabb tíusok: közönséges

Részletesebben

differenciálegyenletek

differenciálegyenletek Állandó együtthatójú lineáris homogén differenciálegyenletek L[y] = y (n) + a 1y (n 1) + + a ny = 0 a i R (1) a valós, állandó együtthatójú lineáris homogén n-ed rendű differenciálegyenlet Megoldását y

Részletesebben

Matematika A3 1. ZH+megoldás

Matematika A3 1. ZH+megoldás Matematika A3 1. ZH+megoldás 2008. október 17. 1. Feladat Egy 10 literes kezdetben tiszta vizet tartalmazó tartályba 2 l/min sebesséeggel 0.3 kg/l sótartalmú víz Áramlik be, amely elkeveredik a benne lévő

Részletesebben

Szélsőérték-számítás

Szélsőérték-számítás Szélsőérték-számítás Jelölések A következő jelölések mind az f függvény x szerinti parciális deriváltját jelentik: Ugyanígy az f függvény y szerinti parciális deriváltja: f x = xf = f x f y = yf = f y

Részletesebben

Modellek és Algoritmusok - 2.ZH Elmélet

Modellek és Algoritmusok - 2.ZH Elmélet Modellek és Algoritmusok - 2.ZH Elmélet Ha hibát elírást találsz kérlek jelezd: sellei_m@hotmail.com A fríss/javított változat elérhet : people.inf.elte.hu/semsaai/modalg/ 2.ZH Számonkérés: 3.EA-tól(DE-ek)

Részletesebben

Segédanyag az A3 tárgy gyakorlatához

Segédanyag az A3 tárgy gyakorlatához Segédanyag az A3 tárgy gyakorlatához Sáfár Orsolya Szeparábilis dierenciálegyenletek A megoldásról általában: A szeparábilis dierenciálegyenlet álatlános alakja: y (x) = f(x)g(y). Ebben az esetben g(y)-al

Részletesebben

Folytonos rendszeregyenletek megoldása. 1. Folytonos idejű (FI) rendszeregyenlet általános alakja

Folytonos rendszeregyenletek megoldása. 1. Folytonos idejű (FI) rendszeregyenlet általános alakja Folytonos rendszeregyenletek megoldása 1. Folytonos idejű (FI) rendszeregyenlet általános alakja A folytonos rendszeregyenletek megoldásakor olyan rendszerekkel foglalkozunk, amelyeknek egyetlen u = u(t)

Részletesebben

GPK M1 (BME) Interpoláció / 16

GPK M1 (BME) Interpoláció / 16 Interpoláció Matematika M1 gépészmérnököknek 2017. március 13. GPK M1 (BME) Interpoláció 2017 1 / 16 Az interpoláció alapfeladata - Példa Tegyük fel, hogy egy ipari termék - pl. autó - előzetes konstrukciójának

Részletesebben

PTE PMMFK Levelező-távoktatás, villamosmérnök szak

PTE PMMFK Levelező-távoktatás, villamosmérnök szak PTE PMMFK Levelező-távoktatás, villamosmérnök szak MATEMATIKA (A tantárgy tartalma és a tananyag elsajátításának időterve.) Összeállította: Kis Miklós adjunktus Tankönyvek Megegyeznek az 1. és 2. félévben

Részletesebben

Bevezetés az algebrába 2

Bevezetés az algebrába 2 B U D A P E S T I M Ű S Z A K I M A T E M A T I K A É S G A Z D A S Á G T U D O M Á N Y I I N T É Z E T E G Y E T E M Bevezetés az algebrába 2 BMETE91AM37 Differencia- és differenciálegy.-rsz. H607 2017-04-05

Részletesebben