Komplex számok Wettl Ferenc 2012-09-07 Wettl Ferenc () Komplex számok 2012-09-07 1 / 14
Tartalom 1 Számok A számfogalom b vülése Egy kis történelem 2 Miért számolunk velük? A megoldóképlet egy speciális esetre Alkalmazások 3 Számolás komplex számokkal Komplex számok Komplex szám konjugáltja M veletek komplex számokkal M veleti tulajdonságok Az algebra alaptétele Binomiális tétel Összefoglalás Wettl Ferenc () Komplex számok 2012-09-07 2 / 14
Számok A számfogalom b vülése pozitív egészek összeadás, szorzás a + x = b megoldhatósága negatív számok és 0 ax = b megoldhatósága racionális számok x 2 = 2 megoldása vannak nem racionális számok is sorozatok határértékének fogalma irracionális számok racionális + irracionális számok valós számok és mi van az x 2 = 1 egyenlet megoldhatóságával? Szükség van további b vítésre? Wettl Ferenc () Komplex számok 2012-09-07 3 / 14
Számok Egy kis történelem Girolamo Cardano (15011576) orvos, lozófus, matematikus 1538 körül értesül arról, hogy Scipione del Ferro és Niccolò Tartaglia egymástól függetlenül felfedezték az x 3 + px = q alakú harmadfokú egyenlet megoldását 1545-ben megírja Ars magna sive de regulis algebraicis cím m vét, benne a megoldóképlettel 1552-t l kezd d en Európa egyik leghíresebb orvosa a 60-as évek elején elveszti két át (gyilkosságért halál, rablásért szám zetés) 1570-ben Bolognában bebörtönzik, szabadulása után Rómába költözik Scipione del Ferro (14651526) felfedezi a harmadfokú egyenlet megoldásának módját titokban tartja (kivétel Nave, Fiore) Niccolò Fontana (1500?1557) gúnynevén Tartaglia (dadogó) (1511 Brescia, francia dúlás) 1535: Fiore kihívja Tartagliát egy 15 napos versenyre (30 feladat, a vesztes a gy ztest és 29 barátját megvendégeli) felkészüléskor Tartaglia rájön a nehezebb típusú harmadfokú egyenletek megoldásának módjára Wettl Ferenc () Komplex számok 2012-09-07 4 / 14
Számok Egy kis történelem Cardano (kilátásba helyezve Tartaglia tüzérségi találmányainak pártfogót keres, titoktartás igérete mellett megszerzi a titkot) amikor Navétól megtudja, hogy del Ferro is ismerte e képleteket, felmentve érzi magát, és publikálja (a negyedfokú esetre is továbbfejlesztve az eredményt) Tartaglia leírta megcsalatásának történetét Milánóban Ferrari (Cardano tanítványa) vitára hívja Tartagliát, aki a vitát elveszti, ennek következtében lehet ségeit (nyilvános el adások) elveszíti Wettl Ferenc () Komplex számok 2012-09-07 5 / 14
Miért számolunk velük? A megoldóképlet egy speciális esetre Oldjuk meg az x 3 = bx + c egyenletet! A Tartaglia által talált képlet: ( ) 2 ( ) 3 ( ) x = 3 c 2 + c b + 3 c 2 ( 2 3 2 c b 2 3 ) 3 Oldjuk meg a x 3 = 7x + 6 egyenletet! (6 ) 2 ( ) 3 (6 ) 2 ( 6 7 2 + + 3 6 7 2 3 2 2 3 = 1 3 81 + 30 3 + 1 3 81 30 3 3 3 = 1 ( 9/2 + 1/2 ) 3 + 1 ( 9/2 1/2 ) 3 3 3 x = 3 = 3 ) 3 Wettl Ferenc () Komplex számok 2012-09-07 6 / 14
Miért számolunk velük? Alkalmazások hidrodinamika, áramlások vizsgálata, Zsukov-féle szárnyprol elektromosságtan, jelfeldolgozás, villamosmérnöki tudományok lineáris rendszerek, lineáris dierenciálegyenletek megoldása relativitáselmélet, kvantummechanika fraktálok (Julia- és Mandelbrot-halmazok)... Egy Julia és egy Mandelbrot halmaz: Wettl Ferenc () Komplex számok 2012-09-07 7 / 14
Számolás komplex számokkal Komplex számok Jelölés i = 1 Deníció Az a + bi, a, b R alakú kifejezéseket komplex számoknak nevezzük, ahol i az a szám, melyre i 2 = 1. Egy komplex szám több alakba is felírható, ezt az alakot algebrai alaknak nevezzük. Az a szám a z valós része, a b az imaginárius, jelölése: a = Im z, b = Re z. A komplex számok halmazát C jelöli. Komplex számok ábrázolása, komplex számsík, komplex számgömb. Deníció Az (a, b) vektor x-tengellyel bezárt szöge legyen ϕ, hossza r. Ekkor a z = a + ib komplex szám felírható r(cos ϕ + i sin ϕ) alakban is, hisz a = r cos ϕ, és b = r sin ϕ. Ezt az alakot trigonometriai alaknak, az r nemnegatív valóst a komplex szám abszolút értékének, ϕ-t argumentumának nevezzük: r = z, ϕ = arg z. Wettl Ferenc () Komplex számok 2012-09-07 8 / 14
Számolás komplex számokkal Komplex szám konjugáltja Deníció (konjugált) z = a ib, ahol z = a + ib z z = (a + ib)(a ib) = a 2 + b 2 = z 2, innen z = a 2 + b 2 = z z Wettl Ferenc () Komplex számok 2012-09-07 9 / 14
Számolás komplex számokkal M veletek komplex számokkal z 1 = a 1 + b 1 i = r 1 (cos ϕ 1 + i sin ϕ 1 ), z 2 = a 2 + b 2 i = r 2 (cos ϕ 2 + i sin ϕ 2 ) algebrai alakban: összeadás, kivonás, szorzás algebrai kifejezésként az i 2 = 1 helyettesítést használva; osztás a nevez konjugáltjával való b vítéssel. z 1 ± z 2 = (a 1 ± a 2 ) + (b 1 ± b 2 )i, z 1 z 2 = (a 1 a 2 b 1 b 2 ) + (a 1 b 2 + a 2 b 1 )i, z 1 z 2 = a 1 + b 1 i a 2 + b 2 i = (a 1 + b 1 i)(a 2 b 2 i) (a 2 + b 2 i)(a 2 b 2 i) = (a 1 a 2 + b 1 b 2 ) + (a 2 b 1 a 1 b 2 )i, a 2 2 + b2 2 trigonometriai alakban: z 1 z 2 = r 1 r 2 (cos(ϕ 1 + ϕ 2 ) + i sin(ϕ 1 + ϕ 2 )) z1 = r 1 (cos(ϕ z2 r2 1 ϕ 2 ) + i sin(ϕ 1 ϕ 2 )) z n = r n (cos nϕ + i sin nϕ) ( n r(cos ϕ + i sin ϕ) = n r k = 0, 1,... n 1. cos ϕ + 2kπ n + i sin ϕ + 2kπ ), ahol Wettl Ferenc () Komplex számok 2012-09-07 10 / 14 n
Számolás komplex számokkal M veleti tulajdonságok Tétel (Konjugált tulajdonságai) 1 z 1 ± z 2 = z 1 ± z 2 2 z 1 z 2 = z 1 z 2 3 z 1 /z 2 = z 1 / z 2 4 z = z Tétel (Abszolút érték tulajdonságai) 1 z = z 2 z 1 z 2 = z 1 z 2 3 z 1 /z 2 = z 1 / z 2 4 z 1 + z 2 z 1 + z 2 Wettl Ferenc () Komplex számok 2012-09-07 11 / 14
Számolás komplex számokkal Az algebra alaptétele Tétel (Algebra alaptétele) Minden komplex-együtthatós n-edfokú (n 1) polinomnak van komplex gyöke. Tétel (Algebra alaptétele változat) Minden komplex-együtthatós n-edfokú (n 1) polinomnak pontosan n gyöke van, ha a gyököket multiplicitással számoljuk. Másként fogalmazva minden komplex-együtthatós polinom lineáris tényez k szorzatára bontható. Nevezetesen az a n x n + + a 1 x + a 0, a n 0, a 0, a 1,..., a n C egyenlethez léteznek olyan c 1, c 2,..., c n C számok, hogy a n x n + + a 1 x + a 0 = a n (x c 1 )(x c 2 )... (x c n ), és ez a felbontás a tényez k sorrendjét l eltekintve egyértelm. Wettl Ferenc () Komplex számok 2012-09-07 12 / 14
Számolás komplex számokkal Binomiális tétel Deníció (Binomiális együttható) ( ) n n(n 1)... (n k + 1) n! = = k 1 2 3... k k!(n k)! Tétel (Binomiális tétel) Tetsz leges valós vagy komplex a és b számokra (a + b) n = a n + na n 1 n(n 1) b + a n 2 b 2 +... + b n = 2 Példa (1 + i) 3 = 1 + 3i + 3i 2 + i 3 = 1 + 3i 3 i = 2 + 2i n k=0 ( n k ) a n k b k. Wettl Ferenc () Komplex számok 2012-09-07 13 / 14
Számolás komplex számokkal Összefoglalás Amit tudni kell 1 Komplex számok algebrai alakja, m veletek (összeadás, kivonás, szorzás, osztás, b vítés a konjugálttal, konjugált tulajdonságai) 2 Komplex trigonometriai algebrai alakja, m veletek (szorzás, osztás, hatványozás, gyökvonás) 3 Algebra alaptétele 4 Binomiális tétel Wettl Ferenc () Komplex számok 2012-09-07 14 / 14