Rendezett halmaz R A x A rendezési reláció A-n, ha R Másképpen: (a, b) R a R b 1. Reflexív 2. Antiszimmetrikus 3. Tranzitív arb for (a, b) R. 1. a A ara 2. a,b A (arb bra a = b 3. a,b,c A (arb brc arc Lehet használni a szokásos a b jelet is R-re Ha R rendezés az A-n, akkor (A, R) rendezett halmaz Ha minden elempár benne van R-ben, akkor a rendezés teljes, ha nem mindeygik van benne, vagyis nem mindegyik hasonlítható össze, akkor parciális (részleges) a rendezés. Teljes a rendezés, ha: a, b (a R b b R a). HESSE diagramm: (a, a) R, vagy ahova mutat a nyíl, azt az elemet feljebb rajzoljuk.ekkor nem kell nyíl, csak vonal. Ez a diagramm a rendezés rövidített jelölése is. A definíció szerint: (1) a (a R a). DIAGRAMMban: minden elembőkl indulna egy hurok. Ezeket NEM ábrázoljuk, hiszne tudjuk. Helyette csak az elemeket rejzoljuk le. Bércesné Novák Ágnes 1
Ha (a, b) R, akkor rajzolunk egy vnalat a-ból b-be, és b-t feljebb rajzoljuk: DIAGRAMM 6 3. abc (a R b b R c a R c) Ez lenne, helyette: DIAGRAMM Vagyis azokat a párokat, amelyek a tranzitivitással (is) kaphatók, nem kötjük vonallal össze: w Bércesné Novák Ágnes 2
Példa: A = {a, b, 1, 2, 3}. Adjon meg A-n négy különböző (parciális) rendezést (A 1 1 ) (A 1 2 ) (A 1 3 ) (A 1 4 ) A fenti ábrák alapján adja meg a rendezést párokkal. Például (A 1 1 ) a következőképpen adható meg: (a,a) 1, (b,b) 1, (1,1) 1, (2,2) 1, (3, 3) 1 (a,1) 1, (b,2) 1, (b, 3) 1 vagy: (a 1 1, b 1 2, b 1 3... Írja ide a rendezés ily módon való megadását a többi esetben is: (A 1 2 ): (A 1 3 ): (A 1 4 ): Bércesné Novák Ágnes 3
A = {1, 2, 3, 4}. xry akkor és csak akkor ha x y a szokásos rendezés: (A, ) DIAGRAMM 2 DIAGRAMM3 R = {(1, 2), (3, 3), (4, 4), (1, 1), (2, 2)} van megadva a DIAGRAMM 2-ben Egy halmazon (parciális) rendezést megadni annyit jelent, hogy egy reflexív, antiszimmetrikus, tranzitív relációt adunk meg. Ez az ábrával egyszerűbb, hiszen a megengedett jelekkel a reláció kijön. Rendezést megadni diagrammot rajzolni Példa: A = {1, 2, 3, 4, 5, 6, 7, 8} nrm vagyis n m akkor és csak akkor, ha n m n m : k Z (m = k n) Volt előadáson: Bércesné Novák Ágnes 4
Reflexív : nrn n n, mert n = 1* n k = 1 Antiszimmetrikus: nrm és mrn, akkor n=m n m m n n = m k 1 Z m = k 1 * n k 2 Z n = k 2 * m m = k 1 * k 2 * m k 1, k Z k 1 = k 2 = 1 or k 1 = k 2 = -1 m = n m = -n n = -m n = m n = m Tranzitív: t n m m k n k k = t n m = k 1 n k = k 2 m k = t * n k = k 2 k 1 n t = k 1 * k 2 További példák: (A, ), (P(A), ) (A, R), itt R lehet a reflexív,antiszimetrikus, tranzitív Bércesné Novák Ágnes 5
A RENDEZETT HALMAZ SPECIÁLIS ELEMEI: MAXIMÁLIS, MINIMÁLIS, LEGNAGYOBB, LEGKISEBB a 0 A a LEGKISEBB (A, ) ha a A (a 0 a) Példa: A = {1, 2, 3, 4, 5}, n m ha n m HESSE DIAGRAMM 1 m mnden m A-ra 1 A LEGKISEBB ELEM (A, )-ban. LEGKISEBB azt jelenti, hogy legalul van és össze van kötve minden elemmel. HA pl. A-t megváltoztatjuk: A = {1, 2, 3, 4}, akkor nincsen legkisebb és nincsen legnagyobb elem. = {(1, 1), (1, 2), (3, 3), (4, 4)} DEF.: A LEGNAGYOBB ( A, ) ban, ha a A (a a 0 ), a 0 A Felül szerepel, és össze van kötve mindegyik elemmel, (N, ) DIAGRAMM: 0 a legkisebb, de nincsen legnagyobb: Bércesné Novák Ágnes 6
Példa: Adjon meg egy olyan rendezést, amelyben 5 a legnagyobb elem, és nincsen legkisebb elem. Def.: a 0 MAXIMÁLIS (A, ) ban, ha (a 0 A) a A(a a 0 a 0 a) Max (A, ) azokat az elemeket jelenti, amelyek felett nincsen elem. Példa: MAX: 4, 3, 5 Feladat: A fenti (def. felettii) két példában jelölje be a maximális elemeket. Def.: Bércesné Novák Ágnes 7
MINIMÁLIS elem (A, )-ban a 0 A MINIMÁLIS, ha a A (a a 0 a a 0 ) Példa: Adjon meg olyan rendezést az A = {1, 2, 3, 4, 5, 6}halmazon, hogy 3 MAX eleme és 4 MIN eleme legyen: Egy megoldás: MAX : 6, 1, 2 MIN : 6, 1, 4, 5 Másik megoldás: MAX : 5, 6, 1 Melyek a minimálisak? Feladat: Melyek az alábbi, 1, 2, 3, 4, számhalmazon megadott rendezésben a legnagyobb, legkisebb, minimális, maximális elemek? R = {(1, 2), (1, 3), (2, 3), (4, 3)} {(x,x)} Bércesné Novák Ágnes 8
Példa: Nincsen legnagyobb, nincsen legkisebb elem, de van 5 MIN és 10 MAX. Feladat: Adjon meg egy rendezést úgy a természetes számokon, hogy 10 MAX és 5 minimális elem legyen! Feladat : Adjon meg egy rendezést úgy a természetes számokon, hogy X db MAX és legyen legkisebb elem! Feladat: Adjon meg egy rendezéset úgy a természetes számokon, hogy egyetlen MAX elem legyen, de ne legyen legnagyobb elem. Bércesné Novák Ágnes 9
Tételek: (A, ) : Ha van legkisebb és legnagyobb elem, ezek egyértelműek. Ha A végtelen, lehetséges, hogy egyetlen maximális eleme van, de nincsen léegnagyobb. (MIN, nincsen legkisebb, hasonlóan). HA A véges, és van egyértelmű MAX és MIN elem, akkor... Minden rendezett halmazban a legnagyobb elem egyben... és a legkisebb elem egyben... Def.:(A, ) B A X 0 A alsó (felső x 0 ) korlátja a B-nek az X 0, ha b B (X 0 (x 0 )b) Példa: A = {1 2 3 4 5 6 7} B = {5, 3, 4} Felső: nincs, mert MINDEGYIK b B felett kellene állnia (összekötve!) Alsó: minden b B. alatt(összekötve!): 3, 1. 3 B 1 B. Felsö: Alsó: Példa: (2, ) ahol a szokásos rendezés. Példa olyan rendezett halmazra, amelyben semmelyik egynél több elemű halmaznak nincsen felső és alsó korlátja. Bércesné Novák Ágnes 10
Def.: legkisebb felső/sup, legnagyobb alsó korlát/inf E Példa: a B halmaz felső korlátjai: 7, 8, 9 SUP{B} = 7 Alsó korlátok: 4, 3, 2, 1 INF {B} = 4 B nincsen SUP, I NF C felső korlátai: f, h, t, z (a reflexivitás miatt kell f-et is belevenni) SUP( C) = f C alsó korlátai: {a} INF(C) = a Bércesné Novák Ágnes 11