azonosságot minden 1 i, l n, 1 j k, indexre teljesítő együtthatókkal, amelyekre érvényes a = c (j) i,l l,i



Hasonló dokumentumok
Miért fontos számunkra az előző gyakorlaton tárgyalt lineáris algebrai ismeretek

Kvadratikus alakok és euklideszi terek (előadásvázlat, október 5.) Maróti Miklós, Kátai-Urbán Kamilla

A következő feladat célja az, hogy egyszerű módon konstruáljunk Poisson folyamatokat.

Összeállította: dr. Leitold Adrien egyetemi docens

Vektorterek. =a gyakorlatokon megoldásra ajánlott

LINEÁRIS ALGEBRA. matematika alapszak. Euklideszi terek. SZTE Bolyai Intézet, őszi félév. Euklideszi terek LINEÁRIS ALGEBRA 1 / 40

Lineáris algebra. =0 iє{1,,n}

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

karakterisztikus egyenlet Ortogonális mátrixok. Kvadratikus alakok főtengelytranszformációja

VIK A2 Matematika - BOSCH, Hatvan, 3. Gyakorlati anyag. Mátrix rangja

10. Előadás. Megyesi László: Lineáris algebra, oldal. 10. előadás Sajátérték, Kvadaratikus alak

Lineáris leképezések (előadásvázlat, szeptember 28.) Maróti Miklós, Kátai-Urbán Kamilla

1000 forintos adósságunkat, de csak 600 forintunk van. Egyetlen lehetőségünk, hogy a

Számítási módszerek a fizikában 1. (BMETE90AF35) tárgy részletes tematikája

LINEÁRIS MODELLBEN május. 1. Lineáris modell, legkisebb négyzetek elve

ismertetem, hogy milyen probléma vizsgálatában jelent meg ez az eredmény. A kérdés a következő: Mikor mondhatjuk azt, hogy bizonyos események közül

Matematika A1a Analízis

15. LINEÁRIS EGYENLETRENDSZEREK

1. Mit jelent az, hogy egy W R n részhalmaz altér?

Áttekintés a felhasznált lineáris algebrai ismeretekről.

1. Generátorrendszer. Házi feladat (fizikából tudjuk) Ha v és w nem párhuzamos síkvektorok, akkor generátorrendszert alkotnak a sík vektorainak

Wigner tétele kvantummechanikai szimmetriákról

1. feladatsor Komplex számok

1. Bázistranszformáció

Matematika (mesterképzés)

Numerikus módszerek 1.

Principal Component Analysis

Matematika III. harmadik előadás

Determinánsok. A determináns fogalma olyan algebrai segédeszköz, amellyel. szolgáltat az előbbi kérdésekre, bár ez nem mindig hatékony.

Fraktálok. Kontrakciók Affin leképezések. Czirbusz Sándor ELTE IK, Komputeralgebra Tanszék. TARTALOMJEGYZÉK Kontrakciók Affin transzformációk

17. előadás: Vektorok a térben

1. Az euklideszi terek geometriája

Saj at ert ek-probl em ak febru ar 26.

1. Lineáris transzformáció

6. Előadás. Megyesi László: Lineáris algebra, oldal. 6. előadás Bázis, dimenzió

i=1 λ iv i = 0 előállítása, melynél valamelyik λ i

1. Absztrakt terek 1. (x, y) x + y X és (λ, x) λx X. műveletek értelmezve vannak, és amelyekre teljesülnek a következő axiómák:

1. Házi feladat. Határidő: I. Legyen f : R R, f(x) = x 2, valamint. d : R + 0 R+ 0

(Independence, dependence, random variables)

Lineáris leképezések. Wettl Ferenc március 9. Wettl Ferenc Lineáris leképezések március 9. 1 / 31

Valószínűségi változók. Várható érték és szórás

Sorozatok, sorok, függvények határértéke és folytonossága Leindler Schipp - Analízis I. könyve + jegyzetek, kidolgozások alapján

Készítette: Fegyverneki Sándor

x, x R, x rögzített esetén esemény. : ( ) x Valószínűségi Változó: Feltételes valószínűség: Teljes valószínűség Tétele: Bayes Tétel:

Markov-láncok stacionárius eloszlása

Diszkrét matematika 2.

Együ ttes e s vetü leti eloszlá s, sü rü se gfü ggve ny, eloszlá sfü ggve ny

Vektorterek. Több esetben találkozhattunk olyan struktúrával, ahol az. szabadvektorok esetében, vagy a függvények körében, vagy a. vektortér fogalma.

1.1. Vektorok és operátorok mátrix formában

Infobionika ROBOTIKA. X. Előadás. Robot manipulátorok II. Direkt és inverz kinematika. Készült a HEFOP P /1.0 projekt keretében

Diszkrét Matematika II.

Egyenletek, egyenlőtlenségek VII.

Szinguláris érték felbontás Singular Value Decomposition

Nagy Gábor compalg.inf.elte.hu/ nagy ősz

Az impulzusnyomatékok általános elmélete

Arany Dániel Matematikai Tanulóverseny 2015/2016-os tanév 1. forduló Haladók III. kategória

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

1. Homogén lineáris egyenletrendszer megoldástere

Számítási feladatok a Számítógépi geometria órához

Összeállította: dr. Leitold Adrien egyetemi docens

Feladatok a Gazdasági matematika II. tárgy gyakorlataihoz

0-49 pont: elégtelen, pont: elégséges, pont: közepes, pont: jó, pont: jeles

Kvadratikus alakok gyakorlás.

Mat. A2 3. gyakorlat 2016/17, második félév

9. Előadás. (9. előadás) Lineáris egyr.(3.), Sajátérték április / 35

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

ALAPFOGALMAK 1. A reláció az program programfüggvénye, ha. Azt mondjuk, hogy az feladat szigorúbb, mint az feladat, ha

Bevezetés az algebrába 2

Többváltozós lineáris regresszió 3.

Gauss-Seidel iteráció

Felügyelt önálló tanulás - Analízis III.

Nagy Gábor compalg.inf.elte.hu/ nagy

Haladó lineáris algebra

,,BABEŞ-BOLYAI TUDOMÁNYEGYETEM LINEÁRIS ALGEBRA

9. Előadás. Megyesi László: Lineáris algebra, oldal. 9. előadás Mátrix inverze, mátrixegyenlet

3. Lineáris differenciálegyenletek

4. Fuzzy relációk. Gépi intelligencia I. Fodor János NIMGI1MIEM BMF NIK IMRI

Hadamard-mátrixok Előadó: Hajnal Péter február 23.

LINEÁRIS VEKTORTÉR. Kiegészítő anyag. (Bércesné Novák Ágnes előadása) Vektorok függetlensége, függősége

Mátrixjátékok tiszta nyeregponttal

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

Az R halmazt a valós számok halmazának nevezzük, ha teljesíti az alábbi 3 axiómacsoport axiómáit.

Meghirdetés féléve 2 Kreditpont Összóraszám (elm+gyak) 2+0

6. gyakorlat. Gelle Kitti. Csendes Tibor Somogyi Viktor. London András. jegyzetei alapján

Tartalom. Állapottér reprezentációk tulajdonságai stabilitás irányíthatóság megfigyelhetőség minimalitás

Skalárszorzat, norma, szög, távolság. Dr. Takách Géza NyME FMK Informatikai Intézet takach/ 2005.

Transzformációk síkon, térben

Formális nyelvek - 9.

Testek. 16. Legyen z = 3 + 4i, w = 3 + i. Végezzük el az alábbi. a) (2 4), Z 5, b) (1, 0, 0, 1, 1) (1, 1, 1, 1, 0), Z 5 2.

Szinguláris értékek. Wettl Ferenc április 3. Wettl Ferenc Szinguláris értékek április 3. 1 / 28

Lineáris algebra zárthelyi dolgozat javítókulcs, Informatika I márc.11. A csoport

A többváltozós lineáris regresszió III. Főkomponens-analízis

Numerikus módszerek beugró kérdések

Szinguláris értékek. Wettl Ferenc április 12. Wettl Ferenc Szinguláris értékek április / 35

Mer legesség. Wettl Ferenc Wettl Ferenc Mer legesség / 40

1. Diagonalizálás. A Hom(V) diagonalizálható, ha van olyan bázis, amelyben A mátrixa diagonális. A diagonalizálható van sajátvektorokból álló bázis.

Matematikai geodéziai számítások 10.

11. Előadás. 11. előadás Bevezetés a lineáris programozásba

Nagy számok törvényei Statisztikai mintavétel Várható érték becslése. Dr. Berta Miklós Fizika és Kémia Tanszék Széchenyi István Egyetem

Fourier-sorok. néhány esetben eltérhetnek az előadáson alkalmazottaktól. Vizsgán. k=1. 1 k = j.

Átírás:

A Cochran Fisher tételről A matematikai statisztika egyik fontos eredménye a Cochran Fisher tétel, amely a variancia analízisben játszik fontos szerepet. Ugyanakkor ez a tétel lényegét tekintve valójában egy lineáris algebrai állítás. Érdemes megmutatni, hogy hogyan lehet ezt az eredményt, illetve néhány ehhez kapcsolódó a matematikai statisztikában szintén hasznos állítást a lináris algebra módszereivel bebizonyítani. E jegyzet ezt a bizonyítást és a Cochran Fisher tétel néhány alkalmazását tartalmazza. Először megfogalmazom magát az eredményt. Cochran Fisher tétel. Legyen adva n független, standard normális eloszlású valószínűségi változó, ξ 1,...,ξ n, és definiáljuk segítségükkel a Q = Q(ξ 1,...,ξ n ) = n kifejezést. Legyen adva ezenkívül még k darab Q j = Q j (ξ 1,...,ξ n ), Q j = n n i=1 ξj 2 c (j) i,l ξ iξ l, 1 j k, alakú (quadratikus) kifejezés a c (j) i,l = c (j) l,i azonosságot minden 1 i, l n, 1 j k, indexre teljesítő együtthatókkal, amelyekre érvényes a Q = Q 1 + Q 2 + + Q k (1) azonosság. Jelölje rang (Q j ) a Q j kifejezés rangját, amelyet úgy definiálunk, mint a Q j kifejezés definiciójában szereplő együtthatók segítségével definiált (c (j) i,l ), 1 i,l n, mátrix rangját. Ekkor teljesül az n rang (Q 1 ) + rang (Q 2 ) + + rang (Q k ) (2) egyenlőtlenség. Ha a (2) formulában egyenlőség érvényes, akkor a Q j, 1 j k, kifejezések független χ 2 eloszlású valószínűségi változók rang (Q j ) szabadságfokkal. Sőt, ebben az esetben léteznek olyan független ζ j,1,...,ζ j,rj, r j = rang (Q j ), 1 j k, standard normális eloszlású valószínűségi változók, amelyekre Q j = és Q = k r j s=1 ζ 2 j,s. r j s=1 ζ 2 j,s, 1 j k, Fel fogom idézni egy mátrix rangjának a definicióját és legfontosabb tulajdonságait. Ezelőtt megfogalmazom azt a lineáris algebrai állítást, amelyből a Cochran-Fisher tétel következik. Tétel egy Euklideszi térbeli identitás transzformáció felbontásáról. Tekintsük az I = I n identitás transzformációt az n-dimenziós Euklideszi térben. Legyen adva ennek egy I = Q 1 + Q 2 + + Q k (3) alakú előállítása, ahol Q 1,...,Q k önadjungált leképezések. Ekkor n rang (Q 1 ) + rang(q 2 ) + + rang(q k ). (4) 1

Ha a (4) formulában egyenlőség teljesül, akkor a Q 1,...,Q k leképezések egymásra merőleges projekciók. Felidézem, hogy egy mátrix rangját úgy definiáljuk, mint a mátrixból kiválasztható maximális számú lineárisan független sorok számát. Tekintsünk egy szimmetrikus bilineáris függvényt meghatározó lineáris transzformációt egy Euklideszi térben. Egy ilyen transzformáció tetszőleges ortonormált koordinátarendszerben felírt mátrixának ugyanaz a rangja, mert a transzformáció két különböző koordinátarendszerben felírt A és B mátrix reprezentációja között az A = UBU reláció érvényes alkalmas U unitér mátrix-szal. Innen következik, hogy beszélhetünk egy szimmetrikus bilineáris függvény vagy az őt egyértelműen meghatározó kvadratikus alak rangjáról is. Egy (nem feltétlenül szimmetrikus) transzformáció rangja megegyezik a transzformáció képterének dimenziójával, és egy kvadratikus alak rangja jellemezhető úgy is, mint a leképezés főtengely transzformációs alakjában szereplő nem zéró sajátértékek száma. Annak érdekében, hogy az identitás transzformációnak egy Euklideszi térben történő felbontásáról szóló tételt jobban megértsük, érdemes felidézni egy Euklideszi tér projekciójának fogalmát és legfontosabb tulajdonságait. Geometriai módon egy E Euklideszi tér (ortogonális) projekcióját egy B E altérre úgy definiáljuk, mint az Euklideszi tér x E pontjainak azt az x Px transzformációját, amely az x pontnak e pont orthogonális vetületét felelteti meg a B altérre, azaz Px B, és x Px merőleges minden y B vektorra, azaz (x Px,y) = 0, ha y B. Két P és Q projekció merőleges egymásra, ha a Px és Qy vektorok merőlegesek egymásra minden x,y E vektorra, azaz (Px,Qy) = 0 minden x E és y E vektorra. Érdemes a projekciók és projekciók merőlegességének fogalmát algebrai nyelven is megfogalmazni. A következő lemma projekciók ilyen jellemzését tartalmazza. Lemma egy Euklideszi tér projekcióinak a tulajdonságairól. Egy E Euklideszi tér P projekciója önadjungált operátor, és a projekció definiciójában szereplő B altér, ahová a projekció vetít, megegyezik a P transzformáció B = {Px: x E} képterével. Egy x B vektorra Px = x, és egy a B altérre merőleges x vektorra Px = 0. Egy Euklideszi tér P önadjungált operátora akkor és csak akkor projekció, ha teljesíti a P = P 2 azonosságot. Két P és Q projekció akkor és csak akkor merőleges egymásra, ha PQ = 0. Ekkor a QP = 0 azonosság is teljesül. Speciálisan, ha P projekció, akkor I P egy rá merőleges projekció. Ezenkívül érvényes a 0 P I azonosság, azaz 0 (Px,x) (x,x) minden x E vektorra. A lemma bizonyítása: Legyen P projekció az E Euklideszi tér egy B alterére. Lássuk be először, hogy a B altér megegyezik a P operátor képterével. Valóban, egyrészt definició szerint Px B minden x E vektorra. Másrészt nincs olyan y B vektor, amelyet nem tartalmaz a P operátor képtere. Ugyanis egy ilyen y vektor létezése esetén y Py olyan nem zéró vektor lenne, amelyre y Py B, ezért merőleges önmagára, és ez ellentmondás. Ha x B, akkor z = Px = x. Valóban, ekkor a z = x vektorra teljesül mind a z B, mind a (x z,y) = 0 minden y B vektorra. Hasonlóan Px = 0, ha x merőleges a B altérre, mert ekkor (x 0, y) = 0 minden y B vektorra, és 0 B. Mutassuk meg azt is, hogy egy P projekció olyan önadjungált operátor, amelyre 2

P 2 = P. Valóban, a P = P reláció bizonyításához elég megmutatni, hogy (Px,y) = (x,py), ha y B vagy ha y merőleges a B altérre. Ha y B, akkor y = Py, ezért (Px,y) (x,py) = (Px,y) (x,y) = (Px x,y) = 0, és ha y merőleges a B altérre, akkor Py = 0, ezért (x,py) = 0 és (Px,y) = 0, mert Px B. A Px = P 2 x bizonyítását is elég ellenőrizni akkor, ha x B vagy ha x merőleges a B altérre. Az első esetben viszont x = Px = P 2 x, a második esetben pedig 0 = Px = P 2 x. Lássuk be, hogy ha P = P, és P = P 2, akkor P projekció a P transzformáció B = {Px: x E} képterére. Valóban, Px B minden x E vektorra, és mivel y = Pz = P 2 z = Py valamely z E vektorral, ha y B, ezért (x Px,y) = (x,y) (Px,y) = (x,py) (x,p y) = 0 minden x E és y B vektorra. Két P és Q projekció akkor és csak akkor merőleges, ha (Px,Qy) = 0 minden x E és y E vektorra. Viszont (Px,Qy) = (P x,qy) = (x,pqy), ezért (Px,Qy) = 0 minden x E és y E vektorra akkor és csak akkor, ha PQ = 0. Ha PQ = 0, akkor 0 = (PQ) = Q P = QP. Ha P önadjungált operátor, akkor (I P) = I P = I P, (I P) 2 = I 2P + P 2 = I P, és P(I P) = 0, azaz I P a P projekcióra merőleges projekció. Végül, ha P projekció, akkor (x,px) = (x,p 2 x) = (Px,Px) 0, és alkalmazva ezt az összefüggést az I P projekcióra azt kapjuk, hogy (x,(i P)x) 0, azaz (x,px) (x,x). Független normális eloszlású valószínűségi változók véges sorozata többváltozós normális eloszlású vektor, és egy normális eloszlású véletlen vektor lineáris transzformáltja szintén normális eloszlású. Ezenkívül tudjuk, hogy egy többváltozós normális eloszlású vektor koordinátái akkor és csak akkor függetlenek, ha korrelátlanok. Megmutatom e tények felhasználásával, hogy az egy Euklideszi térbeli identitás transzformáció felbontásáról szóló tételből következik a Cochran Fisher tétel. A két tétel feltételeinek összehasonlítása alapján azonnal látható, hogy a lineáris algebrai tételből következik a (2) egyenlőtlenség. Be kell látni, hogy amennyiben a (2) egyenlőtlenségben azonosság áll, akkor a Q j függvényeknek a Cochran Fisher tételben felírt alakjuk van. Ennek érdekében vezessük be az alább definiált kvadratikus alakokat egy n-dimenziós Euklideszi térben. Tekintsük az n-dimenziós E n Euklideszi térnek egy e 1,...,e n bázisát, és írjunk fel minden x E n vektort x = n x i e i alakban. Definiáljuk a Q j (x) = Q j (x 1,...,x n ) = n n i=1 i=1 c (j) i,l x ix l, 1 j k, kvadratikus alakokat az E n téren, ahol a c (j) i,l számok megegyeznek a Cochran Fisher tételben bevezetett Q j kifejezéseket definiáló képletben szereplő megfelelő együtthatókkal. Ekkor az (1) képletből következik, hogy k Q j = I, ezért, ha a (2) relációban egyenlőség van, akkor Q j egy rang (Q j ) rangú projekció. Vezessük be ebben az esetben az S 0 = 0, S j = j rang (Q l ), 1 j k, számokat, és válasszunk olyan ortonormált ē 1,...,ē n bázist az E n térben, amelyben az S j 1 < i S j indexű ē i vektorok a Q j projekció képterében vannak. Írjunk fel minden x E n 3

vektort x = n t i ē i alakban. Ekkor Q j (x) = i=1 S j i=s j 1 +1 t 2 i minden 1 j k indexre. Továbbá, mivel mind az e 1,...,e n mind ē 1,...,ē n vektorok az E n tér ortonormált bázisát alkotják, ezért ē i = n u i,l e l, 1 i n alkalmas u i,l együtthatókkal, amelyekre ( n ) az (u i,l ), 1 i,l n, mátrix unitér. Innen t i = (x,ē i ) = x l e l, n u i,l e l = n u i,l x l, és Q j (x 1,...,x n ) = S j i=s j 1 +1 ( n ) 2 u i,l x l minden 1 j k indexre. (5) Definiáljuk az ζ j,s = n u i,l ξ l, 1 j k, 1 s rang (Q j ), i = S j 1 + s, valószínűségi változókat a Cochran Fisher tételben szereplő ξ j standard normális valószínűségi változók segítségével. Ekkor a standard normális eloszlású ζ j,s, 1 j k, 1 s rang (Q j ), valószínűségi változók függetlenek, mert egy normális eloszlású véletlen vektor korrelálatlan koordinátái. Továbbá a Q j (x 1,...,x n ) kvadratikus alak és a Q j (ξ 1,...,ξ n ) függvény összehasonlításából valamint az (5) formulából következik, hogy Q j = r j s=1 ζ 2 j,s minden 1 j k indexre, ahol r j = rang (Q j ). Ezért az (1) formulából következik a Q = k r j s=1 ζj,s 2, azonosság is. Tehát a Cochran Fisher tétel következik az utána megfogalmazott lineáris algebrai eredményből. Egy Euklideszi térbeli identitás transzformáció felbontásáról szóló tétel bizonyítása. Tekintsük minden 1 j k indexre a Q j leképezés képterének egy r j = rang (Q j ) elemből álló e j,1,...,e j,rj bázisát. Ha a k r j < n reláció teljesülne, akkor létezne olyan e E n nem zéró vektor, amelyre (e,e j,s ) = 0 minden 1 j k, 1 s r j indexre. Egy ilyen e vektorra a (e,q j e) = 0 azonosság teljesül minden 1 j k indexre. Ez viszont ellentmond a (3) azonosságnak, mivel innen azt kapjuk, hogy 0 < (e,ie) = k (e,q j e) = 0, ami ellentmondás. Ha a k r j = n azonosság érvényes, akkor tekintsük a Q j leképezések egy e j,1,..., e j,rj bázisát minden 1 j k 1 indexre. Vezessük be e vektorok által generált B alteret, és annak C ortogonális kiegészítő alterét az E n Euklideszi térben. Ekkor (Q k x,y) = (Ix,y) k 1 (Q j x,y) = (x,y) minden x C és y E n vektorra, ahonnan Q k x = x minden x C vektorra. Mivel mind a Q k mátrix rangja, mind a C altér 4

dimenziója n k 1 r j, innen következik, hogy a Q k x = 0, ha x B, és így a Q k transzformáció az E n Euklideszi tér C alterére vett projekció. Hasonlóan bizonyítható, hogy az összes Q j, 1 j k, operátor projekció. Továbbá, mivel Q j x B minden x E n vektorra, ha 1 j k 1, és Q k y C minden y E n vektorra, ezért (Q j x,q k y) = 0. Ez azt jelenti, hogy a Q k projekció merőleges minden Q j, j k projekcióra. Hasonlóan látható a többi projekció ortogonalitása is. A tételt bebizonyítottuk. A következő tételben megfogalmazok és bebizonyítok néhány további a variancia analízisben hasznos állítást. Tétel normális eloszlású véletlen vektorok kvadratikus alakjainak néhány hasznos tulajdonságáról. Legyen adva egy n-dimenziós X = (X 1,...,X n ) standard normális eloszlású valószínűségi változó. a.) Tekintsünk egy A szimmetrikus n n-es mátrixot. Az XAX kifejezés akkor és csak akkor χ-négyzet eloszlású valószínűségi változó, ha teljesül az A 2 = A azonosság. Ha ez teljesül, akkor XAX eloszlása rang (A) szabadságfokú χ-négyzet eloszlás. b.) Ha A és B két szimmetrikus mátrix, amelyre A 2 = A, B 2 = B, és AB = 0, akkor az XAX és XBX valószínűségi változók függetlenek, és χ-négyzet eloszlásúak rang (A) és rang (B) szabadságfokkal. c.) Ha Q, Q 1, Q 2 szimmetrikus n n méretű mátrixok, XQX és XQ 1 X χ-négyzet eloszlású valószínűségi változók, Q = Q 1 + Q 2, és Q 2 pozitív szemidefinit mátrix, akkor XQ 1 X és XQ 2 X független χ-négyzet eloszlású valószínűségi változó. A tétel bizonyítása. Ha az A szimmetrikus mátrix teljesíti az A 2 = A feltételt, akkor projekció, és az XAX kifejezést a főtengelytranszformáció segítségével felírhatjuk rang (A) alakban, ahol Y j, 1 j rang (A) független, standard normális eloszlású j valószínűségi változók. Általános szimmetrikus A mátrix esetében az XAX kifejezést n λ j Yj 2 alakban írhatjuk a főtengelytranszformáció segítségével, ahol Y j, 1 j n, független, standard normális eloszlású valószínűségi változók, és λ 1,...,λ n az A mátrix sajátértékei. Ez a kifejezés akkor és csak akkor χ-négyzet eloszlású, ha az összes λ j sajátérték 0 vagy 1 értéket vesz fel. (Ez például az eloszlás karakterisztikus függvényének felírásából látszik.) Ez a tulajdonság viszont akkor és csak akkor teljesül, ha A projekció, azaz A 2 = A. A tétel b) pontjának bizonyításához elég azt észrevenni, hogy az adott feltételek mellett A és B két ortogonális projekció. Innen a Cochran Fisher tétel bizonyításának alkalmazásával be lehet bizonyítani a b) pont állítását, de lehet a Cochran Fisher tételt közvetlenül is alkalmazni az n-dimenziós E n tér I identitás transzformációjának alkalmas I = C +B+A alakú reprezentációjának felhasználásával. Ebben a reprezentációban C az A+B projekció képterének az E n tér n rang (A) rang(b) dimenziós ortogonális kiegészítésére vett projekció. 5

A tétel c) pontjának bizonyítása érdekében mutassuk meg először azt, hogy az adott feltételek mellett a Q projekció B képtere tartalmazza a Q 1 projekció A képterét. Valóban, ha létezne egy x A\B vektor, akkor erre az x vektorra teljesülne a (Q 2 x,x) = (Qx,x) (Q 1 x,x) = (y,x) (x,x) = (y,y) (x,x) < 0 egyenlőtlenség, ahol y az x vektornak (az x vektornál rövidebb) Qx vetülete a B altérre. Ez az egyenlőtlenség viszont ellentmond annak a feltételnek, hogy Q 2 pozitív szemidefinit mátrix. Innen következik, hogy a Q 2 transzformáció megegyezik a Q 1 projekció A képterének a Q transzformáció B képterére vett C ortogonális kiegészítésére való projekcióval. Ezután a c) pont bizonyítása a b) pont bizonyításához hasonlóan fejezhető be. A Cochran Fisher tétel egy alkalmazásaként megmutatom, hogy hogyan következik ebből az eredményből és a többváltozós centrális határeloszlástételből a matematikai statisztika egyik fontos határeloszlástétele, amely a χ-négyzet módszer alapjául szolgál. A következő eredmény bizonyítását fogom ismertetni. Egy χ-négyzet határeloszlástétel. Legyen adva r darab urna, és dobjunk ezekbe egymástól függetlenül n darab golyót egymástól függetlenül úgy, hogy mindegyik golyó r valószínűséggel esik a j-ik urnába, ahol 0, j = 1,...,r, = 1 előírt számok. Jelölje ν n (j), 1 j r, a j-ik urnába eső golyók számát. Ekkor a r (ν n (j) n ) 2 n valószínűségi változók eloszlásban konvergálnak az r 1 szabadságfokú χ-négyzet eloszláshoz, ha n. E tételt a Cochran Fisher tételből és a többváltozós centrális határeloszlástétel alábbi következményéből fogjuk levezetni. A többváltozós centrális határeloszlástétel egy következménye. Tekintsük az előbb megfogalmazott χ-négyzet határeloszlástételben leírt modellt és az abban definiált 1 ν n (j), 1 j r, valószínűségi változókat. Az n (ν n (1) np 1,...,ν n (r) np r ) véletlen vektorok eloszlásban konvergálnak egy olyan normális eloszlású (Z 1,...,Z r ) véletlen vektorhoz, amelyre EZ j = 0, EZj 2 = (1 ), 1 j r, és EZ i Z j = p i, 1 i < j r, ha n. Az előbb megfogalmazott χ-négyzet határeloszlástétel következik a fenti határeloszlástételből és abból az állításból, hogy egy olyan normális eloszlású (Z 1,...,Z r ) véletlen vektorra, amelyre EZ j = 0, EZj 2 = (1 ), 1 j r, és EZ i Z j = p i, ha 1 i < j r, a r valószínűségi változó χ-négyzet eloszlású r 1 szabadságfokkal. Ez utóbbi állítás a Cochran Fisher tételből és egy a (Z 1,...,Z r ) véletlen vektorral megegyező eloszlású véletlen vektor alább ismertetett konstrukciójából következik. Alkalmas kovarianciájú véletlen normális vektorok konstrukciója. Legyenek adva Y 1,...,Y n független, standard normális valószínűségi változók és olyan nem negatív, 1 j r, valós számok, amelyekre r = 1. Definiáljuk az U = p 1 Y 1 + p 2 + 6

+ p r Y r és Z j = Y j U, 1 j r, valószínűségi változókat. Ekkor EZ j = 0, E = (1 ), és EZ i Z j = p i, ha 1 i < j r. Ezenkívül teljesül a és r Z j = 0 azonosság. r + U 2 = r j (6) r A fenti eredményből és a Cochran Fisher tételből következik az, hogy az előbb felírt összeg χ-négyzet eloszlású r 1 szabadságfokkal. Valóban, a (6) összegben szereplő Z j valószínűségi változóknak az előírt eloszlásuk van, továbbá a r kifejezés a független standard normális eloszlású Y 1,...,Y r valószínűségi változók kvadratikus kifejezése, amelynek rangja a r Z j = 0 azonosság miatt legfeljebb r 1. Ezenkívül U 2 egy olyan kvadratikus kifejezése az Y 1,...,Y r valószínűségi váltóknak, amelynek rangja 1. Ezért a (6) azonosságból és a Cochran Fisher tételből következik, hogy a r kifejezés r 1 szabadságfokú χ-négyzet eloszlású valószínűségi változó. (Ezenkívül azt is tudjuk, hogy ez független az U 2 valószínűségi változótól. Sőt a Z j, 1 j r, valószínűségi változók függetlenek az U valószínűségi változótól. De erre a tényre nincs szükségünk). Felmerülhet a kérdés, hogy hogyan találhatjuk meg a (Z 1,...,Z r ) véletlen vektor fenti, számunkra hasznos reprezentációját természetes módon. Ezt magyarázom el a következő megjegyzésben. Megjegyzés. Tekintsünk egy B(t), 0 t 1, Brown bridge-t, és vezessük be az t 0 = 0, t j = j p l, 1 j r, számokat. E mennyiségek segítségével a keresett eloszlású (Z 1,...,Z r ) vektort Z j = B(t j ) B(t j 1 ), 1 j r, alakban állíthatjuk elő. Legyen adva a B(t) Brown bridge-nek egy B(t) = W(t) tw(1), 0 t 1, alakú előállítása egy W(t), 0 t 1, Wiener folyamat segítségével. Ekkor bevezetve az Y j = p 1/2 j (W(t j ) W(t j 1 )), 1 j r, független, standard normális eloszlású valószínűségi változókat, felírhatjuk az U = W(1) = r pj Y j és Z j = Y j U, 1 j r azonosságokat. Ezt az eljárást követtük a fenti konstrukcióban. Az alkalmas kovarianciájú véletlen normális vektorok konstrukciójában megfogalmazott eredmények bizonyítása. Az EZ j = 0, 1 j r, reláció nyilvánvaló. EZj 2 = (p 1/2 j p 3/2 j ) 2 EYj 2 + p 2 jp l EYl 2 = (1 ) 2 + l: 1 l r, l j l: 1 l r, l j p 2 jp l = (1 ) 2 + (1 )p 2 j = (1 ), 7

ha i j, és r Végül EZ i Z j = p i + U 2 = = l: 1 l r, l i,j p l p i (1 p i )EYi 2 p i (1 )EYj 2 = p i (1 p i ) p i (2 p i ) = p i, r (Y j U) 2 + U 2 = r r j + U 2 2U 2 + U 2 = r Z j = r pj Y j A kívánt eredményeket bebizonyítottuk. j + r j. r U 2 2U r U = U U = 0. r pj Y j + U 2 8