Tudnivalók. Dr. Horváth András. 0.1-es változat. Kedves Hallgató!



Hasonló dokumentumok
Rezgőmozgások. Horváth András SZE, Fizika és Kémia Tsz szeptember 29.

Rezgés tesztek. 8. Egy rugó által létrehozott harmonikus rezgés esetén melyik állítás nem igaz?

Mechanikai rezgések Ismétlő kérdések és feladatok Kérdések

11.3. Az Achilles- ín egy olyan rugónak tekinthető, amelynek rugóállandója N/m. Mekkora erő szükséges az ín 2 mm- rel történő megnyújtásához?

Rezgőmozgás. A mechanikai rezgések vizsgálata, jellemzői és dinamikai feltétele

Rezgőmozgás, lengőmozgás

Mechanika I-II. Példatár

Tudnivalók. Dr. Horváth András. 0.1-es változat. Kedves Hallgató!

A 2014/2015. tanévi Országos Középiskolai Tanulmányi Verseny döntő forduló FIZIKA II. KATEGÓRIA MEGOLDÁSI ÚTMUTATÓ

Rezgések és hullámok

Mechanikai rezgések = 1 (1)

a) Valódi tekercs b) Kondenzátor c) Ohmos ellenállás d) RLC vegyes kapcsolása

Hangfrekvenciás mechanikai rezgések vizsgálata

2. REZGÉSEK Harmonikus rezgések: 2.2. Csillapított rezgések

Diagnosztika Rezgéstani alapok. A szinusz függvény. 3π 2

Csillapított rezgés. a fékező erő miatt a mozgás energiája (mechanikai energia) disszipálódik. kváziperiódikus mozgás

PÉLDÁK ERŐTÖRVÉNYEKRE

W = F s A munka származtatott, előjeles skalármennyiség.

A mérés célkitűzései: A matematikai inga lengésidejének kísérleti vizsgálata, a nehézségi gyorsulás meghatározása.

Rezgőmozgás, lengőmozgás, hullámmozgás

Méréstechnika. Rezgésmérés. Készítette: Ángyán Béla. Iszak Gábor. Seidl Áron. Veszprém. [Ide írhatja a szöveget] oldal 1

Harmonikus rezgések összetevése és felbontása

Harmonikus rezgések összetevése és felbontása

Gépészmérnöki alapszak, Mérnöki fizika ZH, október 10.. CHFMAX. Feladatok (maximum 3x6 pont=18 pont)

A +Q töltés egy L hosszúságú egyenes szakasz mentén oszlik el egyenletesen (ld ábra ábra

Q 1 D Q 2 (D x) 2 (1.1)

Rezgés, Hullámok. Rezgés, oszcilláció. Harmonikus rezgő mozgás jellemzői

1. ábra. 24B-19 feladat

Hangfrekvenciás mechanikai rezgések vizsgálata

Gyakorló feladatok Feladatok, merev test dinamikája

1. Milyen módszerrel ábrázolhatók a váltakozó mennyiségek, és melyiknek mi az előnye?

Harmonikus rezgőmozgás

Mit nevezünk nehézségi erőnek?

Osztályozó, javító vizsga 9. évfolyam gimnázium. Írásbeli vizsgarész ELSŐ RÉSZ

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Függvények

1. Feladatok merev testek fizikájának tárgyköréből

Mechanikai hullámok. Hullámhegyek és hullámvölgyek alakulnak ki.

KÖRMOZGÁS, REZGŐMOZGÁS, FORGÓMOZGÁS

Számítási feladatok a 6. fejezethez

Ha vasalják a szinusz-görbét

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Függvények

Rezgőmozgás, lengőmozgás, hullámmozgás

Számítási feladatok megoldással a 6. fejezethez

Figyelem! Csak belső és saját használatra! Terjesztése és másolása TILOS!

A rezgések dinamikai vizsgálata, a rezgések kialakulásának feltételei

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Függvények

A 2017/2018. tanévi Országos Középiskolai Tanulmányi Verseny döntő forduló FIZIKA II. KATEGÓRIA JAVÍTÁSI ÚTMUTATÓ. Pohár rezonanciája

2. Hangfrekvenciás mechanikai rezgések vizsgálata jegyzőkönyv. Zsigmond Anna Fizika Bsc II. Mérés dátuma: Leadás dátuma:

Függvények Megoldások

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Exponenciális és Logaritmikus kifejezések

Hullámtan. A hullám fogalma. A hullámok osztályozása.

Fizika alapok vegyészeknek Mechanika II.: periodikus mozgások november 10.

Lineáris erőtörvény vizsgálata és rugóállandó meghatározása

VÁLTAKOZÓ ÁRAMÚ KÖRÖK

FIZIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

EMELT SZINTŰ ÍRÁSBELI VIZSGA

3. Az alábbi adatsor egy rugó hosszát ábrázolja a rá ható húzóerő függvényében:

A hang mint mechanikai hullám

ALAPFOGALMIKÉRDÉSEK VILLAMOSSÁGTANBÓL 1. EGYENÁRAM

Egyenletek, egyenletrendszerek, egyenlőtlenségek Megoldások

Drótos G.: Fejezetek az elméleti mechanikából 4. rész 1

Mérést végezte: Varga Bonbien. Állvány melyen plexi lapok vannak rögzítve. digitális Stopper

Trigonometria Megoldások. 1) Oldja meg a következő egyenletet a valós számok halmazán! (12 pont) Megoldás:

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Trigonometria

Hullámmozgás. Mechanikai hullámok A hang és jellemzői A fény hullámtermészete

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Függvények

1.1. Feladatok. x 0 pontban! b) f(x) = 2x + 5, x 0 = 2. d) f(x) = 1 3x+4 = 1. e) f(x) = x 1. f) x 2 4x + 4 sin(x 2), x 0 = 2. általános pontban!

DINAMIKA ALAPJAI. Tömeg és az erő

A mechanika alapjai. A pontszerű testek dinamikája

Mérések állítható hajlásszögű lejtőn

6. Függvények. Legyen függvény és nem üreshalmaz. A függvényt az f K-ra való kiterjesztésének

Bevezetés a modern fizika fejezeteibe. 1. (b) Rugalmas hullámok. Utolsó módosítás: szeptember 28. Dr. Márkus Ferenc BME Fizika Tanszék

11. Egy Y alakú gumikötél egyik ága 20 cm, másik ága 50 cm. A két ág végeit azonos, f = 4 Hz

Rezgő testek. 48 C A biciklitől a világűrig

6. Függvények. 1. Az alábbi függvények közül melyik szigorúan monoton növekvő a 0;1 intervallumban?

Lendület. Lendület (impulzus): A test tömegének és sebességének szorzata. vektormennyiség: iránya a sebesség vektor iránya.

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Függvények

b) Ábrázolja ugyanabban a koordinátarendszerben a g függvényt! (2 pont) c) Oldja meg az ( x ) 2

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉPSZINT Függvények

Rezgőmozgás, lengőmozgás, hullámmozgás

Gyakorlat 34A-25. kapcsolunk. Mekkora a fűtőtest teljesítménye? I o = U o R = 156 V = 1, 56 A (3.1) ezekkel a pillanatnyi értékek:

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Exponenciális és Logaritmikus kifejezések

Abszolútértékes egyenlôtlenségek

Slovenská komisia Fyzikálnej olympiády 51. ročník Fyzikálnej olympiády. Szlovákiai Fizikai Olimpiász Bizottság Fizikai Olimpiász 51.

GÉPEK DINAMIKÁJA 9.gyak.hét 1. és 2. Feladat

Periódikus mozgások Az olyan mozgást, amelyben a test ugyanazt a mozgásszakaszt folyamatosan ismételi, periodikus mozgásnak

Gépészmérnöki alapszak Mérnöki fizika ZH NÉV: október 18. Neptun kód:...

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

Differenciálegyenletek december 13.

Az elméleti mechanika alapjai

1. tétel. 1. Egy derékszögű háromszög egyik szöge 50, a szög melletti befogója 7 cm. Mekkora a háromszög átfogója? (4 pont)

FIZIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

Váltakozó áram. A váltakozó áram előállítása

rnök k informatikusoknak 1. FBNxE-1 Klasszikus mechanika

Függvény differenciálás összefoglalás

A 2013/2014. tanévi Országos Középiskolai Tanulmányi Verseny döntő forduló FIZIKA II. KATEGÓRIA FELADATOK. Különösen viselkedő oszcillátor vizsgálata

MATEMATIKA ÍRÁSBELI VIZSGA EMELT SZINT% ÉRETTSÉGI VIZSGA május május 6. 8:00 MINISZTÉRIUM. Az írásbeli vizsga idtartama: 240 perc

Feszültségérzékelők a méréstechnikában

Figyelem, próbálja önállóan megoldani, csak ellenőrzésre használja a következő oldalak megoldásait!

Átírás:

Kérdések és feladatok rezgőmozgásokból Dr. Horváth András 0.1-es változat Tudnivalók Kedves Hallgató! Az alábbiakban egy válogatást közlünk az elmúlt évek vizsga- és ZH-feladataiból. Időnk és energiánk nincs egy lektorált, szerkesztett feladatgyűjtemény megjelentetésére, ezért a feladatok sorrendje önkényes. Több szak azonos témához tartozó feladatai is keverednek itt, így előfordulhat, hogy egy-egy témából van feladat, de a kedves Olvasó kurzusán az a téma nem kerül elő sem előadáson, sem vizsgán. Az azonban biztos, hogy ebben a formában is sokat könnyít a vizsgára való készülésben, mert a főiskolai szakokon a témakört szinte 100%-osan lefedi. A következő dolgokat figyelembe kell venni az olvasáskor: 1. Az elméleti és kidolgozott feladatok egy megoldását adjuk. Természetesen tartalmilag azonos, de más megfogalmazású, illetve a részeredményekhez más sorrendben eljutó megoldásokat is elfogadunk. 2. A kidolgozott feladatok megoldása csak a legfontosabb részleteket tartalmazza. Nincsenek pl. a részletszámítások, képletátrendezések lépései kiírva. (Elképesztően sok munka lenne begépelni.) A számonkérés során természetesen a részletszámításoknak rajt kell lenni a beadott papíron, azaz egy számolós feladat megoldása vizsgán vagy ZH-n az itt közölteknél bővebb kell legyen. 3. A számszerű végeredmények néha függenek a számítások során elkövetett kerekítési hibáktól. Kisebb-nagyobb eltérések ebből is adódhatnak. 4. A gyűjteményt időnként javítjuk és bővítjük. Érdemes néha utánanézni, van-e frissebb változat. A bővítéskor a feladatok sorszámozása átrendeződhet. Kérjük ezt figyelembe venni. Szigorúan tilos :-) 1.... bemagolni az itt közölt megoldásokat. Ez nem vezet a megértéshez, viszont több veszélye is van. Pl. a vizsgán szereplő kérdés lehet, hogy középtájon egyetlen szóban különbözik csak az itteni kidolgozott kérdéstől. Ekkor a bemagolt válasz teljesen rossz lehet. Másik veszély: a magolás nyomán leírt megoldás nem fogja tartalmazni a részletszámításokat. Ezek nélkül a megoldás értéke 0 pont, hisz a vizsgázó nem mutatja meg, hogy egyedül is képes megoldani a feladatot. 2.... puskát készíteni ebből a gyűjteményből. Ezt nem kell bizonygatni :-). 1

3.... szidni a tanárt, miért nem csak innen válogat a vizsgán. Ez a feladatgyűjtemény elősegíti a tanulást. Aki ez alapján megérti az adott témát, az minden feladatot képes megoldani. Az azonban elfogadhatatlanul csökkentené a színvonalat, ha csak ebből a gyűjteményből adnánk feladatokat. 4.... szidni a tanárt, miért nem dolgozott ki ilyen feladatgyűjteményt minden témához. Energiáink végesek. Ha látjuk a feladatgyűjtemény pozitív hatását a diákok tudására, akkor még jelen feltételek mellett (ingyenmunka) is folytatni fogjuk a munkát. Kérjük, jelezzék, ha hibát találnak a feladatgyűjteményben. Jó tanulást: Dr. Horváth András Elméleti kérdések E-1.: Egy test egyenes mentén mozoghat. Rajzoljon fel egy F (x) grafikont (azaz az erőt a hely függvényében) úgy, hogy pontosan három egyensúlyi helyzete legyen a testnek, melyek közül kettő körül (A és B) kialakulhasson rezgés, a harmadik körül (C) nem. (A, B és C szerepeljen az ábrán!) Válasz: F A C B x E-2.: Mondjon példát a gyakorlati életből olyan egyensúlyi helyzetre, mely körül nem alakulhat ki rezgés! Válasz: Egy lehetséges válasz: Kis domb tetejére helyezett labda ott egyensúlyban van, de bármelyik irányban kitérítve legurul onnan, azaz nem alakul ki rezgőmozgás. E-3.: Harmonikus rezgőmozgás periódusidejét kétszeresére szeretnénk növelni. Hogyan változtassuk a rezgő test tömegét? Válasz: Mivel m T = 2π D azaz a periódusidő a test tömegének négyzetgyökével arányos, ezért T kétszerezéséhez at m tömeget négyszerezni kell. 2

E-4.: Egy test először 1 cm, majd utána 2 cm amplitudóval végez harmonikus rezgőmozgást azonos felfüggesztés mellett. Melyik esetben nagyobb a frekvenciája? Válasz: A harmonikus rezgés frekvenciája független az amplitudótól, csak a test tömegétől és a felfüggesztés rugóállandójától függ. Ezért mindkét esetben azonos lesz a frekvencia. E-5.: Rugón rezgő test csillapodó rezgőmozgásánál mi történik a rezgő test kezdeti energiájával? Válasz: A közegellánálláson és a súrlódáson keresztül hővé alakul. E-6.: Egy rugóra akasztott testet kitérítünk egyensúlyi helyzetéből, majd elengedjük. A test ezután nem rezgőmozgást végez, hanem lassan visszatér az egyensúlyi helyzetbe. Milyen körülmények közt lehetséges ez? Válasz: Akkor, ha a testre nagyon erős csillapítőerő is hat. (Lineáris csillapítóerő esetén akkor, ha β > ω 0.) Ilyen eset pl. sűrű folyadékba merüléskor képzelhető el. E-7.: Egy függőleges rugó alsó végéhez egy test van rögzítve. A rugó felső végét függőleges irányban kis amplitúdóval mozgathatjuk. Milyen körülmények közt lehetséges, hogy a felső véget csak 1 mm amplitúdóval mozgatjuk, de a test 10 cm-es, állandó amplitudójú rezgéseket végez? Válasz: Ez akkor lehetséges, ha a gerjesztő erő frekvenciája, azaz a felső vég mozgatásának frekvenciája közel egyenlő a test rezonanciafrenvenciájával, valamint a közegellenállás csillapító szerepe viszonylag kicsi. E-8.: Rajzoljon fel egy rezonanciagörbét! Röviden magyarázza meg, milyen mennyiségek találhatók a tengelyeken! Válasz: A g ω g : a gerjesző erő frekvenciája A g : a gerjeszett rezgőmozgás hosszú távon megmaradó komponensének amplitudója ω 0 : a rendszer sajátfrekvenciája E-9.: Mikor lesz két egyirányú szinuszos rezgés eredője nem periódikus? ω 0 Válasz: Ha a két rezgés frekvenciájának aránya nem racionális. E-10.: Milyen rezgés lesz két azonos frekvenciájú, egyirányba eső harmonikus rezgés eredője? Válasz: Azonos frekvenciájú harmonikus rezgés. Az eredő amplitudó a két rezgés amplitúdójától és a fáziskülönbségtől függ, de mindig a két amplitudó összege és különbsége közt lesz. ω g 3

E-11.: Lehetséges-e, hogy két 5 cm amplitúdójú, egyirányú harmonikus rezgés eredője is 5 cm amplitúdójú lesz? Válaszát indokolja röviden. Válasz: Igen. A két rezgés fáziskülönbségétől függően az eredő rezgés amplitúdója a két amplitúdó összege (jelenleg 10 cm) és különbsége (jelenleg 0 cm) közt van, és ebben az intervallumban minden érték lehetséges. A kérdezett 5 cm eredő amplitúdó pedig ebben az intervallumban van, így lehetséges. E-12.: Két egyirányú harmonikus rezgés eredőjét vizsgáljuk. Lehet-e az eredő amplitudó a két amplitudó összegénél nagyobb? Miért? Lehet-e az eredő kisebb amplitudójú, mint a kisebbik amplitudó? Miért? Válasz: Az összegnél nagyobb amplitudó sohasem alakulhat ki, mert a legnagyobb erősítéskor (azonos fázis) esetén is csak az amplitudók összege alakul ki. Kisebb amplitudó lehetséges, hisz ellentétes fázis és azonos amplitudók esetén az eredő amplitudó 0 lesz. (Teljes kioltás.) E-13.: Mi lesz három, azonos frevkvenciájú, egy irányba eső szinuszos rezgés eredője? Válaszát indokolja! Válasz: Az összegzést részenként is megtehetjük, mivel az összeadás asszociatív művelet. Így az első kettő összegeként egy ugyanolyan frekvenciájú szinuszos rezgést kapunk, és ehhez a harmadikat adva ismét csak egy ugyanilyen frekvenciájú szinuszos rezgéshez jutunk. (Ennek amplitudója és fázisa a három rezgés adataitól függ bonyolult módon.) Tehát az eredő az eredeti reszgésekkel megegyező frekvenciájú, szinuszos rezgés lesz. E-14.: Két egyirányú szinuszos rezgés eredőjének amplitúdója lassan, periódikusan váltakozik. Mit mondhatunk a két rezgés frekvenciájáról? Hogyan nevezzük ezt a jelenséget? Válasz: A két rezgés frekvenciája közel egyenlő, de biztosan nem teljesen egyforma. A jelenség neve: lebegés. E-15.: Milyen mozgásfajták alakulhatnak ki két, azonos amplitúdójú és frekvenciájú, egymásra merőleges harmonikus rezgés eredőjeként? Mi határozza meg, melyik eset áll fenn? Válasz: Ebben az esetben az eredő lehet egyenes, ellipszis vagy kör. Azt, hogy melyik eset valósul meg, a rezgések fáziskülönbsége határozza meg. Kidolgozott feladatok K-1.: Egy 4 kg-os test egyenes mentén mozoghat, és SI-egységekben az alábbi erő hat rá: F (x) = 2x 3 4,5x. Hol vannak a test egyensúlyi helyzetei? Melyik(ek) körül alakulhat ki rezgés? Mennyi a kis rezgések periódusideje? Megoldás: A test egyensúlyi helyzeteiben F (x) = 0, azaz 2x 3 4,5x = 0 (1) Ennek legnyilvánvalóbb megoldása: x 1 = 0 4

Ez ettől különböző megoldások keresésekor a továbbiakban feltételezhetjük, hogy x 0, ezért (1) leosztható x-szel. Az így kapott 2x 2 4,5 = 0 másodfokú egyenlet gyökei nyilvánvalóan: x 2 = 1,5, és x 2 = +1,5 Rezgés olyan egynesúlyi helyzetek körül alakulhat ki, ahol F (x) monoton fogyó. Ezt a grafikon felrajzolásával vagy deriválással lehet eldönteni. /Mindegyik jó megoldás./ Eredmény: Csak x 1 = 0 körül fogyó F (x), tehát e körül alakulhat ki rezgés. A kis rezgések körfrekvenciája: ω = 1 m F (x 1 ) = 1 4 (6x2 1 4,5) = 4,5/4 = 1,06 1 s Ebből a kérdezett periódusidő: T = 2π ω = 5,93 s K-2.: Egy 3 kg tömegű test rugalmasan van rögzítve valahol. Kis kitérések esetén másodpercenként pontosan 2 rezgést végez, de a rezgések amplitúdója 3 s alatt megfeleződik. Mekkora a csillapítási tényező és a befogást jellemző rugóállandó? Megoldás: A másodpercenkénti 2 rezgés azt jelenti, hogy a csillapított rezgések frekvenciája: A 3 s alatti amplitúdófeleződés miatt: ω cs = 2π 0.5 s = 4π 1 s Innét a csillapítási tényező: A(3) = A 0 2 = A 0 e β 3 β = ln2 3 = 0.231 1 s A csillapítatlan és a csillapított frekvencia közti összefüggés alapján: ω 0 = ω 2 cs + β 2 = 12.5 1 s Tudjuk, hogy: Innét a kérdezett rugóállandó: ω 0 = D m D = mω 2 0 = 468 N m 5

K-3.: Egy rezgő test légüres térben (csillapítás nélkül) 32.5 Hz-es körfrekvenciával rezeg. Levegőben frekvenciája 31.9 Hz-re csökken. Mekkora a csillapítási tényező értéke itt? Mennyi idő alatt csökken a csillapított rezgés amplitúdója az eredeti 1/10 részére? Megoldás: A szokásos jelölésekkel: ω 0 = 32.5 ω cs = 31.9 Tudjuk, hogy ahonnét a csillapítási tényező: β = ω cs = ω 2 0 β 2 ω 2 0 ω 2 cs = 6.22 1 s Az amplitúdó csökkenését megadó összefüggést alkalmazva az 1/10-részre csökkenő esetre: A 0 10 = A 0 e βt Innét: t = 1 ln 10 = 0.37 s β Tehát kb. 0.37 s alatt csökken a rezgések amplitúdója az eredeti 10-ed részére. K-4.: Egy csill. rezgőmozgás amplitúdója kezdetben 13 cm, 20 s múlva már csak 9 cm. Mekkora a csillapítási tényező? A kezdettől számítva mennyi idő múlva csökken az amplitúdó 5 mm alá? Megoldás: Tudjuk, hogy az amplitúdó időfüggése: A(t) = A 0 e βt ahol A 0 = 13 cm, a kezdeti amplitúdó, β pedig a csillapítási tényező. t 1 = 20 s-ra alkalmazva ezt: A 1 = A 0 e βt 1 Innét egyszerű átrendezésekkel: β = 1 t 1 ln A 1 A 0 = 0.0184 1 s A második kérdésre a válasz az alábbi módon határozható meg: Legyen az ismeretlen időpont t 2. Tudjuk, hogy t 2 -kor az amplitúdó A 2 = 0.5 cm. Azaz: A 2 = A 0 e βt 2 Innét: t 2 = 1 β ln A 2 A 0 = 177.2 s Tehát 177.2 s szükséges az amplitúdó 0.5 cm alá csökkenéséhez. 6

K-5.: Egy rezgés sajátfrekvenciája ω 0 = 12,4 1/s. A rezgés amplitudója 3,2 s alatt feleződik meg. Hányszor nagyobb amplitudójú gerjesztett rezgések jönnek létre a sajátfrekvencián, mint igen kis frekvenciákon? Megoldás: A feladat megoldásához a gerjeszett rezgések amplitudóját megadó alábbi összefüggésből kell kiindulni: a 0 A g (ω g ) = (ω 2 0 ω 2 g) 2 + 4β 2 ω 2 g A sajátfrekvencián kialakuló rezgések amplitudója ezért: A g (ω 0 ) = a 0 (ω 2 0 ω 2 0) 2 + 4β 2 ω 2 0 = a 0 2βω 0 Az igen kis frekvenciákon kialakulóké pedig: A g (0) = a 0 (ω0 2 0 2 ) 2 + 4β 2 0 = a 0 2 ω0 2 Ezek arányát kérdezi a feladat, azaz a következő mennyiséget: A g (ω 0 ) A g (0) = ω 0 2β Innen egyedül a β csillapítási tényező értéke nem ismert. Ez viszont könnyen megkapható abból a tényből, hogy a rezgés amplitudója t = 3,2 s alatt feleződik meg: ahonnét A kérdezett arány tehát: A 0 2 = A 0 e βt β = ln 2 t = 0,217 1 s A g (ω 0 ) A g (0) = ω 0 2β = 28,6 Tehát a rezonanciafrekvencián kialakuló rezgések amplitudója 28,6-szor nagyobb a kis frekvenciák mellett kialakuló amplitudónál. K-6.: Egy áramköri elemre két forrásból is érkezhetnek (azonos frekvenciájú) szinuszos jelek. Ha csak az egyik jelforrás működik, 10 V-os, ha csak a másik, akkor 6 V-os, ha mindegyik egyszerre, akkor 11 V-os amplitúdójú jeleket kapunk. Feltéve, hogy a jelek összeadódnak, határozza meg a két forrás fáziseltérését! Megoldás: A feladat szövege szerint azonos frekvenciájú harmonikus rezgések egyirányú eredőjével kell számolnunk. Azt tudjuk, hogy a két rezgés A 1 = 10 V és A 2 = 6 V-os amplitúdójú, az eredő pedig A = 11 V-os. Ismert, hogy ebben az esetben: A = A 2 1 + A 2 2 + 2A 1 A 2 cos ϕ Innét a kérdezett fáziseltérés koszinusza: cos ϕ = A2 A 2 1 A 2 2 2A 1 A 2 = 0.125 7

Azaz a fáziseltérés: ϕ = ±1.696 = ±97.2 o (A fáziseltérés előjele a feladat adataiból nem határozható meg.) Gyakorló feladatok Gy-1.: Egy 4 kg-os test egyenes mentén mozoghat, és SI-egységekben az alábbi erő hat rá: F (x) = 10 2/x 2. Hol vannak a test egyensúlyi helyzetei? Melyik(ek) körül alakulhat ki rezgés? Mennyi a kis rezgések periódusideje? Gy-2.: Egy csillapított rezgőmozgás amplitúdója kezdetben 17 cm. 20 s múlva már csak 4 cm. Mekkora a csillapítási tényező? A kezdettől számítva mennyi idő múlva lesz az amplitúdó 5 mm? Gy-3.: Egy áramköri elemre két forrásból is érkezhetnek (azonos frekvenciájú) szinuszos jelek. Ha csak az egyik jelforrás működik, 10 V-os, ha csak a másik, akkor 6 V-os, ha mindegyik egyszerre, akkor 5 V-os amplitúdójú jeleket kapunk. Feltéve, hogy a jelek összeadódnak, határozza meg a két forrás fáziseltérését! 8