4. Fogyasztói preferenciák elmélete

Hasonló dokumentumok
Diszkrét matematika I.

KOVÁCS BÉLA, MATEMATIKA I.

Nagy Gábor compalg.inf.elte.hu/ nagy

2014. szeptember 24. és 26. Dr. Vincze Szilvia

Relációk Függvények. A diákon megjelenő szövegek és képek csak a szerző (Kocsis Imre, DE MFK) engedélyével használhatók fel!

RE 1. Relációk Függvények. A diákon megjelenő szövegek és képek csak a szerző (Kocsis Imre, DE MFK) engedélyével használhatók fel!

Halmaz: alapfogalom, bizonyos elemek (matematikai objektumok) Egy halmaz akkor adott, ha minden objektumról eldönthető, hogy

1. előadás: Halmazelmélet, számfogalom, teljes

HALMAZELMÉLET feladatsor 1.

Az R halmazt a valós számok halmazának nevezzük, ha teljesíti az alábbi 3 axiómacsoport axiómáit.

MIKROÖKONÓMIA I. Készítette: K hegyi Gergely és Horn Dániel. Szakmai felel s: K hegyi Gergely június

A relációelmélet alapjai

Mindent olyan egyszerűvé kell tenni, amennyire csak lehet, de nem egyszerűbbé.

Itt és a továbbiakban a számhalmazokra az alábbi jelöléseket használjuk:

4.2. Tétel: Legyen gyenge rendezés az X halmazon. Legyen továbbá B X, amelyre

DiMat II Végtelen halmazok

KOVÁCS BÉLA, MATEMATIKA I.

Mindent olyan egyszerűvé kell tenni, amennyire csak lehet, de nem egyszerűbbé. (Albert Einstein) Halmazok 1

f(x) vagy f(x) a (x x 0 )-t használjuk. lim melyekre Mivel itt ɛ > 0 tetszőlegesen kicsi, így a a = 0, a = a, ami ellentmondás, bizonyítva

Matematika alapjai; Feladatok

1. Mondjon legalább három példát predikátumra. 4. Mikor van egy változó egy kvantor hatáskörében?

4. Fuzzy relációk. Gépi intelligencia I. Fodor János NIMGI1MIEM BMF NIK IMRI

FRAKTÁLGEOMETRIA. Metrikus terek, szeparábilitás, kompaktság. Czirbusz Sándor Komputeralgebra Tanszék ELTE Informatika Kar

A valós számok halmaza

Halmazelméleti alapfogalmak

Diszkrét matematika 1. középszint

Mikroökonómia I. ELTE TáTK Közgazdaságtudományi Tanszék. 6. hét PREFERENCIÁK, HASZNOSSÁG 2. RÉSZ

0. BEVEZETÉS. Decision theory: web Google keresés= 27 millió találat Döntéselmélet: web Google keresés= 12 ezer találat

1. tétel Halmazok és halmazok számossága. Halmazműveletek és logikai műveletek kapcsolata.

6. Függvények. Legyen függvény és nem üreshalmaz. A függvényt az f K-ra való kiterjesztésének

Leképezések. Leképezések tulajdonságai. Számosságok.

Térinformatikai algoritmusok Elemi algoritmusok

SZÁMÍTÁSTUDOMÁNY ALAPJAI

A Matematika I. előadás részletes tematikája

minden x D esetén, akkor x 0 -at a függvény maximumhelyének mondjuk, f(x 0 )-at pedig az (abszolút) maximumértékének.

Térinformatikai algoritmusok Elemi algoritmusok

Adatbázisok elmélete 12. előadás

Sorozatok, sorok, függvények határértéke és folytonossága Leindler Schipp - Analízis I. könyve + jegyzetek, kidolgozások alapján

A fontosabb definíciók

A valós számok halmaza 5. I. rész MATEMATIKAI ANALÍZIS

BOOLE ALGEBRA Logika: A konjunkció és diszjunkció tulajdonságai

Metrikus terek, többváltozós függvények

harmadik, javított kiadás

Klasszikus algebra előadás. Waldhauser Tamás április 28.

Mikor van egy változó egy kvantor hatáskörében? Milyen tulajdonságokkal rendelkezik a,,részhalmaz fogalom?

Analízis I. beugró vizsgakérdések

f(x) a (x x 0 )-t használjuk.

Valószínűségi változók. Várható érték és szórás

Analízis I. Vizsgatételsor

Funkcionálanalízis. n=1. n=1. x n y n. n=1

Matematikai logika és halmazelmélet

Nagy Gábor compalg.inf.elte.hu/ nagy

Halmazelmélet. 1. előadás. Farkas István. DE ATC Gazdaságelemzési és Statisztikai Tanszék. Halmazelmélet p. 1/1

Alapfogalmak, valós számok Sorozatok, határérték Függvények határértéke, folytonosság A differenciálszámítás Függvénydiszkusszió Otthoni munka

út hosszát. Ha a két várost nem köti össze út, akkor legyen c ij = W, ahol W már az előzőekben is alkalmazott megfelelően nagy szám.

dr. Szalkai István Pannon Egyetem, Veszprém, Matematika Tanszék november 3.

1.1 Halmazelméleti fogalmak, jelölések

VEKTORTEREK I. VEKTORTÉR, ALTÉR, GENERÁTORRENDSZER október 15. Irodalom. További ajánlott feladatok

Boros Zoltán február

0-49 pont: elégtelen, pont: elégséges, pont: közepes, pont: jó, pont: jeles

1. Házi feladat. Határidő: I. Legyen f : R R, f(x) = x 2, valamint. d : R + 0 R+ 0

R c AxB R = {(x,y ~x E A 1\Y EB 1\x+ y < 7}vagy rövidenxry. A={O,2, 5} ésb = {l, 3, 6,

Diszkrét matematika 2. estis képzés

Diszkrét matematika 2.

Mikroökonómia elıadás

Debreceni Egyetem. Kalkulus I. Gselmann Eszter

HHF0CX. k darab halmaz sorbarendezésének a lehetősége k! Így adódik az alábbi képlet:

Relációs struktúrák Relációs elméletek Modális elméletek Gyakorlás Modellezés Házifeladatok MODÁLIS LOGIKAI ALAPOK

2. Logika gyakorlat Függvények és a teljes indukció

8. előadás. normálformák. Többértékű függés, kapcsolásfüggés, 4NF, 5NF. Adatbázisrendszerek előadás november 10.

Nagy Gábor compalg.inf.elte.hu/ nagy ősz

A matematika nyelvér l bevezetés

Diszkrét matematika I.

Valós függvények tulajdonságai és határérték-számítása

IV.A. Relációk Megoldások

Dr. Vincze Szilvia;

Konvex optimalizálás feladatok

3. előadás. Programozás-elmélet. A változó fogalma Kiterjesztések A feladat kiterjesztése A program kiterjesztése Kiterjesztési tételek Példa

Diszkrét Matematika I.

FÜGGVÉNYEK TULAJDONSÁGAI, JELLEMZÉSI SZEMPONTJAI

Diszkrét matematika I. feladatok

Csercsik Dávid ITK PPKE. Csercsik Dávid (ITK PPKE) Játékelmélet és hálózati alkalmazásai 4. ea 1 / 21

Arany Dániel Matematikai Tanulóverseny 2012/2013-as tanév 1. forduló haladók III. kategória

Diszkrét matematika I.

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

Diszkrét matematika 2.C szakirány

Optimalitáselmélet és analógia: tényleg kiengesztelhetetlen ellentét?

MATE-INFO UBB verseny, március 25. MATEMATIKA írásbeli vizsga

Alap fatranszformátorok II

2012. október 2 és 4. Dr. Vincze Szilvia

Mérhetőség, σ-algebrák, Lebesgue Stieltjes-integrál, véletlen változók és eloszlásfüggvényeik

ALAPFOGALMAK 1. A reláció az program programfüggvénye, ha. Azt mondjuk, hogy az feladat szigorúbb, mint az feladat, ha

Relációk. 1. Descartes-szorzat. 2. Relációk

DISZKRÉT MATEMATIKA RENDEZETT HALMAZOKKAL KAPCSOLATOS PÉLDÁK. Rendezett halmaz. (a, b) R a R b 1. Reflexív 2. Antiszimmetrikus 3.

Analízis II. Analízis II. Beugrók. Készítette: Szánthó József. kiezafiu kukac gmail.com. 2009/ félév

Első zárthelyi dolgozat megoldásai biomatematikából * A verzió

30. ERŐSEN ÜSSZEFÜGGŐ KOMPONENSEK

Diszkrét matematika I.

2014. november 5-7. Dr. Vincze Szilvia

Nagy Gábor compalg.inf.elte.hu/ nagy ősz

Átírás:

4. Fogyasztói preferenciák elmélete (ld. Temesi J.: A döntéselmélet alapjai, 47-63) 4.1 Preferencia relációk Mit jelent a fogyasztó választása? Legyen X egy olyan halmaz amelynek az elemei azok a lehetőségek (javak, szolgáltatások, stb.) amelyekből a fogyasztó választhat. Ha az egyed választani akar, akkor rendelkeznie kell valamiféle olyan véleménnyel az X halmaz elemeiről, amelynek alapján eldöntheti azt, hogy két x, y X elem közül melyiket értékeli többre, magasabbra. Ha pl. x a jobb y-nál, akkor ezt megfelelő sorrendbe írással adhatjuk meg (x, y), x, y X (azaz x legalább úgy értékelt mint y, vagy x is preferred to y). Ennek matematikai megközelítése a relációkhoz vezet el. Az A és B halmazok Descartes -féle A B szorzathalmazán az (a, b), a A, b B rendezett párok halmazát értjük. (a rendezés azt jelenti, hogy az elemek sorrendje lényeges, első az A-beli elem). Az A B szorzathalmaz egy R A B részhalmazát (binér) relációnak nevezzük, jelölése (a, b) R vagy arb, esetleg R helyett valamilyen szimbólumot használunk, pl. a jelet, ami emlékeztet a nagyobb vagy egyenlő jelre, így szuggesztív. Egy R A B reláció értelmezési tartományán és értékkészletén az alábbi halmazokat értjük: D R : = { a A : van olyan b B melyre (a, b) R } R R : = { b B : van olyan a A melyre (a, b) R } Ha A = B = X, és R X X akkor azt mondjuk, hogy R egy reláció X-en. A nálunk fellépő relációknál 1

2 D R = D R = X is teljesül. x Ry azt jelenti, hogy x nincs R relációban y-nal. Relációk tulajdonságai. Definíciók. Legyen R egy reláció X-en. Azt mondjuk, hogy R reflexív, ha bármely x X esetén xrx, szimmetrikus, ha bármely x, y X, xry esetén yrx, tranzitív, ha bármely x, y, z X, xry és yrz esetén xrz, teljes, ha bármely x, y X, esetén xry vagy yrx, irreflexív, ha bármely x X esetén x Rx, aszimmetrikus, ha bármely x, y X, xry esetén y Rx, antiszimmetrikus, ha bármely x, y X, xry és yrx esetén x = y. Relációk osztályai. Definíciók. Legyen R egy reláció X-en. A R relációt félig rendezésnek nevezzük, ha reflexív, antiszimmetrikus és tranzitív, (lineáris) rendezésnek nevezzük, ha félig rendezés és teljes, gyenge rendezésnek (preferenciának) nevezzük, ha reflexív, tranzitív, és teljes, ekvivalencia relációnak nevezzük, ha reflexív, szimmetrikus és tranzitív.

Ha R egy ekvivalencia reláció X-en, akkor R az X halmaz egy osztályozását (vagyis X felbontását páronként idegen halmazok egyesítésére) adja meg oz módon, hogy az egymással relációban álló elemek egy osztályba kerülnek. Ez fordítva is igaz, minden osztályozás egy ekvivalencia relációt határoz meg (úgy, hogy az egy osztályban levő elemek állnak relációban egymással). A R reláció által meghatározott osztályok halmazát X/R-rel szokás jelölni. X/R tehát X olyan, páronként idegen részhalmazainak összességét jelöli, melyek egyesítése éppen az X halmaz. Induljunk ki egy tetszőleges relációból X-en. Ennek segítségével négy egymást kizáró eset fogalmazható meg: x y (x y és y x), ekkor x es y-t ekvivalenseknek (indifferenseknek, közömböseknek) nevezzük, másik jelölés xiy, x?y (x y és y x), ekkor x es y-t nem összehasonlíthatóknak nevezzük, másik jelölés xjy, x y (x y és y x), ekkor x szigorúan (erősen) preferált y-hoz képest, másik jelölés xsy. y x (y x és x y), ekkor y szigorúan (erősen) preferált x-hez képest, ez ugyanaz az eset mint az előző, másik jelöléssel ysx. Megjegyezzük, hogy az I relációt szokás szimmetrikus részének is nevezni, S-t pedig aszimmetrikus részének. Így, I és S mindig egy kiinduló relációtól függ, annak függvénye (az esetek többségében ez a függés nem okoz félreértést). A most bevezetett relációkra a tulajdonságok definíciói alapján igazolható, hogy 3

4 I (vagy ) reflexív és szimmetrikus, J (vagy?) irreflexív és szimmetrikus, S (vagy ) irreflexív és aszimmetrikus. Érvényes a következő Tétel. Ha gyenge preferencia (rendezés) X-en, akkor I (vagy ) ekvivalencia reláció X-en, nincs összehasonlíthatatlanság, azaz a J (vagy?) reláció értelmezési tartománya üres halmaz az S (vagy ) szigorú (erős) preferencia irreflexív, aszimmetrikus, és tranzitív. Racionális viselkedést (döntést) gyenge preferencia határozza meg. Ennek három axiómája közül a reflexivitás természetes (és különben is következik a teljességből (x = y-nal)), ezért a tranzitivitás és teljesség az melyekkel empirikus szempontból foglalkozni kell. Hozható érv mindkét feltételezés mellett és ellenük is. 1. A teljesség azzal kritizálható, hogy túl erős feltevés: nem biztos, hogy a fogyasztó bármely két fogyasztási kosarat össze tud hasonlítani. 2. Marshak (1950) szerint a preferencia tulajdonságait olyan axiómáknak foghatjuk fel, mint a számolás axiómáit. Okfejtése szerint több-kevesebb ember vét a számolási szabályok ellen, de ez nem jelenti azt, hogy az emberek nem fogadják el azokat. Ha figyelmeztetik őket az elkövetett hibára, akkor igyekeznek kijavítani azt. Ugyanez a helyzet a döntéshozatalban is: előfordulhat, hogy a döntéshozók nem tranzitív döntést hoznak. Ha figyelmeztetik őket a

tranzitivitás azaz következetességük hiányára, akkor törekednek a döntés megváltoztatására. Ellenvetés: ha az egyedek egy része a tapasztalat szerint nem tranzitívan dönt, akkor ezt tényként kell elfogadni, és ennek megfelelően kell a keresletükre számítani. 3. Az emberi viselkedést a tanultság erősen befolyásolja. Ha valaki megtanulja a mikroökonómia alapelveit, akkor öntudatlanul is követni igyekszik azokat, hiszen azok racionalitásáról magyarázatot kapott. 4. A tranzitivitás ellen a legfőbb érv Arrow nevezetes lehetetlenségi tétele röviden szólva azt mondja ki, hogy tranzitív egyedi döntések ésszerű feltételek kikötése mellett nem aggregálhatók tranzitív kollektív döntéssé. Az egyedi fogyasztó, akivel a mikroökonómia számol, valójában nem egy egyed, hanem az egyedek aggregációjának képzelt absztrakt társadalmi fogyasztó. Arrow tétele szerint hiába racionálisak az egyedek, a társadalom, ill. annak kollektív egységei család, rétegek, csoportok stb. nem racionálisak. 5. Az emberi érzékelés tulajdonságai is érveket adhatnak a tranzitivitás ellen. Például képzeljük el, hogy valaki nem tud különbséget tenni (közömbös) lakása fűtésénél a 19 és 20 fok és a 20 és 21 fok között, de jobbnak találja a 21 fokot a 19-nél. Ez azt jelenti, hogy 21 20, 20 19, de 21 19, ami ellentmond a tranzitivitásnak. Ezt a jelenséget küszöb effektusnak (threshold effect) szokás nevezni. 6. Egy érdekes eset melyet Pearce ír le. Képzeljük el, hgy X úr vendégségben vacsorázik, és a végén, a gyümölcs fogásnál az első lépésben egy kis és egy nagy alma közül a kisebbiket választja (mert éhes ugyan, de jólnevelt). A 5

6 második kínálásnál egy nagy körte és egy kis alma közül a körtét választja (mert éhes). A harmadik kínálásnál egy nagy alma és nagy körte közül az almát választja (mert azt jobban szereti). Matematikailag: kis alma nagy alma, nagy körte kis alma, nagy alma nagy körte amiből, tranzitivitást feltételezve kis alma nagy alma nagy körte kis alma adódna ami ellentmondás. Itt, különböző körülmények között a döntés különböző motívációja erősödik meg. 4.2 Értékelő függvények Definíció. Legyen egy gyenge preferencia (rendezés) X-en és R legyen a valós számok halmaza. Az u : X R függvényt a reláció értékelő függvényének (a közgazdaságtanban a hasznossági függvény elnevezés hsználatos) nevezzük, ha a következő állítások valamelyike teljesül: x y u(x) u(y), (1) x y u(x) > u(y), x y u(x) = u(y). (2) Belátjuk, hogy (1) és (2) ekvivalensek. (1) (2). A következő ekvivalenciák alapján adódik (2) első fele: x y (x y és y x) (u(x) u(y) és u(y) u(x)) u(x) > u(y).

(2) második fele hasonlóan jön: x y (x y és y x) (u(x) u(y) és u(y) u(x)) u(x) = u(y). 7 (2) (1). A következő ekvivalenciasorozat adja az (1) állítást: x y (x y és x y) (u(x) > u(y) és u(x) = u(y)) u(x) u(y). Nyilvánvalóan igaz a következő Tétel. (értékelő függvények monoton transzformációi) Legyen egy gyenge preferencia (rendezés) X-en, u : X R legyen egy értékelő függvénye és φ : R R egy szigorúan monoton növekedő függvény. Akkor is egy értékelő függvény. v(x) := φ(u(x)) (x X) Ez a tétel lehetőséget ad az értékelő függvény kalibrálására, arra hogy olyan értékelő függvényt adjunk meg melynek értékei egy adott intervallumba pl. a [0, 1]-be esnek. 4.3 Egzisztencia tételek értékelő függvényekre Példa gyenge preferenciára melynek nincs értékelő függvénye. Vegyük az X = R 2 síkon az alábbi relációt (x 1, y 1 ) (x 2, y 2 ) (x 1 > x 2 vagy x 1 = x 2 és y 1 y 2 ).

8 Ez az un. lexikográfikus rendezés gyenge preferencia, melynek nincs értékelő függvénye. Ábránk szerint egy adott (x 2, y 2 ) ponthoz képest azok az (x 1, y 1 ) pontok melyekre (x 1, y 1 ) (x 2, y 2 ) teljesül, a sík vonalkázott részén helyezkednel el, mely egy (nyílt) félsíkból és egy (zárt) félegyenesből áll. Bizonyítás. Egyszerűen belátható, hogy gyenge preferencia. Indirekt úton igazoljuk, hogy nincs értékelő függvény. Tegyük fel, hogy van egy u : R 2 R értékelő függvény, és vegyünk két síkbeli (x, 2), (x, 1) elemet. Ekkor (x, 2) (x, 1), mert (x, 2) (x, 1) (x, 1) (x, 2), így u(x, 2) > u(x, 1). Rendeljük hozzá minden valós x számhoz az [u(x, 1), u(x, 2)] zárt intervallumot, azaz legyen f(x) = [u(x, 1), u(x, 2)] Ha x 1 > x 2 akkor u(x 1, 1) > u(x 2, 2), így (x R). u(x 2, 1) < u(x 2, 2) < u(x 1, 1) < u(x 1, 2)

miatt, az f(x 1 ) es f(x 2 ) intervallumok idegenek. Ezért f egy kölcsönösen egyértelmű leképezése a valós számok halmazának diszjunkt, valódi zárt intervallumok egy rendszerére. Mivel az ilyen intervallumok halmaza megszámlálhatóan végtelen, a valós számok halmaza pedig kontinuum számosságú, így ellentmondást kaptunk, ami bizonyítja állításunkat. Tétel. (értékelő függvény létezése) Legyen egy gyenge preferencia (rendezés) X-en, és tegyük fel, hogy az X/ indifferencia osztályok halmaza megszámlálható. Akkor van -nek értékelő függvénye. Tétel. (értékelő függvény létezése) Legyen egy folytonos gyenge preferencia (rendezés) az X topológikus téren (mely eleget tesz a második megszámlálhatósági axiómának: van megszámlálható bázisa a térnek), akkor -nek létezik értékelő függvénye. Megjegyzés. Az relációt folytonosnak nevezzük az X topológikus téren, ha bármely x X esetén a { y X : x y }, { y X : y x } halmazok zártak. Tétel. (értékelő függvény létezése) Legyen egy folytonos gyenge preferencia (rendezés) az X összefüggő és szeparábilis topológikus téren, akkor -nek létezik értékelő függvénye. Megjegyzés. Az X topológikus teret összefüggőnek nevezzük ha X nem bontható fel két diszjunkt, nyílt, nemüres halmaz uniójára. 9

10 Az X topológikus teret szeparábilisnek nevezzük ha van megszámlálható mindenütt sűrű részhalmaza. Példa értékelő függvényre. Az X = R 2 síkon legyen (x 1, y 1 ) (x 2, y 2 ) 0, 4x 1 + 0, 6y 1 0, 4x 2 + 0, 6y 2. Ez egy gyenge preferencia, melynél a közömbösségi osztályok { (x 1, y 1 ) R 2 : 0, 4x 1 + 0, 6y 1 = x } (x R) alakúak ahol x R tetszőleges valós szám. Ezek halmaza most kontinuum, de van értékelő függvény, mert mindkét előző tétel feltételei teljesülnek. Egy értékelő függvény a következő u(x 1, y 1 ) = 0, 4x 1 + 0, 6y 1. Jóval nehezebb igazolni folytonos értékelő függvény létezését. Erre vonatkozóan hasonló eredmény igaz. Tétel. (Debreu tétele) Második megszámlálhatósági axiómának elegettevő topológikus téren tetszőleges folytonos preferenciának van folytonos értékelő függvénye. Megjegyzés. Egy u : X R függvényt folytonosnak nevezünk az X topológikus téren, ha bármely R-beli G nyílt halmaz inverz képe nyílt. u 1 (G) := { x X : u(x) G }

Tétel. (Eilenberg-Debreu tétele) Összefüggő, szeparábilis topológikus téren tetszőleges folytonos preferenciának van folytonos értékelő függvénye. 11