13. előadás, május 13.
|
|
- Borbála Fábiánné
- 10 évvel ezelőtt
- Látták:
Átírás
1 13. előadás, május 13. Zempléni András Valószínűségelméleti és Statisztika Tanszék Természettudományi Kar Eötvös Loránd Tudományegyetem
2 A pénzügyi válság okai Átláthatatlan, ellenőrizhetetlen árazású termékek, például collateralized debt obligations (CDOs) - nincsenek benne a mérlegben sem Buborékok Hitelminősítők? Matematika?
3 Modellek szerepe Pénzügyi modellek: nemcsak a jelenségek leírását adják, hanem befolyásolják is őket Salmon (2009) újságíróként írt először a Gauss kopula szerepéről a válságban
4 Gauss kopula pénzügyi alkalmazása Eredet: Vasicek modellje a homogén hitelportfolió csődjéről Ha a korreláció alacsony, a veszteség a várható értékhez közeli Magas korreláció esetén bimodális: 0 vagy 1 (azaz a portfolió úgy viselkedik, mint egyetlen eleme) CreditMetrics: szimulációk, többdimenziós normális eloszlások alapján David X. Li (1999): kopulák, élettartam-adatokkal való analógia alkalmazása: Peremeloszlások (túlélésfüggvények) modellezése Gauss kopula az összefüggőségekre
5 Az új megközelítés David X. Li (1999) alkalmazta a kopulákat, a túlélési adatokhoz való analógiák alapján: A peremeloszlások (túlélésfüggvények) modellezése Gauss kopula az összefüggőségekre Először a két-életes biztosításoknál alkalmazták ("törött szív szindróma": a házaspár egyik tagjának halála növeli a másik tagja halálának valószínűségét) Következő lépées: alkalmazás vállalatok csődvalószínűségére (fontos a CDO-k árazásánál) Szerepe volt az úgynevezett "szintetikus" CDO-knál is, ahol a részvényeket csak imitálták
6 Kétdimenziós modellezés A normális eloszlás kopulaként is rossz A ferde t-kopula a ferde t-eloszlásból származik
7 CDO-k árazása Collateralized debt obligations Igen jelentős piaca alakult ki Különböző tranche-okra osztva árulták (a kockázatosabb nagyobb hozamot igért) Equity Mezzanine (BBB) Senior (AAA) A döntő kérdés itt is az összefüggőségek modellezése Egy időegységre modelleztek
8 Hedge A szokásos a delta-módszer, ehhez időbeni változás kell - számításigényes! Korrelációk becsléséhez kevés az adat Próbálkozások: visszamenőleges adatokból történő becslés Egyszerűsítés: faktor-modellek, feltételes függetlenség (V std.norm eloszlású faktor, F i a túlélésfv, ρ a korreláció) ( ) p i V ρv + Φ 1 (F i (t)) t = Φ 1 ρ 2
9 További lehetőségek Általában konstansnak tekintették a csőd esetén a megtérülési részarányt, de a válság óta ez is módosult "Correlation skewness" - reprodukálja a sztochasztikus korrelációs modell (Gauss kopulák keveréke) t-, Clayton-kopula alkalmazása
10 Példa Tfh 10 név van a kosárban, a hitelfeláruk bázispont között egyenletesen oszlik el 5 éves lejárat, Csőd esetén 40 Az összefüggőségek kalibrációja, hogy az első csődbemenetelre ugyanannyi legyen a díj Rang Gauss Clayton t(6) t(12) Nincs lényeges különbség
11 A veszteségek A krízis során bankonként Md USd nagyságrendű veszteségek a CDO-kon Több 10 Md nagyságrendű veszteségek az ABS CDO-kon (ingatlanfedezetű kötvények), mert az ingatlanár-buborék kipukkant és hirtelen nem maradt fedezet - ezek árazása nem az arbitrázsmentességen alapult, hanem cashflow alapú volt Kivétel: Goldman, aki máshogy árazott és még 2006-ban kiszállt
12 Buborékok: példák Tulipán-mánia (XVII. század, Hollandia): egy hagyma akár két hintó árát is érhette Arany-bányászati jogok (XVIII. század, Anglia, Franciaország) Építések (XIX. század, USA) Florida ingatlanspekuláció (1920s) Dot kom buborék ( ) Subprime krízis (2007)
13 Buborékok: módszerek Mi is egy értékpapír fair ára? Meg lehet határozni, feltéve, hogy nincs arbitrázs Fundamentális árnak fogjuk nevezni - teljes piacon definiáljuk, mert itt a kockázatsemleges martingál mérték egyértelmű Csak a legegyszerűbb esetet tekintjük, amikor a buborék egyetlen részvény ára
14 Buborékok: matematika Árfolyam modellezés: ds t = σ(s t )dw t + µ(s t )dt Sztochasztikus a volatilitás. Arbitrázsmentes piacokon a kockázatsemleges mérték segítségével átírható: t S t = S 0 + σ(s u )dw u 0 Pontosan akkor alakul ki buborék, ha S szigorú lokális martingál (azaz lokális martingál, de nem martingál). Ennek karakterizációja: x σ 2 (x) dx < teljesül minden α > 0-ra. α
15 Tulajdonságok Buborék esetén nem érvényes a klasszikus tétel az amerikai és az európai opciók egyenértékűségéről A volatilitás növekedése esetén érdemes tesztelni A pozitív szigorú lokális martingál szupermartingál Tipikus realizációja: Gyors felfutás, majd gyors lezuhanás és alacsony értékeken ragadás
16 Lokális időn alapuló becslés h n az ablakszélesség Legyen L n T (x) = T 2nh n l n T (x) = T 2nh n n I{ S ti x < h n }, i=1 n I{ S ti x < h n }n(s ti+1 S ti ) 2 i=1 Ha nh 4 n, akkor l T (x)/l T (x) σ 2 (x) A h n -re vonatkozó feltétel túl szigorú (általában nincs elég adat) Általános probléma: a volatilitást csak a már megfigyelt értékekre tudjuk becsülni
17 Magfüggvényes becslés Magfüggvényes modell: Vn x = 1 n 1 φ nh n i=0 ( Si/n x i=0 h n ) ( ) 2 n S i+1 S i, n n L x n = 1 n 1 ( ) Si/n x φ nh n h n ahol h n az "ablakszélesség", Φ kellően sima magfüggvény. nh 2 n esetén V x n /L x n σ 2 (x) Ha nh 3 n, akkor normális a határeloszlás
18 Tesztelés Paraméteres és nemparaméteres modellek együttesen alkalmazhatóak Egyszerű paraméteres modell: σ(x) = σx α, ahol σ és α ismeretlen paraméterek. Tulajdonságok: 1/2 < α < 1 esetén martingál α > 1 esetén szigorú lokális martingál α = 1 esetén geometriai Brown mozgás Ha σ becsléseire tudjuk ellenőrizni a feltételt, akkor σ is az adott osztályba tartozik
19 Példa (dotkom lufi) Kék, piros: nemparaméteres (magfüggvényes) becslések Zöld: paraméteres modell A paraméteres modell lokális martingál tulajdonságú, a többi becslés pedig e fölött halad, tehát a teszt bizonyítja a buborék jelenlétét
20 Más módszer: Reproducing Kernel Hilbert Spaces Extrapolációs módszer függvények rekonstrukciójára Egyértelműen meghatározott reprodukáló Q(x, x ) magfüggvényen alapul Simításra is van lehetőség
21 Alkalmazás a mi esetünkre f (x) = 1/σ 2 (x) x k f (k) (x) 0 ha x k = 1,..., n esetén (általában nem túl erős megszorítás, különösen ha σ 2 (x) teljesül x esetén). n a simaság mértékét határozza meg (n = 2 a tipikus választás) A skalárszorzat: < f, g > n,m = 0 y n f (n) (y) n! y n g (n) (y) n! dy w(y) A reproducing kernel béta- és Gauss-hipergeometrikus függvényekkel adható meg
22 Példa (dotkom lufi) 1. ábra. Nemparaméteres becslés: nem egyértelmű 2. ábra. RKHS extrapoláció: mutatja a buborékot
23 Távlati célok Termékek egyszerűsítése A buborékok real-time történő detektálása Felügyeletek szerepének növelése?
24 Hivatkozások D. MacKenzie and T. Spears (2012): The Formula That Killed Wall Street? The Gaussian Copula and the Material Cultures of Modelling X. Burtschell, J. Gregory and J.P. Laurent (2009): A comparative analysis of CDO pricing models R. Jarrow, Y. Kchia, and P. Protter (2011): How to Detect an Asset Bubble. SIAM J. Finan. Math., 2(1),
Az extremális index. 11. előadás, május 10. Blokkmódszer. Becslés
Az extremális index 11. előadás, 2017. május 10. Zempléni András Valószínűségelméleti és Statisztika Tanszék Természettudományi Kar Eötvös Loránd Tudományegyetem Áringadozások előadás Ha az eredeti X 1,
Stippinger Marcell: Tőzsdei modellezés (Szeminárium 2. előadás)
1 2010. április 8. Cégvilág 2010, Wigner Jenő Kollégium nagytermében Pénzügy: elsősorban MC-szimulációés informatikai feladatok. Fizikusok keresettek, egzotikus nyelveket is el kell sajátítani. 2 3 Matematikai
Elliptikus eloszlások, kopuláik. 7. előadás, 2015. március 25. Elliptikusság tesztelése. Arkhimédeszi kopulák
Elliptiks eloszlások, kopláik 7. előadás, 215. márcis 25. Zempléni András Valószínűségelméleti és Statisztika Tanszék Természettdományi Kar Eötös Loránd Tdományegyetem Áringadozások előadás Sűrűségfüggényük
CDO-k árazása: a Gauss kopula és a korrelációs struktúra általánosításai
Eötvös Loránd Tudományegyetem Természettudományi kar Valószínűségelméleti és Statisztika Tanszék CDO-k árazása: a Gauss kopula és a korrelációs struktúra általánosításai Biztosítási és pénzügyi matematika
Sztochasztikus folyamatok alapfogalmak
Matematikai Modellalkotás Szeminárium 2012. szeptember 4. 1 Folytonos idejű Markov láncok 2 3 4 1 Folytonos idejű Markov láncok 2 3 4 Folytonos idejű Markov láncok I Adott egy G = (V, E) gráf Folytonos
Bevezetés. 1. előadás, 2015. február 11. Módszerek. Tematika
Bevezetés 1. előadás, 2015. február 11. Zempléni András Valószínűségelméleti és Statisztika Tanszék Természettudományi Kar Eötvös Loránd Tudományegyetem Áringadozások előadás Heti 2 óra előadás + 2 óra
Szabályozók, tőkekövetelményszámítási május 3.
Szabályozók, tőkekövetelményszámítási modellek 2013. május 3. 1 Miért kell szabályozni a bankokat? Speciális szerepet töltenek be: - Fizetési rendszerek üzemeltetése - Támogatják a gazdaság növekedését
egyenletesen, és c olyan színű golyót teszünk az urnába, amilyen színűt húztunk. Bizonyítsuk
Valószínűségszámítás 8. feladatsor 2015. november 26. 1. Bizonyítsuk be, hogy az alábbi folyamatok mindegyike martingál. a S n, Sn 2 n, Y n = t n 1+ 1 t 2 Sn, t Fn = σ S 1,..., S n, 0 < t < 1 rögzített,
Horváth Roland. CDO-árazás: egyfaktoros kopulamodellek és sztochasztikus korreláció
Eötvös Loránd Tudományegyetem Természettudományi Kar Horváth Roland CDO-árazás: egyfaktoros kopulamodellek és sztochasztikus korreláció BSc Szakdolgozat Témavezető: Backhausz Ágnes Valószínűségelméleti
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 10 X. SZIMULÁCIÓ 1. VÉLETLEN számok A véletlen számok fontos szerepet játszanak a véletlen helyzetek generálásában (pénzérme, dobókocka,
TANTÁRGYI PROGRAM Matematikai alapok II. útmutató
BGF PÉNZÜGYI ÉS SZÁMVITELI KAR Módszertani Intézeti Tanszéki Osztály TANTÁRGYI PROGRAM Matematikai alapok II. útmutató 2013/2014. tanév II. félév Tantárgyi program Tantárgy megnevezése Tantárgy jellege/típusa:
(Independence, dependence, random variables)
Két valószínűségi változó együttes vizsgálata Feltételes eloszlások Két diszkrét változó együttes eloszlása a lehetséges értékpárok és a hozzájuk tartozó valószínűségek (táblázat) Példa: Egy urna 3 fehér,
Gazdasági matematika II. Tantárgyi útmutató
Módszertani Intézeti Tanszék Gazdálkodási és menedzsment, pénzügy és számvitel szakok távoktatás tagozat Gazdasági matematika II. Tantárgyi útmutató 2016/17 tanév II. félév 1/6 A KURZUS ALAPADATAI Tárgy
TANTÁRGYI PROGRAM Matematikai alapok 2. útmutató
BGF PÉNZÜGYI ÉS SZÁMVITELI KAR Módszertani Intézeti Tanszéki Osztály TANTÁRGYI PROGRAM Matematikai alapok 2. útmutató 2015/2016. tanév I. félév Tantárgyi program Tantárgy megnevezése Tantárgy jellege/típusa:
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 3 III. VÉLETLEN VEKTOROK 1. A KÉTDIMENZIÓs VÉLETLEN VEKTOR Definíció: Az leképezést (kétdimenziós) véletlen vektornak nevezzük, ha Definíció:
Matematikai statisztika c. tárgy oktatásának célja és tematikája
Matematikai statisztika c. tárgy oktatásának célja és tematikája 2015 Tematika Matematikai statisztika 1. Időkeret: 12 héten keresztül heti 3x50 perc (előadás és szeminárium) 2. Szükséges előismeretek:
9-10. elıadás április 26. Problémák magas dimenzióban Az idıbeni összefüggıség és a nemstacionaritás szerepe
9-10. elıadás 2013. április 26. Problémák magas dimenzióban Az idıbeni összefüggıség és a nemstacionaritás szerepe Ismétlés Tanultunk Többdimenziós stabilis eloszlásokról Többdimenziós extrém-érték eloszlásokról
A portfólió elmélet általánosításai és következményei
A portfólió elmélet általánosításai és következményei Általánosan: n kockázatos eszköz allokációja HOZAM: KOCKÁZAT: variancia-kovariancia mátrix segítségével! ) ( ) ( ) / ( ) ( 1 1 1 n s s s p t t t s
x, x R, x rögzített esetén esemény. : ( ) x Valószínűségi Változó: Feltételes valószínűség: Teljes valószínűség Tétele: Bayes Tétel:
Feltételes valószínűség: Teljes valószínűség Tétele: Bayes Tétel: Valószínűségi változó általános fogalma: A : R leképezést valószínűségi változónak nevezzük, ha : ( ) x, x R, x rögzített esetén esemény.
Valószínűségszámítás összefoglaló
Statisztikai módszerek BMEGEVGAT Készítette: Halász Gábor Budapesti Műszaki és Gazdaságtudományi Egyetem Gépészmérnöki Kar Hidrodinamikai Rendszerek Tanszék, Budapest, Műegyetem rkp. 3. D ép. 334. Tel:
Diverzifikáció Markowitz-modell MAD modell CAPM modell 2017/ Szegedi Tudományegyetem Informatikai Intézet
Operációkutatás I. 2017/2018-2. Szegedi Tudományegyetem Informatikai Intézet Számítógépes Optimalizálás Tanszék 11. Előadás Portfólió probléma Portfólió probléma Portfólió probléma Adott részvények (kötvények,tevékenységek,
Készítette: Fegyverneki Sándor
VALÓSZÍNŰSÉGSZÁMÍTÁS Összefoglaló segédlet Készítette: Fegyverneki Sándor Miskolci Egyetem, 2001. i JELÖLÉSEK: N a természetes számok halmaza (pozitív egészek) R a valós számok halmaza R 2 {(x, y) x, y
Volatilitási tőkepuffer a szolvencia IIes tőkekövetelmények megsértésének kivédésére
Volatilitási tőkepuffer a szolvencia IIes tőkekövetelmények megsértésének kivédésére Zubor Zoltán MNB - Biztosításfelügyeleti főosztály MAT Tavaszi Szimpózium 2016. május 7. 1 Háttér Bit. 99. : folyamatos
Változatos Véletlen Árazási Problémák. Bihary Zsolt AtomCsill 2014
Változatos Véletlen Árazási Problémák Bihary Zsolt AtomCsill 2014 Fizikus a befektetési bankban Remek társaság Releváns matematikai műveltség Számítástechnikai affinitás Intuitív gondolkodás Modellezési
Biomatematika 12. Szent István Egyetem Állatorvos-tudományi Kar. Fodor János
Szent István Egyetem Állatorvos-tudományi Kar Biomatematikai és Számítástechnikai Tanszék Biomatematika 12. Regresszió- és korrelációanaĺızis Fodor János Copyright c Fodor.Janos@aotk.szie.hu Last Revision
Társadalmi és gazdasági hálózatok modellezése
Társadalmi és gazdasági hálózatok modellezése 9. el adás Bevezetés az ökonozikába El adó: London András 2015. november 2. Motiváció Komplex rendszerek modellezése statisztikus mechanika és elméleti zika
Gazdasági matematika II. vizsgadolgozat, megoldással,
Gazdasági matematika II. vizsgadolgozat, megoldással, levelező képzés Definiálja az alábbi fogalmakat! 1. Kvadratikus mátrix invertálhatósága és inverze. (4 pont) Egy A kvadratikus mátrixot invertálhatónak
Szabályozók, tőkekövetelményszámítási április 22.
Szabályozók, tőkekövetelményszámítási modellek 2015. április 22. 1 Miért kell szabályozni a bankokat? Speciális szerepet töltenek be: - Fizetési rendszerek üzemeltetése - Támogatják a gazdaság növekedését
OPCIÓS PIACOK VIZSGA MINTASOR
OPCIÓS PIACOK VIZSGA MINTASOR ELMÉLET ÉS SZÁMOLÁS ELMÉLETI ÉS SZÁMOLÁSI KÉRDÉSEK 1. A devizára szóló európai call opciók a) belsőértéke mindig negatív. b) időértéke pozitív és negatív is lehet. c) időértéke
4. Az A és B események egymást kizáró eseményeknek vagy idegen (diszjunkt)eseményeknek nevezzük, ha AB=O
1. Mit nevezünk elemi eseménynek és eseménytérnek? A kísérlet lehetséges kimeneteleit elemi eseményeknek nevezzük. Az adott kísélethez tartozó elemi események halmazát eseménytérnek nevezzük, jele: X 2.
Hipotézis STATISZTIKA. Kétmintás hipotézisek. Munkahipotézis (H a ) Tematika. Tudományos hipotézis. 1. Előadás. Hipotézisvizsgálatok
STATISZTIKA 1. Előadás Hipotézisvizsgálatok Tematika 1. Hipotézis vizsgálatok 2. t-próbák 3. Variancia-analízis 4. A variancia-analízis validálása, erőfüggvény 5. Korreláció számítás 6. Kétváltozós lineáris
biometria II. foglalkozás előadó: Prof. Dr. Rajkó Róbert Matematikai-statisztikai adatfeldolgozás
Kísérlettervezés - biometria II. foglalkozás előadó: Prof. Dr. Rajkó Róbert Matematikai-statisztikai adatfeldolgozás A matematikai-statisztika feladata tapasztalati adatok feldolgozásával segítséget nyújtani
Gazdasági Információs Rendszerek
Gazdasági Információs Rendszerek 7. előadás Bánhelyi Balázs Alkalmazott Informatika Tanszék, Szegedi Tudományegyetem 2009 Opció fogalma Az opció jövőbeni döntési lehetőséget jelent valami megtételére,
Nagy számok törvényei Statisztikai mintavétel Várható érték becslése. Dr. Berta Miklós Fizika és Kémia Tanszék Széchenyi István Egyetem
agy számok törvényei Statisztikai mintavétel Várható érték becslése Dr. Berta Miklós Fizika és Kémia Tanszék Széchenyi István Egyetem A mérés mint statisztikai mintavétel A méréssel az eloszlásfüggvénnyel
Véletlen jelenség: okok rendszere hozza létre - nem ismerhetjük mind, ezért sztochasztikus.
Valószín ségelméleti és matematikai statisztikai alapfogalmak összefoglalása (Kemény Sándor - Deák András: Mérések tervezése és eredményeik értékelése, kivonat) Véletlen jelenség: okok rendszere hozza
Megoldások. ξ jelölje az első meghibásodásig eltelt időt. Akkor ξ N(6, 4; 2, 3) normális eloszlású P (ξ
Megoldások Harmadik fejezet gyakorlatai 3.. gyakorlat megoldása ξ jelölje az első meghibásodásig eltelt időt. Akkor ξ N(6, 4;, 3 normális eloszlású P (ξ 8 ξ 5 feltételes valószínűségét (.3. alapján számoljuk.
Least Squares becslés
Least Squares becslés A négyzetes hibafüggvény: i d i ( ) φx i A négyzetes hibafüggvény mellett a minimumot biztosító megoldás W=( d LS becslés A gradiens számítása és nullává tétele eredményeképp A megoldás
ELTE TáTK Közgazdaságtudományi Tanszék ÖKONOMETRIA. Készítette: Elek Péter, Bíró Anikó. Szakmai felelős: Elek Péter. 2010. június
ÖKONOMETRIA ÖKONOMETRIA Készült a TÁMOP-4.1.2-08/2/A/KMR-2009-0041pályázati projekt keretében Tartalomfejlesztés az ELTE TátK Közgazdaságtudományi Tanszékén az ELTE Közgazdaságtudományi Tanszék, az MTA
Pénzügyi matematika. Sz cs Gábor. Szeged, 2011. szi félév. Szegedi Tudományegyetem, Bolyai Intézet
Pénzügyi matematika Sz cs Gábor Szegedi Tudományegyetem, Bolyai Intézet Szeged, 2011. szi félév Sz cs Gábor (SZTE, Bolyai Intézet) Pénzügyi matematika 2011. szi félév 1 / 79 Értékpapírpiacok Bevezetés
Markov modellek 2015.03.19.
Markov modellek 2015.03.19. Markov-láncok Markov-tulajdonság: egy folyamat korábbi állapotai a későbbiekre csak a jelen állapoton keresztül gyakorolnak befolyást. Semmi, ami a múltban történt, nem ad előrejelzést
Válság és hitelderivatívák
Közgazdasági Szemle, LVIII. évf., 20. november (949 969. o.) Válság és hitelderivatívák A szintetikus fedezett adósságkötelezettségek (CDO-k) árazása és kockázataik A dolgozat első részében röviden áttekintjük
5 Forward és Futures Árazás. Options, Futures, and Other Derivatives, 8th Edition, Copyright John C. Hull 2012 1
5 Forward és Futures Árazás 1 Fogyasztási vs beruházási javak Beruházási célú javak (pl. arany, ezüst, ingatlan, műkincsek, stb.) Fogyasztási javak (pl. ércek, nyersfémek, olaj, kőszén, fél sertés, stb.)
STATISZTIKA ELŐADÁS ÁTTEKINTÉSE. Matematikai statisztika. Mi a modell? Binomiális eloszlás sűrűségfüggvény. Binomiális eloszlás
ELŐADÁS ÁTTEKINTÉSE STATISZTIKA 9. Előadás Binomiális eloszlás Egyenletes eloszlás Háromszög eloszlás Normális eloszlás Standard normális eloszlás Normális eloszlás mint modell 2/62 Matematikai statisztika
14 A Black-Scholes-Merton modell. Options, Futures, and Other Derivatives, 8th Edition, Copyright John C. Hull
14 A Black-choles-Merton modell Copyright John C. Hull 01 1 Részvényárak viselkedése (feltevés!) Részvényár: μ: elvárt hozam : volatilitás Egy rövid Δt idő alatt a hozam normális eloszlású véletlen változó:
Bevezető ismeretek a pénzügyi termékekről Intézményekről, tranzakciókról 1.
Bevezető ismeretek a pénzügyi termékekről Intézményekről, tranzakciókról 1. Jánosi Imre Kármán Környezeti Áramlások Hallgatói Laboratórium, Komplex Rendszerek Fizikája Tanszék Eötvös Loránd Tudományegyetem,
A pénzügyi kockázat elmélete
7. Kötvények és árazásuk Részvények és kötvények Részvény: tulajdonrészt jelent, részesedést a vállalat teljesítményéb l. Kötvény: hitelt jelent és a tartozás visszazetésének szabályait. A részvényeket
Gyakorlati tapasztalatok magas dimenzióban. 9. előadás, április 26. Becslési módszer magas dimenzióban: páronkénti likelihood
Gyakorlati tapasztalatok magas dimenzióban 9. előadás, 2017. április 26. Zempléni András Valószínűségelméleti és Statisztika Tanszék Természettudományi Kar Eötvös Loránd Tudományegyetem Áringadozások előadás
Gazdasági matematika II. vizsgadolgozat megoldása A csoport
Gazdasági matematika II. vizsgadolgozat megoldása A csoport Definiálja az alábbi fogalmakat!. Egy eseménynek egy másik eseményre vonatkozó feltételes valószínűsége. ( pont) Az A esemény feltételes valószínűsége
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 8 VIII. REGREssZIÓ 1. A REGREssZIÓs EGYENEs Két valószínűségi változó kapcsolatának leírására az eddigiek alapján vagy egy numerikus
Pénzügyi matematika. Sz cs Gábor szi félév. Szegedi Tudományegyetem, Bolyai Intézet
Pénzügyi matematika Sz cs Gábor Szegedi Tudományegyetem, Bolyai Intézet 2016. szi félév Bevezetés Értékpapírpiacok Értékpapírpiacok A t zsde (piac, market) egy olyan intézmény, melyen a résztvev k különféle
Eseményalgebra. Esemény: minden amirl a kísérlet elvégzése során eldönthet egyértelmen hogy a kísérlet során bekövetkezett-e vagy sem.
Eseményalgebra. Esemény: minden amirl a kísérlet elvégzése során eldönthet egyértelmen hogy a kísérlet során bekövetkezett-e vagy sem. Elemi esemény: a kísérlet egyes lehetséges egyes lehetséges kimenetelei.
Hipotézis, sejtés STATISZTIKA. Kétmintás hipotézisek. Tudományos hipotézis. Munkahipotézis (H a ) Nullhipotézis (H 0 ) 11. Előadás
STATISZTIKA Hipotézis, sejtés 11. Előadás Hipotézisvizsgálatok, nem paraméteres próbák Tudományos hipotézis Nullhipotézis felállítása (H 0 ): Kétmintás hipotézisek Munkahipotézis (H a ) Nullhipotézis (H
Modulzáró ellenőrző kérdések és feladatok (2)
Modulzáró ellenőrző kérdések és feladatok (2) 1. Definiálja az alábbi, technikai eszközök üzemi megbízhatóságával kapcsolatos fogalmakat (1): Megbízhatóság. Használhatóság. Hibamentesség. Fenntarthatóság.
BIOMATEMATIKA ELŐADÁS
BIOMATEMATIKA ELŐADÁS 9. Együttes eloszlás, kovarianca, nevezetes eloszlások Debreceni Egyetem, 2015 Dr. Bérczes Attila, Bertók Csanád A diasor tartalma 1 Bevezetés, definíciók Együttes eloszlás Függetlenség
2014/2015. tavaszi félév
Hajder L. és Valasek G. hajder.levente@sztaki.mta.hu Eötvös Loránd Tudományegyetem Informatikai Kar 2014/2015. tavaszi félév Tartalom Geometria modellezés 1 Geometria modellezés 2 Geometria modellezés
Elméleti összefoglaló a Valószín ségszámítás kurzushoz
Elméleti összefoglaló a Valószín ségszámítás kurzushoz Véletlen kísérletek, események valószín sége Deníció. Egy véletlen kísérlet lehetséges eredményeit kimeneteleknek nevezzük. A kísérlet kimeneteleinek
LEGJOBB BECSLÉS Módszerek, egyszerűsítések
LEGJOBB BECSLÉS Módszerek, egyszerűsítések Tusnády Paula 2010. Június 24. 1 Tartalom Értékelési folyamat lépései Módszerek Arányosság elve Élet ági egyszerűsítések Nem-élet ági egyszerűsítések 2 Értékelési
Centrális határeloszlás-tétel
13. fejezet Centrális határeloszlás-tétel A valószínűségszámítás legfontosabb állításai azok, amelyek független valószínűségi változók normalizált összegeire vonatkoznak. A legfontosabb ilyen tételek a
Biológiai rendszerek modellellenőrzése bayesi megközelítésben
Biológiai rendszerek modellellenőrzése bayesi megközelítésben Gál Tamás Zoltán Szoftver verifikáció és validáció kiselőadás, 2013. ősz Forrás: Sumit K. Jha et al.: A Bayesian Approach to Model Checking
Kopula Függvények Kalibrálása
Kopula Függvények Kalibrálása - Tudományos Diákköri Dolgozat - Konzulens: Dr. Medvegyev Péter Készítette: Bagaméry Gerg, III. évf. Pénzügy és Számvitel BSc Pénzügy szakirány 2012. március 26. A BCE Közgáz
Gazdasági matematika II. vizsgadolgozat megoldása, június 10
Gazdasági matematika II. vizsgadolgozat megoldása, 204. június 0 A dolgozatírásnál íróeszközön kívül más segédeszköz nem használható. A dolgozat időtartama: 90 perc. Ha a dolgozat első részéből szerzett
Feladatok a Diffrenciálegyenletek IV témakörhöz. 1. Határozzuk meg következő differenciálegyenletek általános megoldását a próba függvény módszerrel.
Feladatok a Diffrenciálegyenletek IV témakörhöz 1 Határozzuk meg következő differenciálegyenletek általános megoldását a próba függvény módszerrel (a) y 3y 4y = 3e t (b) y 3y 4y = sin t (c) y 3y 4y = 8t
Hipotézis vizsgálatok
Hipotézis vizsgálatok Hipotézisvizsgálat Hipotézis: az alapsokaság paramétereire vagy az alapsokaság eloszlására vonatkozó feltevés. Hipotézis ellenőrzés: az a statisztikai módszer, amelynek segítségével
Asszociációs szabályok
Asszociációs szabályok Nikházy László Nagy adathalmazok kezelése 2010. március 10. Mi az értelme? A ö asszociációs szabály azt állítja, hogy azon vásárlói kosarak, amik tartalmaznak pelenkát, általában
Száz János. Computer finance. Oktatás, válság, martingálok
Száz János Computer finance Oktatás, válság, martingálok Bologna, SPM, BPM 90-es évek: az angol atomfizikus phd-sok több mint fele befektetési bankba ment dolgozni Bologna a Közgázon: 50 év után nincs
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 9 IX. ROBUsZTUs statisztika 1. ROBUsZTUssÁG Az eddig kidolgozott módszerek főleg olyanok voltak, amelyek valamilyen értelemben optimálisak,
Valószín ségszámítás és statisztika
Valószín ségszámítás és statisztika Informatika BSc, esti tagozat Backhausz Ágnes agnes@math.elte.hu fogadóóra: szerda 10-11 és 13-14, D 3-415 2018/2019. tavaszi félév Bevezetés A valószín ségszámítás
Értékpapírosítás felügyeleti szempontból
Értékpapírosítás felügyeleti szempontból Szeniczey Gergő, Fogyasztóvédelemért és piacfelügyeletért felelős ügyvezető igazgató, MNB Budapesti Corvinus Egyetem 2017. március 16. 1 Az európai és amerikai
Földi radaradattal támogatott csapadékmező-rekonstrukció és vízgazdálkodási alkalmazásai
Földi radaradattal támogatott csapadékmező-rekonstrukció és vízgazdálkodási alkalmazásai SZABÓ János Adolf (1) Kravinszkaja Gabriella (2) Lucza Zoltán (3) (1) HYDROInform, Hidroinformatikai Kutató, Rendszerfejlesztő,
A hitelkockázat és a feltételes követelés modellje
MÛHELY Közgazdasági Szemle, XLVIII. évf., 2001. május (430 441. o.) HORVÁTH EDIT A hitelkockázat és a feltételes követelés modellje A hitelintézetek, bankok által viselt kockázatok közül legjelentõsebbnek
Diszkréten mintavételezett függvények
Diszkréten mintavételezett függvények A függvény (jel) értéke csak rögzített pontokban ismert, de köztes pontokban is meg akarjuk becsülni időben mintavételezett jel pixelekből álló műholdkép rácson futtatott
Gyakorló feladatok. Az alábbi feladatokon kívül a félév szemináriumi anyagát is nézzék át. Jó munkát! Gaál László
Gyakorló feladatok Az alábbi feladatokon kívül a félév szemináriumi anyagát is nézzék át. Jó munkát! Gaál László I/. A vizsgaidőszak második napján a hallgatók %-ának az E épületben, %-ának a D épületben,
Idő-frekvencia transzformációk waveletek
Idő-frekvencia transzformációk waveletek Pokol Gergő BME NTI Üzemi mérések és diagnosztika 013. áprils 17. Vázlat Alapfogalmak az idő-frekvencia síkon Rövid idejű Fourier-transzformáció spektrogram Folytonos
Loss Distribution Approach
Modeling operational risk using the Loss Distribution Approach Tartalom»Szabályozói környezet»modellezési struktúra»eseményszám eloszlás»káreloszlás»aggregált veszteségek»további problémák 2 Szabályozói
STATISZTIKA. A maradék független a kezelés és blokk hatástól. Maradékok leíró statisztikája. 4. A modell érvényességének ellenőrzése
4. A modell érvényességének ellenőrzése STATISZTIKA 4. Előadás Variancia-analízis Lineáris modellek 1. Függetlenség 2. Normális eloszlás 3. Azonos varianciák A maradék független a kezelés és blokk hatástól
Matematikai statisztika I. témakör: Valószínűségszámítási ismétlés
Matematikai statisztika I. témakör: Valószínűségszámítási ismétlés Elek Péter 1. Valószínűségi változók és eloszlások 1.1. Egyváltozós eset Ismétlés: valószínűség fogalma Valószínűségekre vonatkozó axiómák
Biomatematika 15. Szent István Egyetem Állatorvos-tudományi Kar. Fodor János
Szent István Egyetem Állatorvos-tudományi Kar Biomatematikai és Számítástechnikai Tanszék Biomatematika 15. Nemparaméteres próbák Fodor János Copyright c Fodor.Janos@aotk.szie.hu Last Revision Date: November
A maximum likelihood becslésről
A maximum likelihood becslésről Definíció Parametrikus becsléssel foglalkozunk. Adott egy modell, mellyel elképzeléseink szerint jól leírható a meghatározni kívánt rendszer. (A modell típusának és rendszámának
2 Wigner Fizikai Kutatóintézet augusztus / 17
Táguló sqgp tűzgömb többkomponensű kéma kfagyása Kasza Gábor 1 és Csörgő Tamás 2,3 1 Eötvös Loránd Tudományegyetem 2 Wgner Fzka Kutatóntézet 3 Károly Róbert Főskola 2015. augusztus 17. Gyöngyös - KRF 1
Függetlenaltér-analízis
Függetlenaltér-analízis Póczos Barnabás Témavezető: Dr. Lőrincz András Eötvös Loránd Tudományegyetem Információs Rendszerek Tanszék Neural Information Processing Group Tartalomjegyzék Függetlenkomponens-analízis
Statisztika I. 8. előadás. Előadó: Dr. Ertsey Imre
Statisztika I. 8. előadás Előadó: Dr. Ertsey Imre Minták alapján történő értékelések A statisztika foglalkozik. a tömegjelenségek vizsgálatával Bizonyos esetekben lehetetlen illetve célszerűtlen a teljes
1. Példa. A gamma függvény és a Fubini-tétel.
. Példa. A gamma függvény és a Fubini-tétel.. Az x exp x + t )) függvény az x, t tartományon folytonos, és nem negatív, ezért alkalmazható rá a Fubini-tétel. I x exp x + t )) dxdt + t dt π 4. [ exp x +
Abszolút folytonos valószín ségi változó (4. el adás)
Abszolút folytonos valószín ségi változó (4. el adás) Deníció (Abszolút folytonosság és s r ségfüggvény) Az X valószín ségi változó abszolút folytonos, ha van olyan f : R R függvény, melyre P(X t) = t
Bevezetés. Valószínűségszámítás 2 előadás III. alk. matematikus szak. Irodalom. Egyéb info., számonkérés. Cél. Alapfogalmak (ismétlés)
Valószínűségszámítás 2 előaás III. alk. matematikus szak 2016/2017 1. félév Zempléni Anrás Bevezetés Iroalom, követelmények A félév célja Alapfogalmak mértékelméleti alapon Kapcsolóás a val.szám. 1-hez
Kockázatos pénzügyi eszközök
Kockázatos pénzügyi eszközök Tulassay Zsolt zsolt.tulassay@uni-corvinus.hu Tőkepiaci és vállalati pénzügyek 2006. tavasz Budapesti Corvinus Egyetem 2006. március 1. Motiváció Mi a fő különbség (pénzügyi
Együ ttes e s vetü leti eloszlá s, sü rü se gfü ggve ny, eloszlá sfü ggve ny
Együ ttes e s vetü leti eloszlá s, sü rü se gfü ggve ny, eloszlá sfü ggve ny Szűk elméleti összefoglaló Együttes és vetületi eloszlásfüggvény: X = (X, X, X n ) valószínűségi vektorváltozónak hívjuk. X
A Statisztika alapjai
A Statisztika alapjai BME A3c Magyar Róbert 2016.05.12. Mi az a Statisztika? A statisztika a valóság számszerű információinak megfigyelésére, összegzésére, elemzésére és modellezésére irányuló gyakorlati
Statisztikai következtetések Nemlineáris regresszió Feladatok Vége
[GVMGS11MNC] Gazdaságstatisztika 10. előadás: 9. Regressziószámítás II. Kóczy Á. László koczy.laszlo@kgk.uni-obuda.hu Keleti Károly Gazdasági Kar Vállalkozásmenedzsment Intézet A standard lineáris modell
Több valószínűségi változó együttes eloszlása, korreláció
Tartalomjegzék Előszó... 6 I. Valószínűségelméleti és matematikai statisztikai alapok... 8 1. A szükséges valószínűségelméleti és matematikai statisztikai alapismeretek összefoglalása... 8 1.1. Alapfogalmak...
A Markovi forgalomanalízis legújabb eredményei és ezek alkalmazása a távközlő hálózatok teljesítményvizsgálatában
A Markovi forgalomanalízis legújabb eredményei és ezek alkalmazása a távközlő hálózatok teljesítményvizsgálatában Horváth Gábor ghorvath@hit.bme.hu (Horváth András, Telek Miklós) - p. 1 Motiváció, problémafelvetés
Pénzügyi matematika. Vizsgadolgozat I. RÉSZ. 1. Deniálja pontosan, mit értünk amerikai vételi opció alatt!
NÉV: NEPTUN KÓD: Pénzügyi matematika Vizsgadolgozat I. RÉSZ Az ebben a részben feltett 4 kérdés közül legalább 3-ra kell hibátlan választ adni ahhoz, hogy a vizsga sikeres lehessen. Kett vagy kevesebb
GVMST22GNC Statisztika II.
GVMST22GNC Statisztika II. 4. előadás: 9. Kétváltozós korreláció- és regressziószámítás Kóczy Á. László koczy.laszlo@kgk.uni-obuda.hu Keleti Károly Gazdasági Kar Vállalkozásmenedzsment Intézet Korrelációszámítás
Eszközárbuborékok matematikai modellezése 1
2013. TIZENKETTEDIK ÉVFOLYAM 3. SZÁM 209 CZENE ANNA LUKÁCS MIKLÓS Eszközárbuborékok matematikai modellezése 1 Dolgozatunk célja az eszközárbuborékok matematikai modellezési lehetőségének a vizsgálata.
Ingatlanbefektetések elemzése
Ingatlanbefektetések elemzése Előadás Ingatlanvagyon-értékelő és közvetítő Szakképesítés, Ingatlankezelő Szakképesítés A-V. modul Tőkeköltségvetés: Lehetséges teljes bevétel - Kihasználatlanságból eredő
ÉRZÉKELŐK ÉS BEAVATKOZÓK I. 3. MÉRÉSFELDOLGOZÁS
ÉRZÉKELŐK ÉS BEAVATKOZÓK I. 3. MÉRÉSFELDOLGOZÁS Dr. Soumelidis Alexandros 2018.10.04. BME KÖZLEKEDÉSMÉRNÖKI ÉS JÁRMŰMÉRNÖKI KAR 32708-2/2017/INTFIN SZÁMÚ EMMI ÁLTAL TÁMOGATOTT TANANYAG Mérés-feldolgozás
Tartalomjegyzék I. RÉSZ: KÍSÉRLETEK MEGTERVEZÉSE
Tartalomjegyzék 5 Tartalomjegyzék Előszó I. RÉSZ: KÍSÉRLETEK MEGTERVEZÉSE 1. fejezet: Kontrollált kísérletek 21 1. A Salk-oltás kipróbálása 21 2. A porta-cava sönt 25 3. Történeti kontrollok 27 4. Összefoglalás
Vállalkozási finanszírozás kollokvium
Harsányi János Főiskola Gazdaságtudományok tanszék Vállalkozási finanszírozás kollokvium F Név: soport: Tagozat: Elért pont: Érdemjegy: Javította: 43 50 pont jeles 35 42 pont jó 27 34 pont közepes 19 26
Valószínűségi változók. Várható érték és szórás
Matematikai statisztika gyakorlat Valószínűségi változók. Várható érték és szórás Valószínűségi változók 2016. március 7-11. 1 / 13 Valószínűségi változók Legyen a (Ω, A, P) valószínűségi mező. Egy X :
A valószínűségszámítás elemei
A valószínűségszámítás elemei Kísérletsorozatban az esemény relatív gyakorisága: k/n, ahol k az esemény bekövetkezésének abszolút gyakorisága, n a kísérletek száma. Pl. Jelenség: kockadobás Megfigyelés:
A vállalati pénzügyi döntések fajtái
A vállalati pénzügyi döntések fajtái Hosszú távú finanszírozási döntések Befektetett eszközök Forgóeszközök Törzsrészvények Elsőbbségi részvények Hosszú lejáratú kötelezettségek Rövid lejáratú kötelezettségek