Halmazelmélet. 1. Jelenítsük meg Venn-diagrammon az alábbi halmazokat: a) b) c) 2. Milyen halmazokat határoznak meg az alábbi Venn-diagrammok?
|
|
- Liliána Fazekasné
- 9 évvel ezelőtt
- Látták:
Átírás
1 Halmazelmélet Alapfogalmak Unió: ; metszet: ; különbség: ; komplementer: (itt U egy univerzum halmaz). Egyenlőség: két halmaz egyenlő, ha ugyanazok az elemeik. Ezzel ekvivalens, hogy. Tartalmazás: ; valódi tartalmazás:. 1. Jelenítsük meg Venn-diagrammon az alábbi halmazokat: 2. Milyen halmazokat határoznak meg az alábbi Venn-diagrammok? d) e) f) g) Mo: d) vagy e) f) vagy pl. g) 3. Venn-diagrammok használata nélkül bizonyítsuk be az alábbi összefüggéseket!
2 d) 4. Szita-formula. Egy nyári sporttáborban kosárlabda, foci és tollaslabda foglalkozásokat tartanak gyerekeknek. Minden gyerek részt vesz legalább egy típusú foglalkozáson. 34-en kosaraznak, 49-en fociznak és 26- an tollasoznak. Akik fociznak és kosaraznak is, azok 13-an vannak, és van 8 gyerek, aki focizik és tollasozik, valamint 9, aki kosarazik és tollasozik. Ezen kívül van Kriszti és Jocó, akik annyira szorgalmasak, hogy mindhárom sportot űzik. Hány gyereknek kell ebédet főzni minden nap? Egy év múlva is megrendezik a tábort. A tavalyi siker után az idei gyerekek még elevenebbek, és most Krisztin és Jocón kívül még Kata, Tímea, Peti és Tomi is lelkesedik mindhárom sportágért, és valahogy úgy alakult, hogy éppen 19-en fociznak és tollasoznak, és szintén 19-en vannak azok, akik foziznak és kosaraznak. Tudjuk, hogy 88 gyerek lakik a táborban. Hányan űzik a kosárlabdát és a tollaslabdát egyszerre, ha az ő számuk hetedakkora, mint ahányan a focizók, a kosarazók és a tollasozók számának összege (amelybe egy embert akár többször is beleszámolunk, ha több sportágat is űz)? Egy nyelviskolában angolul háromszor annyian tanulnak, mint franciául, és franciául feleannyian, mint németül. Az angolul és németül tanulók száma feleannyi, mint a franciául tanulóké, az angolul és franciául tanulóké pedig negyedannyi, mint a németül tanulóké. Akik németül és franciául is tanulnak, azok épp hatodannyian vannak, mint akik angolul tanulnak. Mindhárom nyelvet egyszerre senki sem tanulja. Hányan tanulják az egyes nyelveket, ha 171-en járnak a nyelviskolába? Mo: alapján: gyerek van a táborban., ez, tehát ennyi A szöveg alapján: 5. A Karácsony közeledtével nagy a sürgés forgás a Mikulás otthonában. A manók, akik a készülődést segítik, három csoportban dolgoznak. Vannak, akik összesítik a gyerekektől kapott leveleket, és megvizsgálják ki volt rossz, és ki volt jó az idén. Mások a kész ajándékokat csomagolják és csoportosítják a szállítási cím szerint, míg a harmadik csoport manói készítik a sok szép ajándékot. A csomagolók kétszer annyian vannak, mint az adatfeldolgozók, míg a játékkészítők háromszor annyian, mint a csomagolók. Vannak olyanok, akik több csoport munkájában is részt vesznek, sőt a
3 leglelkesebb manók Szebi, Adi, Márk és Noel mindhárom csoportba besegítenek. Azok, akik az adatfeldolgozóknak és a csomagolóknak is segítenek, tizenketted annyian vannak, mint a játékkészítők. Akik az adatfeldolgozóknak és a készítőknek is dolgoznak, pedig negyed annyian vannak, mint a csomagolók. A csomagolásban és készítésben is részt vevő manók száma megegyezik az adatfeldolgozó manók számával, és végül a játékkészítők 36-szor többen vannak, mint azok, akik mindhárom területen dolgoznak. Hány manó segíti a Mikulás munkáját? 6. Bergengócia különböző városaiban összesen háromféle nyelvet beszélnek, a zulut, a terrát és a hottentottát. 16 városban használják a zulut, 23 városban a terrát és 27 városban a hottentottát. Van 8 város, ahol a zulut és a terrát is beszélik, 13 ahol a terrát és a hottentottát, illetve 7 város ahol a zulut és hottentottát is. Mindössze 3 olyan város van, ahol mindhárom nyelvet beszélik. Hány városa van összesen Bergengóciának. 7. Egy társaság nagyon kedveli a külföldi utazásokat, tagjai a világ számos különböző táján jártak már. Tudjuk, hogy a tagok közül 15-en jártak már Afrikában, 12-en Ausztráliában és 16-an Dél- Amerikában. Ismert továbbá hogy az Ausztráliában járt társaság negyede és az Afrikában járt csoport harmada járt Dél-Amerikában is. Az Afrikában járt társaság 2/5 része járt Ausztráliában, továbbá a társaságot alapító házaspár mindkét tagja járt már mindhárom említett kontinensen. Összesen hány tagja van a társaságnak? Relációk 1. A reflexivitás, szimmetria, antiszimmetria és tranzitivitás közül mely tulajdonságok teljesülnek az alábbi relációkra? d) e) f) Megoldás: reflexív, szimmetrikus, tranzitív nem reflexív, szimmetrikus, nem tranzitív reflexív, szimmetrikus, tranzitív d) reflexív, szimmetrikus, nem antiszimmetrikus, tranzitív e) nem reflexív, szimmetrikus, nem tranzitív f) reflexív, antiszimmetrikus, tranzitív (rendezési reláció) 2.1 Rendezési relációk-e a következők? H a négyzetes, valós elemű mátrixok halmaza R HxH, (A, B) R, ha deta detb. MO: Nem. Reflexív, nem antiszimmetrikus, tranzitív. a b H=R +, R HxH, (a, R, ha. b a MO: Igen. Reflexív, antiszimmetrikus, tranzitív.
4 H= {az {1,2,3} halmaz hatványhalmaza}, (A, B) R, ha A B MO: Igen. Reflexív, antiszimmetrikus, tranzitív. d) H=Z R HxH, (a, R, ha a<b. MO: Nem. Nem reflexív. 2.2 A fenti rendezési relációk közül melyek teljes-, melyek részben rendezések? Teljes: Részben: 3. Egy iskola tanulóinak halmazán adott a következő reláció: A tanuló relációban áll B tanuló -val, ha A tanuló hajszíne megegyezik B tanuló hajszínével. Döntse el, hogy a fenti reláció vajon rendezési reláció, ekvivalencia reláció, vagy egyik sem? Mo: Ekvivalencia 4. Egy társasház lakóinak halmazán adott a következő reláció: X lakó relációban áll Y lakó -val, ha X lakó otthona ugyanazon az emeleten található, mint Y lakó -é. Döntse el, hogy a fenti reláció vajon rendezési reláció, ekvivalencia reláció, vagy egyik sem? Mo: Ekvivalencia 5. Egy családban, ahol bármely két személynek különböző napra esik a születésnapja, tekintjük azt a relációt, mely szerint x személy relációban áll y személlyel, ha x nem idősebb y-nál. Milyen reláció ez? (Ha rendezés, akkor teljes rendezés-e ez a reláció?) Mo: rendezés és teljes rendezés Rendezési relációk, Hasse-diagram Legnagyobb elem LN H, ha minden más h H-ra h LN (Mindegyik elemmel összehasonlítható!) Maximális elem M, ha nincsen olyan h H, hogy M h teljesülne. (Nem biztos, hogy mindegyik elemmel összehasonlítható) Legkisebb elem lk H, ha minden más h H-ra lk h (mindegyik elemmel összehasonlítható!) Minimális elem m, ha nincsen olyan h H, hogy h m teljesülne. (Nem biztos, hogy mindegyik elemmel összehasonlítható) A részben rendezett H halmaz valamely H 1 részhalmazának a K H felső korlátja (az adott rendezés és H szerint) ha minden h 1 H 1 -re h 1 K. A részben rendezett H halmaz valamely H 1 részhalmazának a k H alsó korlátja (az adott rendezés és H szerint!) ha minden h 1 H 1 -re k h 1. H 1 korlátos, ha van alsó és felső korlátja. Ha van a korlátok között legkisebb felső korlát, akkor azt felső határnak szuprémumnak (jele: sup H ), ha van a korlátok között legnagyobb alsó korlát, akkor azt alsó határnak infimumnak (jele: inf H ) nevezzük. Definíció: Ha egy részbenrendezett halmaz bármely kételemű részhalmazának van szuprémuma és infimuma, akkor a halmazt hálónak nevezzük.
5 1. Hasse-diagrammal adott a következő rendezési reláció: Határozza meg a minimumot és a maximumot! Határozza meg a legkisebb, legnagyobb elemet! Ez részben- vagy teljes rendezés? MO: részben pl. 4 a 8-cal nem hasonlítható össze d) Határozza meg a {2, 8, 16} halmaz alsó és felső korlátait valamint infimumát és szuprémumát! MO: alsó: 1, 2 felső: 16 inf: 2 sup: 16 e) Hálót alkot-e? MO: Nem mert például a {16,35} kételemű részhalmaznak nincs szuprémuma. 2. Adott a következő rendezési reláció: H={U, V, W, X, Y, Z} R={(U,U), (V,V), (W,W), (X,X), (Y,Y), (Z,Z), (W,X), (W,Y), (W,V), (W,U), (X,V), (X,U), (Y,V), (Y,U), (V,U)} Tehát például: W relációban áll X-el mert (W,X) R, stb Ábrázolja a relációt Hasse-diagramon! Részben-, vagy teljes rendezésről van szó? MO: részben pl. X és Y nem hasonlítható össze Határozza meg a maximális, minimális, legnagyobb, legkisebb elemeket! MO: Maximális: Z, U Minimális: Z, W Legnagyobb: nincs Legkisebb: nincs f) Határozza meg a következő részhalmazok alsó-, felső korlátait valamint infimumát és szuprémumát: H 1 ={W} H 2 ={W, Y} H 3 ={W, V} H 4 ={ W, Z} H 5 ={ X, Y} H 6 ={W, X, Y} MO: inf sup H 1 ={W} W W H 2 ={W, Y} W Y H 3 ={W, V} W V H 4 ={ W, Z} H 5 ={ X, Y} W V H 6 ={W, X, Y} W V
6 g) Hálót alkot-e? MO: Nem mert például a { W, Z} részhalmaznak nincs se infimuma se szuprémuma. 3. Adott a háromelemű G halmaz, melynek hatványhalmaza (azaz összes részhalmazának halmaz H. A és B H-beli elem akkor van relációban egymással, ha A részhalmaza B-nek. Vagyis: G = { x,y, z} hatványhalmaza: H = 2 G A, B H esetén a két halmaz relációban áll: ( A, B) R A B Bizonyítsa be, hogy a megadott reláció rendezési reláció! Rajzolja fel a reláció Hasse-diagrammját! Mi a maximális/minimális, legnagyobb/legkisebb elem? d) Mi a suprémuma, és mi az infimuma a {x} és {y,z} elemeket tartalmazó részhalmaznak? e) Háló-e a fenti reláció a megadott H halmazon? Mo: b, c, M = { {x,y,z} } m = { } (Van egy darab minimális elem, az üres-halmaz!) LN = {x,y,z} lk = d, sup{ {x}, {y,z} } = {x,y,z} inf{ {x}, {y,z} } = e, igen 4. Adott a következő halmaz: H = {2,4,6,8,10,12,16,20,24,40,120}. És adott a halmazon értelmezett rendezési reláció: a relációban áll b-vel ha a osztója b-nek. a, Rajzolja fel a rendezés Hasse-diagramját! b, Adja meg a Maximális és minimális elemeket! c, Adja meg a rendezés Legnagyobb és legkisebb elemét! d, Adja meg a H = {4,8,12} részhalmaz felső- és alsókorlátait, illetve suprémumát és infimumát! e, A H halmaz a megadott rendezéssel hálót alkot-e? 5. Adott a következő halmaz: H = {3,6,9,12,15,18,24,30,36,60,180}. És adott a halmazon értelmezett rendezési reláció: a relációban áll b-vel ha a osztója b-nek. a, Rajzolja fel a rendezés Hasse-diagramját!
7 b, Adja meg a Maximális és minimális elemeket! c, Adja meg a rendezés Legnagyobb és legkisebb elemét! d, Adja meg a H = {6,12,30} részhalmaz felső- és alsókorlátait, illetve suprémumát és infimumát! e, A H halmaz a megadott rendezéssel hálót alkot-e? 6. Az alaphalmaz elemei a következő szavak: H = { ABA,ABBA,AB,A, AZ,AZT,ABZ,BZ,AZTA,BÚZA, BLÚZ} ( a, R ha b szó tartalmazza a szót olyan módon, hogy a-hoz adva az abc valamelyik (akár nulla dara betűjét megkapjuk a b szót úgy, hogy b szóban az a szó betűinek sorrendje nem változik.. ( AT,AUTÓ) R; ( CÉ,CSÉ) R; Pl. BÉLA,ÁDÁM R; AZ,ZAB ( ) ( ) R Rendezési reláció-e, ha igen, teljes-e? Ábrázolja Hasse-diagrammon! Keresse meg a legnagyobb, legkisebb, maximum, minimum elemeit (ha vannak)! d) Keresse meg a G = { AB,ABZ, AZ} részhalmaz infimumát és supremumát! e) Hálót alkot-e a rendszer? Válaszát indokolja!
3. Venn-diagrammok használata nélkül bizonyítsuk be az alábbi összefüggéseket!
Halmazelmélet Alapfogalmak Unió: A B = {x x A vagy x B}; metszet: A B = {x x A és x B}; különbség: A\B = A B = {x x A és x B}; komplementer: A = {x x A és x U} (itt U egy univerzum halmaz). Egyenlőség:
KOVÁCS BÉLA, MATEMATIKA I.
KOVÁCS BÉLA, MATEmATIkA I. 3 III. MEGFELELTETÉSEk, RELÁCIÓk 1. BEVEZETÉS Emlékeztetünk arra, hogy az rendezett párok halmazát az és halmazok Descartes-féle szorzatának nevezzük. Más szóval az és halmazok
BOOLE ALGEBRA Logika: A konjunkció és diszjunkció tulajdonságai
BOOLE ALGEBRA Logika: A konjunkció és diszjunkció tulajdonságai 1.a. A B B A 2.a. (A B) C A (B C) 3.a. A (A B) A 4.a. I A I 5.a. A (B C) (A B) (A C) 6.a. A A I 1.b. A B B A 2.b. (A B) C A (B C) 3.b. A
Diszkrét matematika I.
Diszkrét matematika I. középszint 2014. ősz 1. Diszkrét matematika I. középszint 3. előadás Mérai László diái alapján Komputeralgebra Tanszék 2014. ősz Relációk Diszkrét matematika I. középszint 2014.
Nagy Gábor compalg.inf.elte.hu/ nagy
Diszkrét matematika 1. középszint 2017. ősz 1. Diszkrét matematika 1. középszint 5. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján Komputeralgebra
Diszkrét matematika 2. estis képzés
Diszkrét matematika 2. estis képzés 2018. tavasz 1. Diszkrét matematika 2. estis képzés 1. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján
DISZKRÉT MATEMATIKA RENDEZETT HALMAZOKKAL KAPCSOLATOS PÉLDÁK. Rendezett halmaz. (a, b) R a R b 1. Reflexív 2. Antiszimmetrikus 3.
Rendezett halmaz R A x A rendezési reláció A-n, ha R Másképpen: (a, b) R a R b 1. Reflexív 2. Antiszimmetrikus 3. Tranzitív arb for (a, b) R. 1. a A ara 2. a,b A (arb bra a = b 3. a,b,c A (arb brc arc
1.1 Halmazelméleti fogalmak, jelölések
1.1 Halmazelméleti fogalmak, jelölések Alapfogalmak (nem definiáljuk) Halmaz x eleme az A halmaznak x nem eleme A halmaznak Jelölések A,B,C, x A x A SiUDWODQ V]iRN Halmaz megadása: Elemeinek felsorolásával:
Halmaz: alapfogalom, bizonyos elemek (matematikai objektumok) Egy halmaz akkor adott, ha minden objektumról eldönthető, hogy
1. előadás: Halmazelmélet Szabó Szilárd Halmazok Halmaz: alapfogalom, bizonyos elemek (matematikai objektumok) összessége. Egy halmaz akkor adott, ha minden objektumról eldönthető, hogy hozzátartozik-e,
az Energetikai Szakközépiskola és Kollégium kisérettségiző diákjai számára ; halmaz összes részhalmazát!
1. témakör: HALMAZELMÉLET A feladatok megoldásához használjuk a Négyjegyű függvénytáblázatot! Halmazok: 8-9. oldal 1. Sorold fel az a b x y halmaz összes részhalmazát!. AdottU alaphalmaz, és annak két
Matematika szigorlat, Mérnök informatikus szak I máj. 29.
Matematika szigorlat, Mérnök informatikus szak I. 2007. máj. 29. Megoldókulcs 1. Adott az S : 3x 6y + 2z = 6 sík a három dimenziós térben. (a) Írja fel egy tetszőleges, az S-re merőleges S síknak az egyenletét!
HALMAZOK TULAJDONSÁGAI,
Halmazok definíciója, megadása HALMAZOK TULAJDONSÁGAI, 1. A következő definíciók közül melyek határoznak meg egyértelműen egy-egy halmazt? a) A: a csoport tanulói b) B: Magyarország városai ma c) C: Pilinszky
R c AxB R = {(x,y ~x E A 1\Y EB 1\x+ y < 7}vagy rövidenxry. A={O,2, 5} ésb = {l, 3, 6,
~2- CJl- ",lot&v~ o.. ~qfo5 Binér (kételemu) reláció A szorzatha1mazfogalmának felhasználásával megadhatjuk a reláció matematikai fogalmát. A relác két vagy több halmaz Descartes-féle szorzatának valamilven
KOVÁCS BÉLA, MATEMATIKA I.
KOVÁCS BÉLA, MATEmATIkA I. 1 I. HALmAZOk 1. JELÖLÉSEk A halmaz fogalmát tulajdonságait gyakran használjuk a matematikában. A halmazt nem definiáljuk, ezt alapfogalomnak tekintjük. Ez nem szokatlan, hiszen
A valós számok halmaza
VA 1 A valós számok halmaza VA 2 A valós számok halmazának axiómarendszere és alapvető tulajdonságai Definíció Az R halmazt a valós számok halmazának nevezzük, ha teljesíti a következő axiómarendszerben
Relációk. 1. Descartes-szorzat. 2. Relációk
Relációk Descartes-szorzat. Relációk szorzata, inverze. Relációk tulajdonságai. Ekvivalenciareláció, osztályozás. Részbenrendezés, Hasse-diagram. 1. Descartes-szorzat 1. Deníció. Tetsz leges két a, b objektum
Mindent olyan egyszerűvé kell tenni, amennyire csak lehet, de nem egyszerűbbé. (Albert Einstein) Halmazok 1
Halmazok 1 Mindent olyan egyszerűvé kell tenni, amennyire csak lehet, de nem egyszerűbbé. (Albert Einstein) Halmazok 2 A fejezet legfontosabb elemei Halmaz megadási módjai Halmazok közti műveletek (metszet,
Diszkrét matematika gyakorlat 1. ZH október 10. α csoport
Diszkrét matematika gyakorlat 1. ZH 2016. október 10. α csoport 1. Feladat. (5 pont) Adja meg az α 1 β szorzatrelációt, amennyiben ahol A {1, 2, 3, 4}. α {(1, 2), (1, 3), (2, 1), (3, 1), (3, 4), (4, 4)}
Diszkrét Matematika I.
Orosz Ágota Kaiser Zoltán Diszkrét Matematika I példatár mobidiák könyvtár Orosz Ágota Kaiser Zoltán Diszkrét Matematika I példatár mobidiák könyvtár SOROZATSZERKESZTŐ Fazekas István Orosz Ágota Kaiser
1. előadás: Halmazelmélet, számfogalom, teljes
1. előadás: Halmazelmélet, számfogalom, teljes indukció Szabó Szilárd Halmazok Halmaz: alapfogalom, bizonyos elemek (matematikai objektumok) összessége. Egy halmaz akkor adott, ha minden objektumról eldönthető,
Alapfeladatok halmazábra készítésére, egyszerű halmazműveletekre: különbség, metszet, unió.
HLMZOK 9. évfolyam lapfeladatok halmazábra készítésére, egyszerű halmazműveletekre: különbség, metszet, unió. 1.1. dott az = {1; 2; 3; 4; 5} és = {3; 4; 5; 6; 7} halmaz. Készíts halmazábrát, majd sorold
4. Fuzzy relációk. Gépi intelligencia I. Fodor János NIMGI1MIEM BMF NIK IMRI
4. Fuzzy relációk Gépi intelligencia I. Fodor János BMF NIK IMRI NIMGI1MIEM Tartalomjegyzék I 1 Klasszikus relációk Halmazok Descartes-szorzata Relációk 2 Fuzzy relációk Fuzzy relációk véges alaphalmazok
Dr. Vincze Szilvia;
2014. szeptember 17. és 19. Dr. Vincze Szilvia; vincze@agr.unideb.hu https://portal.agr.unideb.hu/oktatok/drvinczeszilvia/oktatas/oktatott_targyak/index/index.html 2010/2011-es tanév I. féléves tematika
Halmazelmélet. 2. fejezet 2-1
2. fejezet Halmazelmélet D 2.1 Két halmazt akkor és csak akkor tekintünk egyenl nek, ha elemeik ugyanazok. A halmazt, melynek nincs eleme, üres halmaznak nevezzük. Jele:. D 2.2 Az A halmazt a B halmaz
Itt és a továbbiakban a számhalmazokra az alábbi jelöléseket használjuk:
1. Halmazok, relációk, függvények 1.A. Halmazok A halmaz bizonyos jól meghatározott dolgok (tárgyak, fogalmak), a halmaz elemeinek az összessége. Azt, hogy az a elem hozzátartozik az A halmazhoz így jelöljük:
1.1. Halmazok. 2. Minta - 5. feladat (2 pont) Adott két halmaz:
1.1. Halmazok 2009. május id. - 11. feladat (3 pont) A H halmaz elemei legyenek a KATALINKA szó betűi, a G halmaz elemei pedig a BICEBÓCA szó betűi. Írja fel a H U G halmaz elemeit! 2010. október - 1.
SZÁMÍTÁSTUDOMÁNY ALAPJAI
SZÁMÍTÁSTUDOMÁNY ALAPJAI INBGM0101-17 Előadó: Dr. Mihálydeák Tamás Sándor Gyakorlatvezető: Kovács Zita 2017/2018. I. félév 2. gyakorlat Az alábbi összefüggések közül melyek érvényesek minden A, B halmaz
A relációelmélet alapjai
A relációelmélet alapjai A reláció latin eredet szó, jelentése kapcsolat. A reláció, két vagy több nem feltétlenül különböz halmaz elemei közötti viszonyt, kapcsolatot fejez ki. A reláció értelmezése gráffal
Készítette: Ernyei Kitti. Halmazok
Halmazok Jelölések: A halmazok jele általában nyomtatott nagybetű: A, B, C Az x eleme az A halmaznak: Az x nem eleme az A halmaznak: Az A halmaz az a, b, c elemekből áll: A halmazban egy elemet csak egyszer
Relációk Függvények. A diákon megjelenő szövegek és képek csak a szerző (Kocsis Imre, DE MFK) engedélyével használhatók fel!
függvények RE 1 Relációk Függvények függvények RE 2 Definíció Ha A, B és ρ A B, akkor azt mondjuk, hogy ρ reláció A és B között, vagy azt, hogy ρ leképezés A-ból B-be. Ha speciálisan A=B, azaz ρ A A, akkor
1. Mondjon legalább három példát predikátumra. 4. Mikor van egy változó egy kvantor hatáskörében?
Definíciók, tételkimondások 1. Mondjon legalább három példát predikátumra. 2. Sorolja fel a logikai jeleket. 3. Milyen kvantorokat ismer? Mi a jelük? 4. Mikor van egy változó egy kvantor hatáskörében?
RE 1. Relációk Függvények. A diákon megjelenő szövegek és képek csak a szerző (Kocsis Imre, DE MFK) engedélyével használhatók fel!
RE 1 Relációk Függvények RE 2 Definíció: Ha A, B és ρ A B, akkor azt mondjuk, hogy ρ reláció A és B között, vagy azt, hogy ρ leképezés A-ból B-be. Ha speciálisan A=B, azaz ρ A A, akkor azt mondjuk, hogy
2014. szeptember 24. és 26. Dr. Vincze Szilvia
2014. szeptember 24. és 26. Dr. Vincze Szilvia Mind a hétköznapi, mind a tudományos életben gyakran előfordul, hogy bizonyos halmazok elemei között kapcsolat figyelhető meg. A kapcsolat fogalmának matematikai
Halmazműveletek feladatok
Halmazműveletek feladatok Soroljuk fel a {a; b; c} halmaz összes részhalmazát! Határozza meg az A és B halmazokat, ha tudja, hogy A B ={1;2;3;4;5}; A B ={3;5}; A\B={1}; B\A={2;4 A={-1; 0; 1; 2; 5; 7; 8}
A valós számok halmaza 5. I. rész MATEMATIKAI ANALÍZIS
A valós számok halmaza 5 I rész MATEMATIKAI ANALÍZIS 6 A valós számok halmaza A valós számok halmaza 7 I A valós számok halmaza A valós számokra vonatkozó axiómák A matematika lépten-nyomon felhasználja
Nagy Gábor compalg.inf.elte.hu/ nagy
Diszkrét matematika 1. estis képzés 2017. ősz 1. Diszkrét matematika 1. estis képzés 11. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján
Egy halmazt elemei megadásával tekintünk ismertnek. Az elemeket felsorolással,vagy ha lehet a rájuk jellemző közös tulajdonság megadásával adunk meg.
Halmazelmélet A matematikai halmazelmélet megalapítója Georg Cantor (1845 1918) matematikus. Cantor Oroszországban született, de életét Németországban töltötte. Egy halmazt elemei megadásával tekintünk
Halmazelmélet. 1. előadás. Farkas István. DE ATC Gazdaságelemzési és Statisztikai Tanszék. Halmazelmélet p. 1/1
Halmazelmélet 1. előadás Farkas István DE ATC Gazdaságelemzési és Statisztikai Tanszék Halmazelmélet p. 1/1 A halmaz fogalma, jelölések A halmaz fogalmát a matematikában nem definiáljuk, tulajdonságaival
0-49 pont: elégtelen, pont: elégséges, pont: közepes, pont: jó, pont: jeles
Matematika szigorlat, Mérnök informatikus szak I. 2013. jan. 10. Név: Neptun kód: Idő: 180 perc Elm.: 1. f. 2. f. 3. f. 4. f. 5. f. Fel. össz.: Össz.: Oszt.: Az elérhető pontszám 40 (elmélet) + 60 (feladatok)
Analízis előadás és gyakorlat vázlat
Analízis előadás és gyakorlat vázlat Készült a PTE TTK GI szakos hallgatóinak Király Balázs 2010-11. I. Félév 2 1. fejezet Számhalmazok és tulajdonságaik 1.1. Nevezetes számhalmazok ➀ a) jelölése: N b)
MATEMATIKA I. JEGYZET 1. RÉSZ
MATEMATIKA I. JEGYZET 1. RÉSZ KÉZI CSABA GÁBOR Date: today. 1 KÉZI CSABA GÁBOR 1. Logikai állítások, műveletek 1.1. Definíció. Matematikai értelemben állításnak nevezünk egy olyan kijelentést, melynek
Diszkrét matematika I.
Diszkrét matematika I. középszint 2014. ősz 1. Diszkrét matematika I. középszint 2. előadás Mérai László diái alapján Komputeralgebra Tanszék 2014. ősz Matematikai logika Diszkrét matematika I. középszint
Mindent olyan egyszerűvé kell tenni, amennyire csak lehet, de nem egyszerűbbé.
HA 1 Mindent olyan egyszerűvé kell tenni, amennyire csak lehet, de nem egyszerűbbé. (Albert Einstein) HA 2 Halmazok HA 3 Megjegyzések A halmaz, az elem és az eleme fogalmakat nem definiáljuk, hanem alapfogalmaknak
2011. szeptember 14. Dr. Vincze Szilvia;
2011. szeptember 14. Dr. Vincze Szilvia; vincze@fin.unideb.hu https://portal.agr.unideb.hu/oktatok/drvinczeszilvia Első pillantásra hihetetlennek tűnik, hogy egy olyan tiszta és érzelmektől mentes tudomány,
Miskolci Egyetem GÉPÉSZMÉRNÖKI ÉS INFORMATIKAI KAR. Analízis I. példatár. (kidolgozott megoldásokkal) elektronikus feladatgyűjtemény
Miskolci Egyetem GÉPÉSZMÉRNÖKI ÉS INFORMATIKAI KAR Analízis I. példatár kidolgozott megoldásokkal) elektronikus feladatgyűjtemény Összeállította: Lengyelné Dr. Szilágyi Szilvia Miskolc, 013. Köszönetnyilvánítás
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Halmazok
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Halmazok 1) Egy rejtvényújságban egymás mellett két, szinte azonos rajz található, amelyek között 23 apró eltérés van. Ezek megtalálása a feladat. Először
Az R halmazt a valós számok halmazának nevezzük, ha teljesíti az alábbi 3 axiómacsoport axiómáit.
2. A VALÓS SZÁMOK 2.1 A valós számok aximómarendszere Az R halmazt a valós számok halmazának nevezzük, ha teljesíti az alábbi 3 axiómacsoport axiómáit. 1.Testaxiómák R-ben két művelet van értelmezve, az
Diszkrét matematika I.
Diszkrét matematika I. középszint 2013 ősz 1. Diszkrét matematika I. középszint 9. előadás Mérai László merai@compalg.inf.elte.hu compalg.inf.elte.hu/ merai Komputeralgebra Tanszék 2013 ősz Halmazok Diszkrét
Diszkrét matematika I. gyakorlat
Vizsgafeladatok megoldása 2012. december 5. Tartalom Teljes feladatsor #1 1 Teljes feladatsor #1 2 Teljes feladatsor #2 3 Teljes feladatsor #3 4 Teljes feladatsor #4 5 Válogatott feladatok 6 Végső bölcsesség
BEVEZETÉS A MAGASABBSZINTŰ MATEMATIKÁBA ÉS ALKALMAZÁSAIBA KÉZI CSABA GÁBOR
BEVEZETÉS A MAGASABBSZINTŰ MATEMATIKÁBA ÉS ALKALMAZÁSAIBA KÉZI CSABA GÁBOR 1 KÉZI CSABA GÁBOR Előszó Ez a jegyzet egy többrészes sorozat első kötete, mely elsősorban a Debrecen Egyetem Műszaki Karának
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Halmazok
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Halmazok 1) Egy rejtvényújságban egymás mellett két, szinte azonos rajz található, amelyek között 23 apró eltérés van. Ezek megtalálása a feladat.
A matematika alapjai 1 A MATEMATIKA ALAPJAI. Pécsi Tudományegyetem, 2006
A matematika alapjai 1 A MATEMATIKA ALAPJAI Dr. Tóth László Pécsi Tudományegyetem, 2006 Köszönöm Koós Gabriella végzős hallgatónak, hogy felhívta a figyelmemet az anyag előző változatában szereplő néhány
A fontosabb definíciók
A legfontosabb definíciókat jelöli. A fontosabb definíciók [Descartes szorzat] Az A és B halmazok Descartes szorzatán az A és B elemeiből képezett összes (a, b) a A, b B rendezett párok halmazát értjük,
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Halmazok
MTEMTIK ÉRETTSÉGI TÍPUSFELDTOK KÖZÉP SZINT Halmazok szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek megoldásához!
Bevezetés a számításelméletbe (MS1 BS)
Matematika szigorlat - konzultációs szeminárium Azoknak, akik másodszorra vagy többedszerre veszik fel a Matematika szigorlat (NAMMS1SAND) tárgyat. Bevezetés a számításelméletbe (MS1 BS) FŐBB TÉMAKÖRÖK
FELADATOK A. A feladatsorban használt jelölések: R + = {r R r>0}, R = {r R r < 0}, [a; b] = {r R a r b}, ahol a, b R és a b.
FELADATOK A RELÁCIÓK, GRÁFOK TÉMAKÖRHÖZ 1. rész A feladatsorban használt jelölések: R = {r R r < 0}, R + = {r R r>0}, [a; b] = {r R a r b}, ahol a, b R és a b. 4.1. Feladat. Adja meg az α = {(x, y) x +
Diszkrét matematika 1. középszint
Diszkrét matematika 1. középszint 2017. sz 1. Diszkrét matematika 1. középszint 3. el adás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján Komputeralgebra
II. Halmazok. Relációk. II.1. Rövid halmazelmélet. A halmaz megadása. { } { } { } { }
II. Halmazok. Relációk II.1. Rövid halmazelmélet A halmaz (sokaság) jól meghatározott, megkülönböztetett dolgok (tárgyak, fogalmak, stb.) összessége. A halmaz alapfogalom. Ez azt jelenti, hogy csak példákon
Gyakorló feladatok 9.évf. halmaznak, írd fel az öt elemű részhalmazokat!. Add meg a következő halmazokat és ábrázold Venn-diagrammal:
Gyakorló feladatok 9.évf.. Mennyi az összes részhalmaza az A a c; d; e; f halmaznak, írd fel az öt elemű részhalmazokat!. Legyen U ;;;;;6;7;8;9, A ;;6;7; és B ;;8. Add meg a következő halmazokat és ábrázold
Diszkrét matematika I.
EÖTVÖS LORÁND TUDOMÁNYEGYETEM - INFORMATIKAI KAR Diszkrét matematika I. Vizsgaanyag Cserép Máté 2009.01.20. A dokumentum a programtervező informatikus szak Diszkrét matematika I. kurzusának vizsgaanyagát
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Halmazok
MTEMTIK ÉRETTSÉGI TÍPUSFELDTOK MEGOLDÁSI KÖZÉP SZINT Halmazok szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek
Halmazok. Gyakorló feladatsor a 9-es évfolyamdolgozathoz
Halmazok 1. Feladat. Adott négy halmaz: az alaphalmaz, melynek részhalmazai az A, a B és a C halmaz: U {1, 2,,..., 20}, az A elemei a páros számok, a B elemei a hárommal oszthatók, a C halmaz elemei pedig
Térinformatikai algoritmusok Elemi algoritmusok
Cserép Máté 2016. szeptember 14. Analóg programozásnak nevezzük azt, amikor egy feladat megoldásához egy már ismert és megoldott feladat megoldását használjuk fel. Általában nem pontosan ugyanazt a feladatot
Bevezetés a matematikába (2009. ősz) 1. röpdolgozat
Bevezetés a matematikába (2009. ősz) 1. röpdolgozat 1. feladat. Fogalmazza meg a következő ítélet kontrapozícióját: Ha a sorozat csökkenő és alulról korlátos, akkor konvergens. 2. feladat. Vezessük be
Sorozatok. 5. előadás. Farkas István. DE ATC Gazdaságelemzési és Statisztikai Tanszék. Sorozatok p. 1/2
Sorozatok 5. előadás Farkas István DE ATC Gazdaságelemzési és Statisztikai Tanszék Sorozatok p. 1/2 A sorozat definíciója Definíció. A természetes számok halmazán értelmezett valós értékű a: N R függvényt
HALMAZELMÉLET feladatsor 1.
HALMAZELMÉLET feladatsor 1. Egy (H,, ) algebrai struktúra háló, ha (H, ) és (H, ) kommutatív félcsoport, és teljesül az ún. elnyelési tulajdonság: A, B H: A (A B) = A, A (A B) = A. A (H,, ) háló korlátos,
Érettségi feladatok: Halmazok, logika
Érettségi feladatok: Halmazok, logika 2005. május 10 18. Egy rejtvényújságban egymás mellett két, szinte azonos rajz található, amelyek között 23 apró eltérés van. Ezek megtalálása a feladat. Először Ádám
Matematikai logika és halmazelmélet
Matematikai logika és halmazelmélet Wettl Ferenc előadása alapján 2015-09-07 Wettl Ferenc előadása alapján Matematikai logika és halmazelmélet 2015-09-07 1 / 21 Tartalom 1 Matematikai kijelentések szerkezete
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Számelmélet
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Számelmélet A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek
2010. október 12. Dr. Vincze Szilvia
2010. október 12. Dr. Vincze Szilvia Tartalomjegyzék 1.) Sorozat definíciója 2.) Sorozat megadása 3.) Sorozatok szemléltetése 4.) Műveletek sorozatokkal 5.) A sorozatok tulajdonságai 6.) A sorozatok határértékének
2. Halmazelmélet (megoldások)
(megoldások) 1. A pozitív háromjegy páros számok halmaza. 2. Az olyan, 3-mal osztható egész számok halmaza, amelyek ( 100)-nál nagyobbak és 100-nál kisebbek. 3. Az olyan pozitív egész számok halmaza, amelyeknek
MM CSOPORTELMÉLET GYAKORLAT ( )
MM4122-1 CSOPORTELMÉLET GYAKORLAT (2008.12.01.) 1. Ismétlés szeptember 1.szeptember 8. 1.1. Feladat. Döntse el, hogy az alábbi állítások közül melyek igazak és melyek (1) Az A 6 csoportnak van 6-odrend
Miskolci Egyetem. Diszkrét matek I. Vizsga-jegyzet. Hegedűs Ádám Imre 2010.12.28.
Miskolci Egyetem Diszkrét matek I. Vizsga-jegyzet Hegedűs Ádám Imre 2010.12.28. KOMBINATORIKA Permutáció Ismétlés nélküli permutáció alatt néhány különböző dolognak a sorba rendezését értjük. Az "ismétlés
Térinformatikai algoritmusok Elemi algoritmusok
Cserép Máté Analóg programozásnak nevezzük azt, amikor egy feladat megoldásához egy már ismert és megoldott feladat megoldását használjuk fel. Általában nem pontosan ugyanazt a feladatot oldottuk meg korábban,
Halmazok-előadás vázlat
Halmazok-előadás vázlat Naiv halmazelmélet:. Mi a halmaz? Mit jelent, hogy valami eleme a halmaznak? Igaz-e, hogy a halmaz elemei valamilyen kapcsolatban állnak egymással? Jelölés: a A azt jelenti, hogy
Diszkrét matematika I.
Diszkrét matematika I. középszint 2013 ősz 1. Diszkrét matematika I. középszint 8. előadás Mérai László merai@compalg.inf.elte.hu compalg.inf.elte.hu/ merai Komputeralgebra Tanszék 2013 ősz Kombinatorika
Példák ekvivalencia relációra (TÉTELként kell tudni ezeket zárthelyin, vizsgán):
F NIK INÁRIS RLÁIÓK INÁRIS RLÁIÓK (és hasonló mátrxok s tt!) Defnícó: z R bnárs relácó, ha R {( a, b) a, b } nárs relácók lehetséges tuladonsága:. Reflexív ha ( x,.(a). Szmmetrkus ha ( x, y) ( y,.(b).
EGY ÖTLET. A Venn-diagram és a logikai szita alkalmazásai
XXII/1 2. szám, 2014. máj. EGY ÖTLET A Venn-diagram és a logikai szita alkalmazásai Tuzson Zoltán Az ábráknak nemcsak a geometriában van fontos szerepük, hanem a legkülönbözőbb feladatok megoldásában is
Minden x > 0 és y 0 valós számpárhoz létezik olyan n természetes szám, hogy y nx.
1. Archimedesz tétele. Minden x > 0 és y 0 valós számpárhoz létezik olyan n természetes szám, hogy y nx. Legyen y > 0, nx > y akkor és csak akkor ha n > b/a. Ekkor elég megmutatni, hogy létezik minden
Relációk. 1. Descartes-szorzat
Relációk Descartes-szorzat. Relációk szorzata, inverze. Relációk tulajdonságai. Ekvivalenciareláció, osztályozás. Részbenrendezés, Hasse-diagram.. Descartes-szorzat A kurzuson már megtanultuk mik a halmazok
1 2. gyakorlat Matematikai és nyelvi alapfogalmak. dr. Kallós Gábor
1 2. gyakorlat Matematikai és nyelvi alapfogalmak dr. Kallós Gábor 2017 2018 Köszönetnyilvánítás Köszönetnyilvánítás (Acknowledgement) Ez a gyakorlati feladatsor nagyban épít a következő könyvre Elements
Analízis I. Vizsgatételsor
Analízis I. Vizsgatételsor Programtervező Informatikus szak 2008-2009. 2. félév Készítette: Szabó Zoltán SZZNACI.ELTE zotyo@bolyaimk.hu v.0.6 RC 004 Forrás: Oláh Gábor: ANALÍZIS I.-II. VIZSGATÉTELSOR 2006-2007-/2
2017/2018. Matematika 9.K
2017/2018. Matematika 9.K Matematika javítóvizsga 2018. augusztus szóbeli 3 rövidebb (feladat, definíció, tétel) és 3 hosszabb feladat megoldása a 30 perces felkészülési idő alatt a megoldás ismertetése
2) = 0 ahol x 1 és x 2 az ax 2 + bx + c = 0 ( a,b, c R és a 0 )
Fogalom gyűjtemény Abszcissza: az x tengely Abszolút értékes egyenletek: azok az egyenletek, amelyekben abszolút érték jel szerepel. Abszolútérték-függvény: egy elemi egyváltozós valós függvény, mely minden
Diszkrét matematika HALMAZALGEBRA. Halmazalgebra
Halmazalgebra Ebben a fejezetben összefoglaljuk a halmazokról tanult középiskolai ismeretanyagot, és néhány érdekességgel, módszerrel ki is egészítjük. A halmaz alapfogalom. Mondhatjuk, hogy tárgyak, fogalmak,
SE EKK EIFTI Matematikai analízis
SE EKK EIFTI Matematikai analízis 1. Blokk A matematika minden ága foglalkozik halmazokkal, ezért fontos a halmazok általános tulajdonságainak vizsgálata. A halmazok általános tulajdonságaival a matematikának
Megyei matematikaverseny évfolyam 2. forduló
Megyei matematikaverseny 0. 9. évfolyam. forduló. különbözı pozitív egész szám átlaga. Legfeljebb mekkora lehet ezen számok közül a legnagyobb? (A) (B) 8 (C) 9 (D) 78 (E) 44. 00 009 + 008 007 +... + 4
XVIII. Nemzetközi Magyar Matematika Verseny
9. osztály 1. feladat: Oldjuk meg a természetes számok halmazán az 1 1 1 egyenletet? x y 009 Kántor Sándor (Debrecen). feladat: B Az ABCD deltoidban az A és C csúcsnál derékszög van, és a BD átló 1 cm.
DISZKRÉT MATEMATIKA I. TÉTELEK
DISZKRÉT MATEMATIKA I. TÉTELEK Szerkesztette: Bókay Csongor 2011 őszi félév Az esetleges hibákat kérlek a csongor@csongorbokay.com címen jelezd! Utolsó módosítás: 2012. január 16. Ez a Mű a Creative Commons
A matematika nyelvéről bevezetés
A matematika nyelvéről bevezetés Wettl Ferenc 2006. szeptember 19. Wettl Ferenc () A matematika nyelvéről bevezetés 2006. szeptember 19. 1 / 17 Tartalom 1 Matematika Kijelentő mondatok Matematikai kijelentések
Az előadások dátuma (2017-ben) és tervezett tematikája:
Tájékoztató a Halmazok és függvények tárgy 2017/2018. tanév I. félévi kurzusairól és számonkéréséről Az előadások és gyakorlatok időpontja, tematikája Az előadás kódja: TTMBE0201, TMOE0205, heti óraszáma:
Mikor van egy változó egy kvantor hatáskörében? Milyen tulajdonságokkal rendelkezik a,,részhalmaz fogalom?
Definíciók, tételkimondások Mondjon legalább három példát predikátumra. Sorolja fel a logikai jeleket. Milyen kvantorokat ismer? Mi a jelük? Hogyan kapjuk a logikai formulákat? Mikor van egy változó egy
4.2. Tétel: Legyen gyenge rendezés az X halmazon. Legyen továbbá B X, amelyre
4.2. Tétel: Legyen gyenge rendezés az X halmazon. Legyen továbbá B X, amelyre Az értékelő függvény létezése (folytatás) p. 1/8 4.2. Tétel: Legyen gyenge rendezés az X halmazon. Legyen továbbá B X, amelyre
D(x, y) - x osztója y-nak
1. Mondjon legalább három példát predikátumra! P (x) - x prím M(x, y) - x merőleges y-ra E(x) - x egyenes D(x, y) - x osztója y-nak 2. Sorolja fel a logikai jeleket! - és (konjunkció) - vagy (diszjunkció)
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Számelmélet
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Számelmélet A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek
A III. forduló megoldásai
A III. forduló megoldásai 1. Egy dobozban pénzérmék és golyók vannak, amelyek vagy ezüstből, vagy aranyból készültek. A dobozban lévő tárgyak 20%-a golyó, a pénzérmék 40%-a ezüst. A dobozban levő tárgyak
HALMAZOK 2. Feladat Év Kész Nem ment. 1) Egy osztály tanulói valamennyien vettek. 2) Egy 10 tagú csoportban mindenki beszéli az
HALMAZOK 2 Feladat Év Kész Nem ment 1) Egy osztály tanulói valamennyien vettek színházjegyet. Kétféle előadásra rendeltek jegyeket: az elsőre 18-at, a másodikra 24-et. 16 tanuló csak a második előadásra
Struktúra nélküli adatszerkezetek
Struktúra nélküli adatszerkezetek Homogén adatszerkezetek (minden adatelem azonos típusú) osztályozása Struktúra nélküli (Nincs kapcsolat az adatelemek között.) Halmaz Multihalmaz Asszociatív 20:24 1 A
Diszkrét Matematika I.
Bácsó Sándor Diszkrét Matematika I. mobidiák könyvtár Bácsó Sándor Diszkrét Matematika I. mobidiák könyvtár SOROZATSZERKESZTŐ Fazekas István Bácsó Sándor Diszkrét Matematika I. egyetemi jegyzet mobidiák
Feladatok a Gazdasági matematika II. tárgy gyakorlataihoz
Debreceni Egyetem Közgazdaságtudományi Kar Feladatok a Gazdasági matematika II tárgy gyakorlataihoz a megoldásra ajánlott feladatokat jelöli e feladatokat a félév végére megoldottnak tekintjük a nehezebb