A futómûvek üzemeltetési megbízhatóságának és rendelkezésre állásának elemzése az üzemeltetési folyamat Markovés szemi-markov modelljének segítségével

Hasonló dokumentumok
12. előadás - Markov-láncok I.

(Diszkrét idejű Markov-láncok állapotainak

STATISZTIKA. A maradék független a kezelés és blokk hatástól. Maradékok leíró statisztikája. 4. A modell érvényességének ellenőrzése

BME Járműgyártás és -javítás Tanszék. Javítási ciklusrend kialakítása

Matematikai statisztika c. tárgy oktatásának célja és tematikája

0,424 0,576. f) P (X 2 = 3) g) P (X 3 = 1) h) P (X 4 = 1 vagy 2 X 2 = 2) i) P (X 7 = 3, X 4 = 1, X 2 = 2 X 0 = 2) j) P (X 7 = 3, X 4 = 1, X 2 = 2)

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

A Markovi forgalomanalízis legújabb eredményei és ezek alkalmazása a távközlő hálózatok teljesítményvizsgálatában

Sta t ti t s i zt z i t k i a 3. előadás

előadás Diszkrét idejű tömegkiszolgálási modellek Poisson-folyamat Folytonos idejű Markov-láncok Folytonos idejű sorbanállás

E.4 Markov-láncok E.4 Markov-láncok. Sok sorbanállási hálózat viselkedése leírható "folytonos idejű Markovláncok " segítségével.

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

Kutatásmódszertan és prezentációkészítés

Statisztika - bevezetés Méréselmélet PE MIK MI_BSc VI_BSc 1

Mátrixok, mátrixműveletek

Bevezetés az algebrába 2 Vektor- és mátrixnorma

II. VASÚTI FORGALMI KONFERENCIA

[Biomatematika 2] Orvosi biometria

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

Markov modellek

Jelek és rendszerek 1. 10/9/2011 Dr. Buchman Attila Informatikai Rendszerek és Hálózatok Tanszék

STATISZTIKA ELŐADÁS ÁTTEKINTÉSE. Matematikai statisztika. Mi a modell? Binomiális eloszlás sűrűségfüggvény. Binomiális eloszlás

y ij = µ + α i + e ij

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

Sztochasztikus temporális logikák

Költségkalkuláció. Kis- és középvállalkozások. Kalkuláció fogalma. Ügyvezetés I. és II.

Dr. Kalló Noémi. Termelés- és szolgáltatásmenedzsment. egyetemi adjunktus Menedzsment és Vállalatgazdaságtan Tanszék. Dr.

II. rész: a rendszer felülvizsgálati stratégia kidolgozását támogató funkciói. Tóth László, Lenkeyné Biró Gyöngyvér, Kuczogi László

KÖZLEKEDÉSÜZEMI ÉS KÖZLEKEDÉSGAZDASÁGI TANSZÉK. Prof. Dr. Tánczos Lászlóné 2015

A pedagógiai kutatás metodológiai alapjai. Dr. Nyéki Lajos 2015

Matematikai geodéziai számítások 6.

Transzformátor, Mérőtranszformátor Állapot Tényező szakértői rendszer Vörös Csaba Tarcsa Dániel Németh Bálint Csépes Gusztáv

A TANTÁRGY ADATLAPJA

Mintavétel fogalmai STATISZTIKA, BIOMETRIA. Mintavételi hiba. Statisztikai adatgyűjtés. Nem véletlenen alapuló kiválasztás

Megerősítéses tanulás 2. előadás

Matematikai alapok és valószínőségszámítás. Középértékek és szóródási mutatók

Valószínűségszámítás összefoglaló

Matematikai geodéziai számítások 6.

Valószínűségi változók. Várható érték és szórás

Legyen adott egy S diszkrét halmaz. Leggyakrabban S az egész számoknak egy halmaza, például S = {0, 1, 2,..., N}, {0, 1, 2,... }.

A valószínűségszámítás elemei

Ellátási lánc optimalizálás P-gráf módszertan alkalmazásával mennyiségi és min ségi paraméterek gyelembevételével

Mi az adat? Az adat elemi ismeret. Az adatokból információkat

Az értékelés során következtetést fogalmazhatunk meg a

Termelés- és szolgáltatásmenedzsment

TANTÁRGYI PROGRAM Matematikai alapok 2. útmutató

Tantárgy kódja Meghirdetés féléve 3 Kreditpont 4 Összóraszám (elm+gyak) 2+2

Üzemszervezés A BMEKOKUA180

Statisztika I. 4. előadás Mintavétel. Kóczy Á. László KGK-VMI. Minta Mintavétel Feladatok.

Statisztika I. 4. előadás Mintavétel. Kóczy Á. László KGK-VMI. Minta Mintavétel Feladatok.

Gauss-Jordan módszer Legkisebb négyzetek módszere, egyenes LNM, polinom LNM, függvény. Lineáris algebra numerikus módszerei

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

Számítógép-rendszerek fontos jellemzői (Hardver és Szoftver):

A pedagógia mint tudomány. Dr. Nyéki Lajos 2015

Biomatematika 2 Orvosi biometria

Markov-láncok stacionárius eloszlása

Bevezetés a biometriába Dr. Dinya Elek egyetemi tanár. PhD kurzus. KOKI,

Diverzifikáció Markowitz-modell MAD modell CAPM modell 2017/ Szegedi Tudományegyetem Informatikai Intézet

WINPEPSY ALKALMAZÁSA SORBANÁLLÁSI MODELLEKNÉL

Valószínűségi modellellenőrzés Markov döntési folyamatokkal

TANTÁRGYI PROGRAM Matematikai alapok II. útmutató

Gazdasági matematika II. tanmenet

[Biomatematika 2] Orvosi biometria

A kockázat fogalma. A kockázat fogalma. Fejezetek a környezeti kockázatok menedzsmentjéből 2 Bezegh András

Anyagmozgatás és gépei. 1. témakör. Egyetemi szintű gépészmérnöki szak. MISKOLCI EGYETEM Anyagmozgatási és Logisztikai Tanszék.

y ij = µ + α i + e ij STATISZTIKA Sir Ronald Aylmer Fisher Példa Elmélet A variancia-analízis alkalmazásának feltételei Lineáris modell

Hipotézis, sejtés STATISZTIKA. Kétmintás hipotézisek. Tudományos hipotézis. Munkahipotézis (H a ) Nullhipotézis (H 0 ) 11. Előadás

VALÓSZÍNŰSÉG, STATISZTIKA TANÍTÁSA

Közlekedési szervezetek működési modelljei

A leíró statisztikák

Matematikai alapok és valószínőségszámítás. Valószínőségi eloszlások Binomiális eloszlás

Anyagmozgatás és gépei. 1. témakör. Egyetemi szintű gépészmérnöki szak. MISKOLCI EGYETEM Anyagmozgatási és Logisztikai Tanszék.

Biomatematika 2 Orvosi biometria

STATISZTIKA. Mit nevezünk idősornak? Az idősorok elemzésének módszertana. Az idősorelemzés célja. Determinisztikus idősorelemzés

Miskolci Egyetem Anyagmozgatási és Logisztikai Tanszék. 1. fólia

Üzemszervezés. Projekt tervezés. Dr. Juhász János

Biztonsági Testület június 19. TERVEZET! Járművek, VMMSzK, Vasútbiztonság. Dr. Csiba József igazgató MÁV Zrt. VMMSzK. Magyar Államvasutak ZRt.

x, x R, x rögzített esetén esemény. : ( ) x Valószínűségi Változó: Feltételes valószínűség: Teljes valószínűség Tétele: Bayes Tétel:

Microsoft Excel Gyakoriság

Matematikai geodéziai számítások 5.

Kísérlettervezés alapfogalmak

Függetlenségvizsgálat, Illeszkedésvizsgálat

[Biomatematika 2] Orvosi biometria

VÁLLALATGAZDASÁGTAN II. Döntési Alapfogalmak

Bevezetés a biometriába Dr. Dinya Elek egyetemi tanár. PhD kurzus

Etológia Emelt A viselkedés mérése. Miklósi Ádám egyetemi tanár ELTE TTK Etológia Tanszék 2018

1. Adatok kiértékelése. 2. A feltételek megvizsgálása. 3. A hipotézis megfogalmazása

SZOFTVEREK A SORBANÁLLÁSI ELMÉLET OKTATÁSÁBAN

OKM ISKOLAI EREDMÉNYEK

Skalárszorzat, norma, szög, távolság. Dr. Takách Géza NyME FMK Informatikai Intézet takach/ 2005.

Döntéselőkészítés. I. előadás. Döntéselőkészítés. Előadó: Dr. Égertné dr. Molnár Éva. Informatika Tanszék A 602 szoba

[Biomatematika 2] Orvosi biometria

Felvételi tematika INFORMATIKA

Az SPC (statisztikai folyamatszabályozás) ingadozásai

Effects and opportunities of supplying electric vehicles by public charging stations

Kiterjesztések sek szemantikája

STATISZTIKA I. Változékonyság (szóródás) A szóródás mutatószámai. Terjedelem. Forgalom terjedelem. Excel függvények. Függvénykategória: Statisztikai

Mintavételi eljárások

Populációbecslés és monitoring. Eloszlások és alapstatisztikák

A TANTÁRGY ADATLAPJA

Átírás:

A futómûvek üzemeltetési megbízhatóságának és rendelkezésre állásának elemzése az üzemeltetési folyamat Markovés szemi-markov modelljének segítségével Dr. Csiba József A futómûvek, mint komplex mûszaki rendszerek megbízhatóságának, rendelkezésre állásának elemzése számos célzatú lehet. Az elemzés irányulhat bizonyos mûszaki kockázatok meghatározására, de cél lehet üzemeltetési körülmények hatásának számbavétele is. Fontos gyakorlati jelentõséggel bír a rendszer megbízhatóságon keresztül az alkalmazott karbantartási technológiák, azok gyakorlatának minõsítése. Az üzemeltetési megbízhatóság és rendelkezésre állás elemzésére szokásos eljárás közül lehet módszert választani. Jelen esetben az elemzés az üzemeltetési folyamat Markov- és szemi-markov modellje segítségével kerül végrehajtásra. Az elemzés során természetesen kitüntetett jelentõséggel bír az alkalmas modell kiválasztása ahhoz, hogy az üzemeltetéssel kapcsolatos felmerülõ alapkérdésekre helyes válaszokat lehessen adni. Az elemzés fontos része a forgóvázak, futómûvek sztochasztikus üzemeltetési folyamatának homogenitási vizsgálata. KULCSSZAVAK: megbízhatóság, rendelkezésre állás, üzemeltetési folyamat Markov- és szemi-markov modellje, sztochasztikus folyamat, homogenitás vizsgálat, átmenetvalószínûségek, átmenetvalószínûségek, statisztikái. I. Bevezetés A jelen tanulmány egy, a vasúti jármûvek, azok futómûvének megbízhatósági viszonyainak elemzésére vonatkozó kutatási munka közbensõ fázisát mutatja be. Az elemzés a futómûvek üzemi viselkedését veszi górcsõ alá egy megbízhatósági modell keretében. A mostani álláspontig az üzemeltetési folyamat sajátosságai alapján megtörtént a megbízhatósági modellhez illeszkedõ elemzési módszer kiválasztása. A forgóvázakra vonatkozó üzemeltetési adathalmaz statisztikai elemzésével választ kaphatunk az üzemeltetõk alapkérdéseire. A munka során többféle modell közül kell kiválasztani a legalkalmasabbat, majd az alapkérdésekre kapott válaszok alapján ún. homogenitás vizsgálatot kell végezni. A jövõbeni feladatok sora tartalmazza a teljes homogenitás vizsgálatot követõ érzékenység és függetlenség vizsgálatokat is. 49

2. A forgóváz és futómû üzemeltetõk alapkérdései A forgóvázakat- és futómûveket üzemeltetõk alapkérdései a feladataikból adódnak. A fõ feladatuk az üzemhez, a személy- és teherforgalom megfelelõ szintû lebonyolításához szükséges jármûállag tervezett szintû rendelkezésre állásának biztosítása. Kívánatos, hogy a jármûállag rendelkezésre állása az elõre megtervezett, a vasútüzem sajátságaiból adódóan egyeztetett és koordinált tervezett üzemi folyamat, technológia mellett valósuljon meg. Az alapkérdések az üzemi folyamat változatlanságának biztosítására törekvésbõl adódnak: 1. Ha tekintjük a következõ eseményt mint elõzményi eseményt miszerint a vasúti jármû forgóvázak üzemre alkalmasak és jelenleg üzemben vannak, akkor mi annak az eseménynek az elõzõ feltételi esemény melletti feltételes valószínûsége, hogy ezek a forgóvázak holnap is üzemképesek lesznek és üzemben lesznek? 2. Ha a feltételi esemény az, hogy a forgóvázak karbantartáson vannak, akkor mi a feltételes valószínûsége annak az eseménynek, hogy ezek a forgóvázak a jelzett feltételi esemény mellett holnap normál üzemben lesznek, vagy például személykocsi esetén az a kocsi, amely alá be vannak kötve, üzemképesen a tároló vágányra áll. 3. A statisztikai jellemzõket tekintve milyen hosszú idõtartam alatt lesznek a forgóvázak üzemben, karbantartásban vagy javításban stb. Az elsõ két kérdéskör a tervezett üzemi folyamattól való eltéréssel, a harmadik pedig a folyamat tervszerû módosításával van kapcsolatban. (Természetesen az alapkérdésekre kapott válaszok a jármûállag nagyságát is meghatározzák az üzemi technológia betarthatósága mellett.) Célunk az is, választ kapjunk miszerint helyes volt-e a modellválasztás, valamint az a feltételezés, miszerint az egyes üzemeltetési állapotok közötti átmenetek dinamikája homogén Markov-láncokkal kezelhetõ. A vizsgálatok eredményeként kimutatásra kerül, hogy a meghatározott állapotba kerülés független vagy nem független attól, hogy a vizsgálat mikor kezdõdött. 2.1. A jármûvek, illetve forgóvázaik, futómûveik üzemeltetési állapotai A jármûvek, ill. forgóvázaik, futómûveik üzemük során különbözõ állapotokba kerülnek. Az egyes állapotok befolyással bírnak az egyes jármûvek, az egyes jármûtípusok és az egész jármûállag (üzemeltetési) költségeire, ezeken keresztül a jármûvekkel kapcsolatos szolgáltatási árakra. Az elemzés szempontjából a vizsgálat tárgyát jelentõ üzemeltetési állapotok a következõk: a jármû üzemben, forgalomban van (1), a jármû üzemképes és vár üzemre (11), 50

a jármû karbantartásra vár (20), a jármû karbantartáson van (21), a jármû javításra vár (30), a jármû javításban van (31), a jármû magasabb szintû karbantartásra vár (40), a jármû magasabb szintû karbantartáson van (41), a jármû garanciális javításra vár magasabb szintû karbantartás után (42). Az egyes állapotokat magában foglaló elvi lépcsõs diagramot (realizációs függvényt) mutat az 1. ábra. Az egyes jármû, jármûszerkezet üzemeltetési és fenntartási költségeinek csökkentését ezeken keresztül a szolgáltatás gazdasági eredményességének javítását szolgálja a forgóváz, futómû gyengepontjainak meghatározása. Tehát azon túlmenõen, hogy a forgóvázat javítani kell, szükséges ismerni a konkrét okot. Erre szolgál az elvi hibafa elkészítése, majd a meghibásodások elemzésén keresztül a gyengepontok megállapítása. 1. ábra. Realizációs függvény egy naptári évre vonatkozóan 51

A gyengepontok ismeretében mûszaki intézkedéseket lehet hozni a forgóváz egyes elemein keresztül a forgóváz, ezen keresztül pedig a jármûtípus megbízhatóságának, valamint a rendelkezésre állásának növelésére. A mûszaki intézkedések vonatkozhatnak a karbantartási technológiára, a szóban forgó alkatrész gyártási technológiájára, az alkatrész, alkatrészek konstrukciós módosítására. 3. A forgóvázak és futómûvek mint mûszaki rendszerek állapot átmeneteinek és azok kezelésének valamint az egyes állapotokban tartózkodás meghatározásának matematikai háttere A bevezetõben bemutatott alapkérdések elsõ két csoportjának vizsgálata azonos matematikai módszert kíván. A forgóvázakat, ill. futómûveket mûszaki rendszernek tekintve a különbözõ állapotba kerülés adott feltétel melletti valószínûsége a rendszerbeli állapot átmenetek elméletének alkalmazásaival határozható meg. Az állapot átmenet-valószínûségi jellemzõi ismeretében a folyamat jellemzése lehetõvé válik. A tömegkiszolgálási rendszerek elméletében megjelenõ folyamatokhoz hasonló folyamatok és eszközök alkalmazása szükséges. A sztochasztikus (valószínûségi) folyamat az X t ( ) valószínûségi változók egyparaméteres családja, ahol a t paraméterváltozó az aktuális idõpont azonosítására szolgál. Az argumentum az elemei eseményt és a véletlentõl való függést jelöli. 3.1. A sztochasztikus folyamatok osztályozása A sztochasztikus folyamatok osztályozása számos szempont szerint lehetséges. A jelen vizsgálatok tárgya alapján a következõk rögzíthetõk: az egyes állapotokat leíró sztochasztikus folyamatok valószínûségi változói lehetnek diszkrétek vagy folytonosak, a t index általában az idõparamétert jelent, a folyamat szerkezetét a különbözõ t indexekhez tartozó X t ( ) valószínûségi változók közötti statisztikai függõségi feltételek határozzák meg, a Markov-folyamatok rendkívüli szereppel bírnak a mûszaki rendszerek analízisében, ugyanis a markovitás esetében a folyamat jövõbeni állapotainak a jelen állapot ismerete melletti feltételes valószínûsége meghatározott, azaz a jövõbeni állapotok elõfordulásának feltételes valószínûségei közvetlenül nem függenek a múltbeli feltételi állapotok alakulásától, csupán az utolsó, a jelen feltételi állapotra vonatkozó feltételes valószínûségek ismerete szükséges. Az üzemelés során a forgóvázak elemeinek egyes megadott állapotokba kerülése sztochasztikus folyamat. A folyamat a t paraméteres X t ( )(valószínûségi változó sereggel jellemezhetõ. Az állapotok egymásra következésének statisztikus szabályosságát 52

Markov-láncoknál elsõnek az egylépéses p ij állapot átmeneti valószínûségek kvadratikus mátrixa írja le, és értelemszerûen a most vizsgált diszkérét értékû szemi- Markov-folyamat (, t ) beágyazott Markov-láncát is ezen egylépéses átmenetvalószínûségek jellemzik: def ij p P : ( t, ) j : ( t, ) i a A kifejezésben a t a, ill. a t a jelölések az állapot-átmenethez tartozó t a idõpontot közvetlenül követõ ill. közvetlenül megelõzõ idõpillanatot azonosítják. A lépcsõs realizációk vizsgálata folytonos idejû és diszkrét állapotú szemi- Markov folyamat modellje segítségével történik. A szemi-markov folyamat állapotterében kijelölt diszkrét szinteken eltöltött valószínûségi változóként azonosított k i ( ) idõtartamokat a szintre érkezés elõtti átmenet jellemzõinek beépítésével értelmezett F ij (t) feltételes eloszlás függvényekkel jellemzik. Az utóbbi feltételes eloszlásfüggvényekbõl képezhetõ azután a szinttartózkodási viszonyokat jellemzõ F() t négyzetes mátrix-értékû idõfüggvény. A jelzett négyzetes mátrixértékû nxn idõfüggvény F ij (t) feltételes valószínûségi eloszlásfüggvényekbõl való felépülését az következõ képlet mutatja: 0 F12() t F1 n() t F21() t 0 F n() t 2 F() t nxn F () t F ( t) 0 n1 n2 A mátrix fõátlójában csupa zérus áll, hiszen ezen indexpároknál az átmenet-valószínûségi mátrix elemei is zérus értékûek, azaz p ij =0. Az m-edik állapotbeli tartózkodási idõ feltételes eloszlásfüggvénye a következõ összefüggéssel határozható meg: m a a F () t P : ( ) t ( t, ) i ( t, ) m im def Ismételten utalunk arra, hogy a szemi-markov lépcsõs folyamatbeli állapot-átmenetek váltakozását a diszkrét és véges állapotterû beágyazott Markov lánc képviseli a jelen modellben. Kiemeljük, hogy a Markov-folyamatok azon esetek leírására alkalmasak, amikor a korábbi állapotok ismerete nincs hatással a folyamat jövõbeni sztochasztikus viselkedésére. A jövõbeni állapotra csak a jelenlegi állapot van befolyással. A folyamat elsõ lépésbeli jellemzése a egylépéses átmenet-valószínûségi mátrixszal írható le. Ezen mátrix mint már láttuk feltételes valószínûségeket tartalmaz, jellemezve a folyamat egy lépésben megvalósuló állapot átmeneteit. a 53

4. A forgóvázak, futómûvek sztochasztikus üzemeltetési folyamatának homogenitás-vizsgálata A homogenitás-vizsgálat célja a valószínûségi mechanizmus jellemzõ természetének megállapítása. Feladat továbbá az ezen valószínûségi mechanizmus idõbeli homogenitásának vizsgálata. Így vizsgálatra kerül, hogy az állapotátmenetek sztochasztikus folyamatának egylépéses átmeneti valószínûségi mátrixa () kielégíti-e azt a homogén folyamatokra jellemzõ sajátosságot, miszerint az egylépéses átmenet-valószínûségi mátrix átmeneti lépésszám szerinti hatványozása elvezet az n-lépéses átmenet-valószínûségi mátrixhoz. Homogén Markov-láncokra ugyanis igaz a következõ mátrix hatvány egyenlõség:? ( r) r () 1, ahol r a lépések száma. Az r-lépéses átmenet-valószínûség meghatározása a homogenitás vizsgálat elsõ lépése. Továbbiakban a statisztikai jellemzõk meghatározása szintén a homogenitás vizsgálatát szolgálják. A homogenitás vizsgálat során vizsgáljuk: a) az egyes forgóvázak (forgóvázpárok) egylépéses átmeneti valószínûségi mátrixainak átlagát, ha n számú forgóváz(pár) képezi a vizsgálat tárgyát és a vizsgálat idõtartama egy naptári év, akkor az átmeneti valószínûségi mátrix: az átlagmátrix: 54 k ( 1, 2,..., 365 ) k1,..., n, n ( 1, 2,..., 365) 1 ( 1, 2,..., 365) n k 1 b) az átlagmátrix ismeretében minden egyes forgóvázra, forgóvázpárra meghatározásra kerülnek az éves átmeneti valószínûségi mátrixtól való eltérések:, k 12,,..., n; k eltérés k ( 1, 2,..., 365) ( 1, 2,.., 365) c) kiválasztásra kerülnek abszolút értékükkel az összes forgóvázra vonatkozó átmeneti valószínûségek eltéréseinek legkisebb és legnagyobb értékei: k min P ; k eltérés ij k max P, k12,,..., 12; k eltérés ij

d) statisztikai jellemzõként az elõbbi legkisebb és legnagyobb eltérések száma is bemutatásra kerül, természetesen az összes jármû forgóvázást illetõen: min P ; eltérés ij max P ; eltérés e) szintén mint statisztikai jellemzõk kiszámításra kerülnek az eltérés mátrixok normai minden jármûnél; f) az eltérés mátrixok normáinak meghatározása után a normákat elosztjuk a négyzetes mátrix elemszámával, ez a mutató a mátrix elemének az átlagértéktõl való eltérésének globális jellemzését adja, amely a homogenitás egy jellemzõje; g) a kezdõ és végállapotot leíró egylépéses átmeneti valószínûségi mátrix közötti t? ( r) t ij () 1 hatvány-összefüggés fennállásának vizsgálata: A vizsgálat eredményei Az egyes jármûvek 1 évre vonatkozó állapotairól az elsõ ábra mutat egy realizációt. Az egyes jármûvek üzemeltetési viszonyait a realizáció alapján az alábbi egylépéses átmenet-valószínûségi mátrix írja le (példaként egyetlen jármûrõl): 0,0000 0,2727 0,0455 0,0000 0,0000 0,5455 0,1364 0,0000 0,0000 0,8125 0,0000 0,0000 0,0000 0,0000 0,1875 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 1,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,4706 0,5294 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,3333 0,6667 0,0000 1,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,5000 0,0000 0,0000 0,0000 0,5000 0,0000 0,0000 0,0000 A 23 jármû átlagolt egylépéses átmenet-valószínûségi átlag mátrix: 0,0000 0,4773 0,0281 0,0579 0,0021 0,3997 0,0255 0,0000 0,0094 0,7952 0,0000 0,0074 0,0254 0,0000 0,1561 0,0140 0,0013 0,0007 0,0000 0,0000 0,0000 0,5870 0,0000 0,1087 0,0000 0,0000 0,0000 0,4796 0,3626 0,0000 0,0000 0,0000 0,0999 0,0145 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,1304 0,0000 0,0000 0,0000 0,5795 0,3956 0,0040 0,0130 0,0017 0,0000 0,0041 0,0000 0,0021 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,4058 0,2464 0,4783 0,1304 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,1667 0,2319 0,0000 0,0000 0,0000 0,0362 0,0000 0,0435 0,0000 r 55

Az elsõ jármûre vonatkozó különbség mátrix, vagyis az egyes jármûegyedhez tartozó átmenet-valószínûség mátrix és az átlag mátrix és különbsége: 0,0000 0,2046 0,0174 0,0579 0,0021 0,1457 0,1109 0,0000 0,0094 0,0173 0,0000 0,0074 0,0254 0,0000 0,0314 0,0140 0,0013 0,0007 0,0000 0,0000 0,0000 0,5870 0,0000 0,8913 0,0000 0,0000 0,0000 0,4796 0,3626 0,0000 0,0000 0,0000 0,0999 0,0145 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,1304 0,0000 0,0000 0,0000 0,1089 0,1338 0,0040 0,0130 0,0017 0,0000 0,0041 0,0000 0,0021 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0725 0,4203 0,4783 0,8696 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,1667 0,2681 0,0000 0,0000 0,0000 0,4638 0,0000 0,0435 0,0000 Az elsõ jármûre vonatkozóan a különbség mátrixok legkisebb és legnagyobb elemei abszolút értékekkel min P 0, 0007; max P 0, 7406, 1 eltérés ij 1 eltérés ij A maximum és minimum szórásértékek min P 0, 0002; max P 01462,. eltérés ij eltérés ij Az eltérés mátrixok normája rendre (azaz kocsinként) 0,5627, 0,2911 stb. A mátrix normák egy elemére vonatkoztatott értékei 0,0069, 0,0036 stb. Különbözõ jellemzõ mennyiségekre vonatkozó összehasonlítási és értékelési lehetõségeket dolgoztunk ki a realizációs függvény sokaság statisztikai kiértékelésével. Legígéretesebbnek tûnik a mátrixnorma értékek összehasonlításán alapuló vizsgálat. A nyert eredmények alapján a tekintett vasúti személykocsik üzemi folyamatának szemi-markov-modelljében a beágyazott Markov-lánc homogenitása közelítõleg teljesül. További vizsgálatok szükségesek az alkalmazott összehasonlító eljárások statisztikai becsléselméleti jellemzõinek kimunkálására. Szükséges a megfigyeléseket a jelen vizsgálatban szereplõ jármûsokaságnál nagyobb jármûpark esetére kiterjeszteni 56

5. Következtetések A kutatási munka eredményei alapján egy, a vasúti jármûvek, azok futómûvének megbízhatósági viszonyainak elemzésére vonatkozó kutatási munka közbensõ fázisa került bemutatásra, amikor is egy megbízhatósági modell keretében a forgóvázak, futómûvek üzemi viselkedését vizsgáltuk. Három alapvetõ üzemeltetési kérdés csoport került megfogalmazásra. A megválaszolásához a számos és a gyakorlatban ismert megoldási lehetõségek közül a sztochasztikus folyamatok, ezen belül a Markov-láncok alkalmazását hívtuk segítségül. A részletes homogenitás vizsgálat a módszer kiválasztásának helyességét volt hivatott igazolni az alkalmazott elemzési módszer alkalmas lehetõséget adott a futómûvek karbantartásánál használt technológia és a bevezetett módszer minõsítésére is. A kutatási munka következõ fázisa a matematikai statisztikai eszközökkel végzendõ érzékenység- és függetlenség vizsgálat. Irodalomjegyzék [1] Csiba, J. Zobory, I.: Application of the Block Diagram Method for the Examination and Determination of the reliability of Railway Rolling Stock. Congress reports of 18th EUROMAINTENCE 2006, 3rd WORLD CONGRESS of MAINTENANCE. 20 22. June, 2006 Basel/Switzerland. In Guido Walt H.-Joachim Behrend (Publishers). MM Support GmbH, CH-3000 Bern, p.809 814. [2] Csiba, J.: Reliability Analyses of Complex Systems by Using Markov-Chains. Presentation in Maintenance Conference in Prag, 2006. (Konferencia kiadvány). [3] Feller, W.: An Introduction to Probability Theory And Its Applications John Wiley and Sons, Inc. New York, 1978. [4] Kleinrock, L.: Sorbanállási rendszerek. Vol. I.: Elmélet. Mûszaki Könyvkiadó, Budapest, 1979. [5] Zobory, I.: Vasúti jármûvek üzemeltetéselmélete. Egyetemi jegyzet. Budapest Technical University. Faculty of Transportation Engineering, Department of Railway Vehicles, Budapest, 1991. [6] Zobory, I. Békefi, E.: Software STOPSIM for Stochastic Simulation of Motion and Loading Processes of vehicles. Periodica Polytechnica, (Transportation Engineering) Vol. 22. No. 2, Budapest, 1994, p.111 127. [7] Zobory, I.: Megbízhatóságelmélet, Egyetemi jegyzet. Budapesti Mûszaki Egyetem, Közlekedésmérnöki Kar, Vasúti Jármûvek Tanszék, Budapest, 1994. [8] Zobory, I.: Sztochasztikus folyamatok. Egyetemi jegyzet. Budapesti Mûszaki Egyetem, Közlekedésmérnöki Kar, Vasúti Jármûvek Tanszék, Budapest, 1986. 57