Táguló sqgp tűzgömb többkomponensű kéma kfagyása Kasza Gábor 1 és Csörgő Tamás 2,3 1 Eötvös Loránd Tudományegyetem 2 Wgner Fzka Kutatóntézet 3 Károly Róbert Főskola 2015. augusztus 17. Gyöngyös - KRF 1 / 17
I. Bevezetés Motvácó Rehadronzácó folyamatának mélyebb megsmerése Tűzgömb fejlődésének pontosabb leírása Eddg smert analtkus megoldások csak 1 komponenst vettek fgyelembe Többkomponensű gázként kezelve realsztkusabb a kép Egyszerűsített, nem relatvsztkus modell kdolgozása Relatvsztkus számolások előkészítése 1 / 17
I. Bevezetés T = T 0 + m u t 2 = T = T 0 + m u t 2 (1) forrás: PHENIX Collaboraton: arxv:nucl-ex/0307022 2 / 17
II. Alapegyenletek A nem relatvsztkus hdrodnamka alapegyenlete n t + (nv) = 0 (2) ε + (εv) = p v (3) t ( ) mn t + v v = p (4) A relatvsztkus hdrodnamka alapegyenlete Egyelőre mellőzzük: µ (nu µ ) = 0, (5) ν T µν = 0, (6) 3 / 17
II. Alapegyenletek Rehadronzácó előtt dőszak A kvarkok és az antkvarkok annhlálódhatnak, lletve párkeltéssel s keletkezhetnek: nncs részecskeszám megmaradás = át kell írnunk az egyenleteket: ε = T σ p + µn = ε = T σ p + µ n (7) Energamegmaradásból: µ = 0 = ε + p = T σ = dε = Tdσ (8) σ t + (vσ) = 0 (9) Nncs részecskemegmaradás, helyette az entrópára vonatkozó kontnutás egyenletet nyerjük. 4 / 17
II. Alapegyenletek Euler egyenlet µ = 0, n 0 esetben, v c közeĺıtéssel*: T σ ( t + v ) v = p (10) Az állapotegyenletben megengedjük a hőmérséklet függést: ε = κ(t )p (11) Az energamegmaradás átírható: [ ] 1 + κ d κt ( t + v ) T + v = 0 (12) T dt 1 + κ *forrás: Csörgő T., Nagy M.I.: arxv:1309.4390 5 / 17
II. Alapegyenletek Rehadronzácó után dőszak Alacsonyabb hőmérsékleten T m = µ m, egy komponensre smert volt*: ε + p = µn + T σ mn (13) Ugyanez több komponensre: ε + p m n (14) Vsszakapjuk az Euler egyenlet eredet formáját. A (12)-es formula s egyszerűsödk (főleg, ha κ egy konstans értékhez tart)*: [ ] d dt κt ( t + v ) T + T v = 0. (15) *forrás: Csörgő T., Nagy M.I.: arxv:1309.4390 6 / 17
III. Kvarkanyag átalakulása többkomponensű hadrongázzá 1+κ T sqgp Többkomponensű hadron gáz σ t + (vσ) = 0 n t + (vn ) = 0, T σ ( t + v ) v = p m n ( t + v ) v = p ] ( t + v ) T = v κ 0 ( t + v ) T = T v [ d dt κt 1+κ Ideáls gáz közeĺıtéssel: p = p = T n. (16) m n ( t + v ) v = T n (17) 7 / 17
III. Kvarkanyag átalakulása többkomponensű hadrongázzá Határfeltételek (B=before, A=after) T B (t r, r) = T A (t r, r) (18) v B (t r ) = v A (t r ) (19) κ(t B (t r )) = κ 0 (20) {X B (t r ), Y B (t r ), Z B (t r )} = {X A (t r ), Y A (t r ), Z A (t r )} (21) t r : közeĺıtőleg a rehadronzácó pllanata Olyan megoldást keresünk, amelyben nem szükséges a hadrongáz egyes komponenset külön skálázn, vagys a hadrongáz együttesen tágul. Felhasználjuk Landau feltevését: σ(r, t) σ r = n (r, t) n,r = σ σ r (22) 8 / 17
III. Kvarkanyag átalakulása többkomponensű hadrongázzá A megoldás keresése Az entrópa sűrűség alakja: σ(r, t) = σ r V r V e s/2 = σ r n,r n (r, t) (23) Tehát: n (r, t) = n,r ( Xr Y r Z r XYZ s = r 2 x X 2 + r 2 y Y 2 + r 2 z Z 2 (24) ) e r 2 x 2X 2 r 2 y 2Y 2 r2 z 2Z 2 V r = n,r ν(s) (25) V 9 / 17
III. Kvarkanyag átalakulása többkomponensű hadrongázzá A sebességteret a szokásos Hubble-profllal írjuk fel: Ebből kfolyólag a hőmérséklet alakja s smert: v x = Ẋ (t) X (t) r x (26) v y = Ẏ (t) Y (t) r y (27) v z = Ż(t) Z(t) r z (28) T A (t) = T r ( Xr Y r Z r XYZ ) 1/κ0 (29) ahol T r = T A (t r ) = T B (t r ) T c 145 MeV az átmenet hőmérséklete. 10 / 17
III. Kvarkanyag átalakulása többkomponensű hadrongázzá Levezetés x rányú komponensekben: n (r, t), v x (r, t) = Euler egyenlet m n Ẍ X r x = T x n, (30) Behelyettesítve: x n = n,r ν(s) r x X 2. (31) Ẍ m n X r x = T ν(s) r x X 2 n,r (32) ν(s)ẍ V r V r x X m n,r = T ν(s) r x X 2 n,r (33) 11 / 17
III. Kvarkanyag átalakulása többkomponensű hadrongázzá Am egyszerűsítés után marad: Ẍ X m n,r = T n,r. (34) Részecskék tömegének átlaga: m = m n,r (35) n,r A tágulás dfferencálegyenlete: X Ẍ = Y Ÿ = Z Z = T m. (36) 12 / 17
III. Kvarkanyag átalakulása többkomponensű hadrongázzá Ugyanez egykomponensű rendszerben: X Ẍ = Y Ÿ = Z Z = T m (37) Sznte megegyeznek! Egyetlen különbség: m m. Konklúzó: Nem szükséges bevezetnünk mnden részecskére külön skálát, a keverék együttesen tágul! Hétköznap analóga: levegő áramlása = kollektív mozgás. 13 / 17
IV. Alkalmazás Mérhető részecskeszám: N = n (r, t r )d 3 r = n,r (2π) 3/2 V r (38) N = (2π) 3/2 V r n,r (39) V r mnden részecskére azonos. A j-edk komponens részaránya a keverékben: n j,r =, (40) n,r N Tehát m a mért részecskeszámokkal súlyozott tömeg: m n,r m N m = = 280 MeV (41) n,r N N j 14 / 17
IV. Alkalmazás Impulzuseloszlás ahol d 3 n dp x dp y dp z ( ) p I (r)j r t 0 d 3 r (42) m ( ) ( p J r t 0 = C 1 exp r t 0 p m m 2t0 2T 0/m I (r) = C 2 exp ( r 2 ) 2t0 2 u 2 ) (43) (44) A forrásckk* logkáját követve a Gaussok összevonhatóak, és ném átalakítás után az ntegrál elé kemelhető az mpulzuseloszlást meghatározó faktor: ( ) exp p2 (45) 2m T ahol T = T 0 + m u 2. *forrás: Csörgő T., Zmány J., B. Lörstad: arxv:nucl-th/9408022 15 / 17
V. Összefoglalás Rehadronzácó: folytonos átmenet = egyszerű határfeltételek Több komponens fgyelembevétele Részecskék fajtájától független skálák bevezetése Hasonló vselkedésű dnamka egyenlet a keverék fgyelembevétele nem bonyoĺıtja az összefüggéseket Különbség: részecskeszámokkal súlyozott átlagos tömeg Inverse slope paraméter: T = T 0 + m u 2 16 / 17
Dszkusszó Köszönöm a fgyelmet! Várjuk az ötleteket! 17 / 17