A 2015/2016. tanévi Országos Középiskolai Tanulmányi Verseny második forduló FIZIKA II. KATEGÓRIA. Javítási-értékelési útmutató

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "A 2015/2016. tanévi Országos Középiskolai Tanulmányi Verseny második forduló FIZIKA II. KATEGÓRIA. Javítási-értékelési útmutató"

Átírás

1 Oktatási Hiatal A 215/216. tanéi Országos Középiskolai Tanulmányi Verseny második forduló FIZIKA II. KATEGÓRIA Jaítási-értékelési útmutató 1. feladat. Az ábrán látható ék tömege M = 3 kg, a rá helyezett korongé m = 2 kg. Az ék és a talaj közötti súrlódás együtthatója =,4. Az éken jelzett szög = 3. A korongot abban a pillanatban engedjük el, amikor az ékre ízszintese irányú, állandó nagyságú erőt kezdünk kifejteni. a) Mekkora erőel kell az ékre hatnunk, hogy az ék és a korong az indítás után bármely időpillanatig azonos utat tegyen meg? b) Mekkora az ék és a korong elmozdulása t =,4 s alatt, ha A = 15 m/s 2 állandó gyorsulással toljuk az éket? (A korong nem csúszik meg.) Az a) kérdéshez A b) kérdéshez Megoldás: a) Akkor tesz meg ugyanakkora utat az ék és a korong, ha teljesen együtt mozognak, agyis a korong nem fordul el az éken, olyan a mozgása, mintha oda lenne ragaszta. Ekkor a rendszer gyorsulása: Ugyanekkora a korong gyorsulása is. Miel a korong nem fordul el, így a korongra nem hat súrlódási erő, a korongra csupán a nehézségi erő és a kényszererő hat, de ezek hatásonala átmegy a korong tömegközéppontján, tehát ezek nem forgatnak. A nehézségi erő és a lejtőre merőleges kényszererő eredője eredményezi a korong gyorsulását. OKTV 215/ forduló

2 Az ábrán látható erők alapján az eredő erőre ezt írhatjuk fel: agyis a korong gyorsulása:. Ha ezt a gyorsulást egyenlőé tesszük a korábban kiszámolt gyorsulással, akkor az egyenletből kifejezhetjük az F erőt: Az adatok behelyettesítése után g = 1 m/s 2 -tel számola F = 48,87 N égeredményt kapunk, míg g = 9,81 m/s 2 -tel számola F = 47,94 N égeredményre jutunk. Megjegyzés: A rendszerrel együtt mozgó gyorsuló onatkoztatási rendszert használa is megoldhatjuk a feladatot. Ekkor a korong áll, a rá ható erők (beleérte a ma tehetetlenségi erőt is) nulla eredőt adnak (lásd az ábrát). Erről az ábráról leolashatjuk: agyis a korong gyorsulása az inercia-rendszerben. Azt is megállapíthatjuk, hogy a gyorsuló rendszerben a korong és az ék együttese is áll, tehát az erőegyensúlyra a köetkező összefüggést írhatjuk fel (nem elfelejte most a (m+m)a fiktí tehetetlenségi erőt: amiből a korábban kiszámított gyorsulást kaphatjuk meg. Ettől kezde a megoldás formailag teljesen megegyezik az inercia rendszert használó számítással. b) Ebben az esetben a gyorsuló ék a korong alá csúszik, agy más szóal a korong felgördül az ékre. Vizsgáljuk meg a korongra ható erőket, melyek az ábrán láthatók. A (tapadási) súrlódási erő forgatja a korongot: ahol R a korong sugara, β pedig a szöggyorsulása. Ebből az egyenletből érdemes kifejezni az OKTV 215/ forduló

3 kerületi gyorsulást, mert ennek fontos szerepe an a tisztán gördülő korong mozgásának kényszerfeltételében, amit a köetkező ábráról olashatunk le. Kapcsolatot találhatunk az ék A gyorsulása, az Rβ kerületi (az ékhez iszonyított) gyorsulás, alamint a korong középpontja gyorsulásának a x ízszintes és a y függőleges összeteője között: A korong tömegközéppontjának ízszintes és függőleges gyorsulását leíró dinamikai egyenletek a köetkezők: Ebbe a két egyenletbe helyettesítsük be a gyorsulás komponenseket, és rendezzük az egyenleteket: Az alsó egyenletből fejezzük ki a K kényszererőt: és helyettesítsük be a felső egyenletbe, amiből így az S súrlódási erő megkapható: A súrlódási erő segítségéel kiszámíthatjuk a korong ízszintes és függőleges gyorsulás összeteőit: A korong eredő gyorsulása: és ennek alapján a korong elmozdulása t =,4 s alatt: Az ék elmozdulása: OKTV 215/ forduló

4 Megjegyzések: 1. A feladat b) részét is meg lehet oldani gyorsuló koordinátarendszerben, amit célszerű az ékhez rögzíteni. Ekkor az ék áll, és rajta felgördül a korong. A köetkező ábra mutatja a korongra ható erőket, beleérte a gyorsuló rendszerben fellépő ma = 3 N nagyságú fiktí tehetetlenségi erőt is. A korong szöggyorsulására most is ugyanazt az egyenletet írhatjuk fel, mint korábban: amiből iszont meghatározhatjuk a korong tömegközéppontjának az ékhez iszonyított (felfelé pozití) gyorsulását: Ezek után a lejtőel párhuzamos erőösszeteők dinamikai egyenletét írjuk fel: és helyettesítsük be ide az ékhez képesti a gyorsulás korábbi kifejezését, majd fejezzük ki a súrlódási erőt: mely megegyezik az inercia-rendszerben számított súrlódás erőel. Így megkaphatjuk az ékhez képesti gyorsulás értékét is: Most issza kell térnünk az álló rendszerbe, hogy megkaphassuk abban is a korong gyorsulását: Visszakaptuk a korábban már kiszámított gyorsulásokat, és innen már a megoldás megegyezik az inercia-rendszerbeliel. 2. Adataink alapján a korongra ható S súrlódási erő 5,33 N, a K kényszererő pedig 32,3 N. Ennek alapján a korong tiszta gördülése akkor teljesül, ha a tapadási súrlódási együttható értéke nagyobb, mint.165. A feladat szöege ezt feltételezte. OKTV 215/ forduló

5 2. feladat. Nagyon ékony huzalból készült gyűrű, amelynek átmérője d = 6 mm, fajlagos ellenállása = m, sűrűsége = kg/m 3, egyenesen átrepül egy mágnes pólusai között, miközben nem fordul el. Repülés közben a gyűrű sebességektora párhuzamos a gyűrű síkjáal. A gyűrű középpontja az x tengely mentén mozog. A mágneses indukcióektor gyűrűre merőleges komponense az x- tengely különböző pontjaiban az ábrán látható módon függ az x koordinátától, ahol T, a = 1 cm. Becsüljük meg a gyűrű árhatóan kicsiny sebességáltozását, ha a berepülés előtt = 2 m/s nagyságú sebessége olt! (Tekintsünk el a graitáció okozta sebességáltozástól). I. megoldás. Az elrendezés ázlatosan így néz ki: Vegyük észre, hogy a feladat megoldása szempontjából csak a mágneses mező gyűrűre merőleges komponensének an jelentősége. A mozgó gyűrűben a áltozó mágneses mező feszültséget indukál, így a gyűrűben áram folyik. A mozgó gyűrűre a mágneses mező Lenztörénye szerint fékező erőt gyakorol, tehát a sebessége csökkeni fog, miközben áthalad a mágneses mezőn. A pólusok közti repülés ideje alatt a gyűrűben Joule-hő keletkezik, amely egyenlő a gyűrű mozgási energiájának megáltozásáal. A mozgási energia addig áltozik, amíg a gyűrű a nem nulla indukciójú mágneses mezőben mozog. Tegyük fel, hogy a sebességáltozás nem túl nagy (ezt a égén tudjuk ellenőrizni, hogy teljesül-e). Toábbá, miel a gyűrű méretei kicsinyek a mező x irányú kiterjedéséhez képest, nem kell foglalkoznunk a mágneses mezőbe aló belépés és kilépés átmeneti effektusaial. Ezek alapján a gyűrűben indukálódó áram nagysága felhasznála, hogy B lineárisan áltozik az x táolsággal, toábbá a sebességáltozás áramra gyakorolt hatását elhagya I = 1 Φ R t = 1 B A x 1 BA = = állandó, R a t R a x ahol A a gyűrű területe, és. (Az áram iránya félúton megfordul) t A repülés ideje a mágneses mezőben jó közelítéssel 2a t =. Ekkor a gyűrűben keletkezett Joule-hő ahol R a gyűrű ellenállása. W = I 2 Rt = OKTV 215/ forduló 2 2 2BA, ar A keletkező Joule-hő miatt a gyűrű mozgási energiája csökken: 2 2 m m( W= ) m, 2 2 ahol m a gyűrű tömege és felhasználtuk, hogy <<. A Joule-hő és a mozgási energia megáltozásának összeetéséből kapjuk, hogy

6 2B 2 A 2 =. mar Szükség an még némi mellékszámításra, mert a gyűrű A területe, m tömege és R ellenállása nincs közetlenül megada, de az adatok segítségéel kifejezhetők: m = d S, ahol S a huzal d d keresztmetszete, R =, A=, és d = 6 mm a gyűrű átmérője. S 42 Behelyettesíte a sebességáltozásra a köetkező összefüggést kapjuk: = 2 2 B d 8 a Az adatok behelyettesítése után =,36 m/s adódik, tehát alóban teljesül, hogy a sebességáltozás kicsi az eredeti sebességhez képest, annak mindössze 1,8 %-a. II. megoldás. A feladat az erő kiszámításáal is megoldható. A gyűrűt tekinthetjük n oldalú szabályos sokszögnek, ahol n igen nagy természetes szám. A sokszög minden oldalának igen kicsiny hossza legyen l, melyre tejesül a köetkező feltétel:, ahol d a gyűrű átmérője. A gyűrűben (sokszögben) folyó áram természetesen megegyezik az első megoldásban kiszámított 1 1 B A x 1 BA I = = = = állandó R t R a t R a értékkel. Először tekintsünk egy olyan kicsiny téglalapot, melynek hosszabbik oldala éppen a gyűrű x tengellyel párhuzamos d átmérőjéel egyezik meg, és erre merőleges kisebbik oldala l hosszúságú (lásd az ábrát). A két kisebbik oldalra ható erő egymással ellentétes, mert az ott futó gyűrűdarabokban az áramok ellentétes irányúak. Az eredő erő: Vigyázzunk arra, hogy az erő és a mágneses indukció formulájában a zárójelek nem szorzást jelölnek, hanem azt mutatják, hogy a függényt melyik helyen értelmezzük. Vegyük észre, hogy az összefüggésben szereplő dl szorzat éppen a kiálasztott keskeny téglalap területéel egyezik meg, amit az eredő erő kiszámításához B I/a-al kell megszoroznunk. Ezek után tekintsünk általánosan egy szintén az x tengellyel párhuzamos keskeny trapézt, melynek két kicsiny oldala l hosszúságú, és ezekben a drótelemekben szintén I áram folyik egymással ellentétes irányban. A köetkező ábráról leolasható ezeknek az áramelemeknek az x irányú eredője (az x irányra merőleges erőjárulékok kiesnek, mert minden átmérő feletti trapéznak megan az átmérő alatti párja). OKTV 215/ forduló

7 Vegyük észre, hogy az utolsó kifejezés első zárójelében a keskeny trapéz alaplapjának hosszúsága, míg a második zárójelben a trapéz magassága szerepel, tehát a két zárójeles kifejezés szorzata (jó közelítéssel) a trapéz területéel egyezik meg. Az erő formulájában ezt a területet megint B I/a-al kell megszoroznunk. Ha a gyűrűt közelítő sokszöget a fenti módon keskeny trapézokra bontjuk, akkor mindegyik esetében azt állapíthatjuk meg, hogy az egyes drótelem-párokra akkora fékezőerő hat, ami úgy adható meg, hogy a trapéz területét megszorozzuk B I/a-al. Tehát a teljes gyűrűre (jó közelítéssel) akkora fékezőerő hat, ami megegyezik a gyűrű A területe és a B I/a kifejezés szorzatáal: ahol az IA szorzat éppen a gyűrű mágneses momentuma: BA BA IA =, így F = 2. R a ar 2 2 F BA A lassulás mértéke = m 2, ahol m a gyűrű tömege. Így a sebességáltozás (ha a repülés ma R 2a idejét t = értékkel közelítjük): F 2B 2 A 2 = t =. m mar A kapott kifejezés azonos a munkatétel segítségéel kapott értékkel. Megjegyzés: A fenti számolásban többszörösen kihasználtuk, hogy a gyűrű kicsi a 2a táolsághoz képest. A fluxus kiszámításakor lényegében a gyűrű középpontjában fellépő B- el számoltunk, ami a mágneses indukció lineáris függése miatt megegyezik a tér átlagértékéel. A számolásban közelítésként jelenik meg az, hogy elhanyagoltuk a tér gradiensének előjeláltozását. Ugyanis amikor a nöekő mágneses indukció csökkenni kezd, akkor lesz egy olyan pillanat, amikor a fluxus-áltozás nulla, tehát ekkor a gyűrűben nem indukálódik áram, egy röid időre megszűnik a fékezés, de ez a teljes folyamathoz képest elhanyagolható. Megjegyzés: Érdekes, hogy a sebességáltozás nem függ a gyűrű kezdeti sebességétől, azonban az eredmény csak akkor elfogadható, ha a sebességáltozás sokkal kisebb a gyűrű haladási sebességénél. OKTV 215/ forduló

8 3. feladat. Egy nyári napon egy hosszú, egyenes, ízszintes országút szélén árakozik egy rendőrautó napkelte óta nyitott ablakokkal. Az autóban ülő unatkozó rendőr őrmester ért alamicskét a fizikához, így tudja, hogy az úton a táolban látszó fényes folt nem az úton léő íz tükröződéséből származik, biztos abban, hogy az útfelület száraz. Az őrmester megfigyeli, hogy a reggel 8 órakor a tőle 25 méterre léő fényes folt egy óra alatt egy oszloppal jön közelebb, és tudja, hogy két útjelző oszlop között a táolság 5 méter. Autójának külső és belső hőmérőjét használa az őrmester megállapítja, hogy az útfelület feletti 1-2 cm astagságú átmeneti rétegtől eltekinte (ahol nem tud pontosan mérni) a leegő hőmérséklete állandó. Az átmeneti réteg felett reggel 8 órakor 15 C, illete 9 órakor 18 C a hőmérséklet. Az autóban üle a feje mindégig 1,2 méteres magasságban olt. Az őrmester eltöpreng azon, hogy ezekből a megfigyelésekből ajon megállapítható-e az országút felforrósodó felületének hőmérséklete. Saját maga számára reménytelennek látja a feladatot, különösen azért, mert az átmeneti rétegben a leegő függőleges irányú hőmérsékletfüggéséről tudja, hogy azt elméletileg nem igazán lehet meghatározni, azonban erről nincsenek részletes mérési adatai. Szomorkodását csodálkozás áltja fel, amikor észreeszi, hogy 1 órára a folt isszamászott a 8 órakor elfoglalt helyére. Annyira elámul, hogy elfelejti leolasni autója hőmérőinek az állását. Segítsünk az őrmesternek, és határozzuk meg, hogy mekkora olt az út felületi hőmérséklete reggel 8 és 9 órakor! Feltételezhetjük, hogy az útfelület hőmérséklete 9 és 1 óra között nem áltozott. Mekkora a leegő hőmérséklete az őrmester fejének magasságában 1 órakor? Útmutatás: Az útfelület közetlen közelében az út és a leegő hőmérséklete megegyezik. A leegő abszolút törésmutatója 15 C-on és 1 atmoszféra nyomáson n = 1,276. A légnyomás a megfigyelés közben nem áltozott, mindégig 1 atmoszféra olt. A leegő n abszolút törésmutatója függ a leegő sűrűségétől, mégpedig úgy, hogy (n 1) jó közelítéssel egyenesen arányos a leegő sűrűségéel. Megoldás. A Snellius-Descartes törényből köetkezik, hogy egymással párhuzamos, különböző törésmutatójú rétegekben egy fénysugár úgy halad, hogy az aktuális abszolút törésmutató és a törési szög szinuszának szorzata állandó: sin 1 n2 sin 2 n3 sin 4 n3,,,... n1 sin 1 n2 sin 2 n3 sin 3... áll. sin n sin n sin n Ez az összefüggés akkor is érényes, ha a közegben a törésmutató a beesési merőleges mentén folytonosan áltozik. OKTV 215/ forduló

9 A fényes folt a teljes isszaerődés miatt jön létre, a felforrósodott útfelület úgy iselkedik, mint egy tökéletes tükör. A folt helyén az útfelületről kiinduló fénysugarak nem juthatnak el a szemünkbe. A folt határára (ahol már tükröző az útfelület) a beesési szög 9, tehát a köetkező egyenletet írhatjuk fel: ahol a leegő törésmutatója fejmagasságban, illete a törésmutató az út felszínéhez nagyon közel. A fényfolt széléről induló fénysugár hozzáetőleges útját a köetkező ábra szemlélteti: A 8 órás adat esetében = 1,276 adott, mert az őrmester feje körül a hőmérséklet ekkor T = 15 C olt. A leegő sűrűsége (állandó nyomás mellett) fordítottan arányos az abszolút hőmérsékletéel: Kihasznála, hogy a feladat szerint (n 1) jó közelítéssel egyenesen arányos a leegő sűrűségéel, a köetkező összefüggést írhatjuk fel: ahol az A állandó értékét a megadott törésmutatóból számíthatjuk ki: Az útfelület 8 órai hőmérsékletét tehát a köetkező összefüggésből kaphatjuk meg: ahol L 8 = 25 m, h = 1,2 m és = 1,276. A számítást elégeze = 3,7 K 27,6 C adódik. Teljesen hasonló módon járhatunk el a 9 órás útfelszín hőmérsékletének számításkor is: ahol most T = 291,15 K és L 9 = 2 m. Elégeze a számítást: = 311,7 K 38,5 C. A 1 órás kérdésnél is ugyanezt az egyenletet kell használnunk, de most a bal oldalon léő T hőmérséklet az ismeretlen: A behelyettesítés után T = 298,2 K 25,1 C adódik. OKTV 215/ forduló

10 Pontozási útmutató 1. feladat a) A kíánt folyamat megalósulásának kinematikai és dinamikai feltételei A rendszer mozgásegyenletének helyes felírása A keresett erő meghatározása b) A dinamikai egyenletek felírása A kényszerfeltétel meghatározása A számítások elégzése 3 pont Az ék elmozdulásának meghatározása 1 pont A korong talajhoz iszonyított elmozdulásának meghatározása összesen: 2. feladat A gyűrűben indukált áram meghatározása A mágneses mezőn aló átrepülés ideje A tömeg, az ellenállás, a terület meghatározása Joule-hő megadása Kinetikus energia áltozása A sebességáltozásra onatkozó égső összefüggés A sebességáltozás numerikus értéke Összesen 3. feladat A teljes isszaerődés fontosságának felismerése: Az összefüggés felírása: A T 8 hőmérséklet kiszámítása: A T 9 hőmérséklet kiszámítása: A T hőmérséklet kiszámítása: Összesen: A megoldásban ázoltaktól eltérő számításokra, amelyek elileg helyesek és helyes égeredményre ezetnek, az alkérdésekre adható teljes pontszám jár. A nehézségi gyorsulás értékére 9,81 m/s 2 agy 1 m/s 2 egyaránt elfogadható, hacsak a feladat máshogy nem rendelkezik. OKTV 215/ forduló

Tornyai Sándor Fizikaverseny 2009. Megoldások 1

Tornyai Sándor Fizikaverseny 2009. Megoldások 1 Tornyai Sánor Fizikaerseny 9. Megolások. Aatok: á,34 m/s, s 6,44 km 644 m,,68 m/s,,447 m/s s Az első szakasz megtételéez szükséges iő: t 43 s. pont A másoik szakaszra fennáll, ogy s t pont s + s t + t

Részletesebben

MÁGNESES TÉR, INDUKCIÓ

MÁGNESES TÉR, INDUKCIÓ Egy vezetéket 2 cm átmérőjű szigetelő testre 500 menettel tekercselünk fel, 25 cm hosszúságban. Mekkora térerősség lép fel a tekercs belsejében, ha a vezetékben 5 amperes áram folyik? Mekkora a mágneses

Részletesebben

Tömegpontok mozgása egyenes mentén, hajítások

Tömegpontok mozgása egyenes mentén, hajítások 2. gyakorlat 1. Feladatok a kinematika tárgyköréből Tömegpontok mozgása egyenes mentén, hajítások 1.1. Feladat: Mekkora az átlagsebessége annak pontnak, amely mozgásának első szakaszában v 1 sebességgel

Részletesebben

Mérések állítható hajlásszögű lejtőn

Mérések állítható hajlásszögű lejtőn A mérés célkitűzései: A lejtőn lévő testek egyensúlyának vizsgálata, erők komponensekre bontása. Eszközszükséglet: állítható hajlásszögű lejtő különböző fahasábok kiskocsi erőmérő 20 g-os súlyok 1. ábra

Részletesebben

Mit nevezünk nehézségi erőnek?

Mit nevezünk nehézségi erőnek? Mit nevezünk nehézségi erőnek? Azt az erőt, amelynek hatására a szabadon eső testek g (gravitációs) gyorsulással esnek a vonzó test centruma felé, nevezzük nehézségi erőnek. F neh = m g Mi a súly? Azt

Részletesebben

2.3 Newton törvények, mozgás lejtőn, pontrendszerek

2.3 Newton törvények, mozgás lejtőn, pontrendszerek Keresés (http://wwwtankonyvtarhu/hu) NVDA (http://wwwnvda-projectorg/) W3C (http://wwww3org/wai/intro/people-use-web/) A- (#) A (#) A+ (#) (#) English (/en/tartalom/tamop425/0027_fiz2/ch01s03html) Kapcsolat

Részletesebben

A 2015/2016. tanévi Országos Középiskolai Tanulmányi Verseny első forduló FIZIKA II. KATEGÓRIA. Javítási-értékelési útmutató

A 2015/2016. tanévi Országos Középiskolai Tanulmányi Verseny első forduló FIZIKA II. KATEGÓRIA. Javítási-értékelési útmutató Oktatási Hiatal A 015/016. tanéi Országos Középiskolai Tanulmányi Verseny első forduló FIZIKA II. KATEGÓRIA Jaítási-értékelési útmutató 1. feladat: Súrlódásmentes, ízszintes felületen L = 30 cm élhosszúságú

Részletesebben

A II. kategória Fizika OKTV mérési feladatainak megoldása

A II. kategória Fizika OKTV mérési feladatainak megoldása Nyomaték (x 0 Nm) O k t a t á si Hivatal A II. kategória Fizika OKTV mérési feladatainak megoldása./ A mágnes-gyűrűket a feladatban meghatározott sorrendbe és helyre rögzítve az alábbi táblázatban feltüntetett

Részletesebben

FIZIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

FIZIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Fizika közészint ÉRETTSÉGI VIZSGA 0. május 7. FIZIKA KÖZÉPSZITŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ EMZETI ERŐFORRÁS MIISZTÉRIUM A dolgozatokat az útmutató utasításai szerint, jól köethetően

Részletesebben

Figyelem! Csak belső és saját használatra! Terjesztése és másolása TILOS!

Figyelem! Csak belső és saját használatra! Terjesztése és másolása TILOS! Figyelem! Csak belső és saját használatra! Terjesztése és másolása TILOS! 1. példa Vasúti kocsinak a 6. ábrán látható ütközőjébe épített tekercsrugóban 44,5 kn előfeszítő erő ébred. A rugó állandója 0,18

Részletesebben

FIZIKA ZÁRÓVIZSGA 2015

FIZIKA ZÁRÓVIZSGA 2015 FIZIKA ZÁRÓVIZSGA 2015 TESZT A következő feladatokban a három vagy négy megadott válasz közül pontosan egy helyes. Írd be az általad helyesnek vélt válasz betűjelét a táblázat megfelelő cellájába! Indokolni

Részletesebben

Dinamika. A dinamika feladata a test(ek) gyorsulását okozó erők matematikai leírása.

Dinamika. A dinamika feladata a test(ek) gyorsulását okozó erők matematikai leírása. Dinamika A dinamika feladata a test(ek) gyorsulását okozó erők matematikai leírása. Newton törvényei: I. Newton I. axiómája: Minden nyugalomban lévő test megtartja nyugalmi állapotát, minden mozgó test

Részletesebben

FIZIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

FIZIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Fizika középszint ÉRETTSÉGI VIZSGA 0. október 7. FIZIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ NEMZETI ERŐFORRÁS MINISZTÉRIUM A dolgozatokat az útmutató utasításai szerint,

Részletesebben

= Φ B(t = t) Φ B (t = 0) t

= Φ B(t = t) Φ B (t = 0) t 4. Gyakorlat 32B-3 Egy ellenállású, r sugarú köralakú huzalhurok a B homogén mágneses erőtér irányára merőleges felületen fekszik. A hurkot gyorsan, t idő alatt 180 o -kal átforditjuk. Számitsuk ki, hogy

Részletesebben

4. MECHANIKA-MECHANIZMUSOK ELŐADÁS (kidolgozta: Szüle Veronika, egy. ts.)

4. MECHANIKA-MECHANIZMUSOK ELŐADÁS (kidolgozta: Szüle Veronika, egy. ts.) SZÉHNYI ISTVÁN YTM LKLMZOTT MHNIK TNSZÉK. MHNIK-MHNIZMUSOK LŐÁS (kidolgozta: Szüle Veronika, egy. ts.) yalugép sebességábrája: F. ábra: yalugép kulisszás mechanizmusának onalas ázlata dott: az ábrán látható

Részletesebben

A 2014/2015. tanévi Országos Középiskolai Tanulmányi Verseny második forduló FIZIKA II. KATEGÓRIA. Javítási-értékelési útmutató

A 2014/2015. tanévi Országos Középiskolai Tanulmányi Verseny második forduló FIZIKA II. KATEGÓRIA. Javítási-értékelési útmutató Oktatási Hivatal A 14/15. tanévi Országos Középiskolai Tanulmányi Verseny második forduló FIZIKA II. KATEGÓRIA Javítási-értékelési útmutató 1.) A fényképen látható vízszintes, szögletes U-alakú vályúban

Részletesebben

2010/2011. tanév Országos Középiskolai Tanulmányi Verseny döntő forduló. FIZIKA II. kategória FELADATLAP ÉS MEGOLDÁS

2010/2011. tanév Országos Középiskolai Tanulmányi Verseny döntő forduló. FIZIKA II. kategória FELADATLAP ÉS MEGOLDÁS Oktatási Hiatal 2010/2011. tané Országos Középiskolai Tanulmányi Verseny döntő forduló FIZIKA II. kategória FELAATLAP MEGOLÁ Feladatok: Mérések függőleges alumínium, illete sárgaréz csőben eső mágnessel.

Részletesebben

Concursul Preolimpic de Fizică România - Ungaria - Moldova Ediţia a XVI-a, Zalău Proba experimentală, 3 iunie 2013

Concursul Preolimpic de Fizică România - Ungaria - Moldova Ediţia a XVI-a, Zalău Proba experimentală, 3 iunie 2013 Concursul Preolimpic de Fizică România - Ungaria - Moldova Ediţia a XVI-a, Zalău Proba experimentală, 3 iunie 2013 2. Kísérleti feladat (10 pont) B rész. Rúdmágnes mozgásának vizsgálata fémcsőben (6 pont)

Részletesebben

Hidrosztatika. Folyadékok fizikai tulajdonságai

Hidrosztatika. Folyadékok fizikai tulajdonságai Hidrosztatika A Hidrosztatika a nyugalomban lévő folyadékoknak a szilárd testekre, felületekre gyakorolt hatásával foglalkozik. Tárgyalja a nyugalomban lévő folyadékok nyomásviszonyait, vizsgálja a folyadékba

Részletesebben

Munka, energia Munkatétel, a mechanikai energia megmaradása

Munka, energia Munkatétel, a mechanikai energia megmaradása Munka, energia Munkatétel, a mechanikai energia megmaradása Munkavégzés történik ha: felemelek egy könyvet kihúzom az expandert A munka Fizikai értelemben munkavégzésről akkor beszélünk, ha egy test erő

Részletesebben

. Számítsuk ki a megadott szög melletti befogó hosszát.

. Számítsuk ki a megadott szög melletti befogó hosszát. Szögek átváltása fokról radiánra és fordítva 2456. Hány fokosak a következő, radiánban (ívmértékben) megadott szögek? π π π π 2π 5π 3π 4π 7π a) π ; ; ; ; ; b) ; ; ; ;. 2 3 4 8 3 6 4 3 6 2457. Hány fokosak

Részletesebben

Jegyzőkönyv. mágneses szuszceptibilitás méréséről (7)

Jegyzőkönyv. mágneses szuszceptibilitás méréséről (7) Jegyzőkönyv a mágneses szuszceptibilitás méréséről (7) Készítette: Tüzes Dániel Mérés ideje: 8-1-1, szerda 14-18 óra Jegyzőkönyv elkészülte: 8-1-8 A mérés célja A feladat egy mágneses térerősségmérő eszköz

Részletesebben

M/D/13. Szorozzuk meg az egyenlet mindkét oldalát a közös nevezővel, 12-vel; így a következő egyenlethez jutunk: = 24

M/D/13. Szorozzuk meg az egyenlet mindkét oldalát a közös nevezővel, 12-vel; így a következő egyenlethez jutunk: = 24 OKTATÁSI MINISZTÉRIUM M/D/13 Dolgozók gimnáziuma Dolgozók szakközépiskolája Szakmunkások szakközépiskolája intenzív tagozat) 003. május ) Határozza meg a következő egyenlet racionális gyökét! 1 3 4 + 5

Részletesebben

OPTIKA. Geometriai optika. Snellius Descartes-törvény. www.baranyi.hu 2010. szeptember 19. FIZIKA TÁVOKTATÁS

OPTIKA. Geometriai optika. Snellius Descartes-törvény. www.baranyi.hu 2010. szeptember 19. FIZIKA TÁVOKTATÁS OPTIKA Geometriai optika Snellius Descartes-törvény A fényhullám a geometriai optika szempontjából párhuzamos fénysugarakból áll. A vákuumban haladó fénysugár a geometriai egyenes fizikai megfelelője.

Részletesebben

1. Feladatok munkavégzés és konzervatív erőterek tárgyköréből. Munkatétel

1. Feladatok munkavégzés és konzervatív erőterek tárgyköréből. Munkatétel 1. Feladatok munkavégzés és konzervatív erőterek tárgyköréből. Munkatétel Munkavégzés, teljesítmény 1.1. Feladat: (HN 6B-8) Egy rúgót nyugalmi állapotból 4 J munka árán 10 cm-rel nyújthatunk meg. Mekkora

Részletesebben

FIZIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

FIZIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Fizika középszint 1413 ÉRETTSÉGI VIZSGA 014. május 19. FIZIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ EMBERI ERŐFORRÁSOK MINISZTÉRIUMA A dolgozatokat az útmutató utasításai szerint,

Részletesebben

FIZIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

FIZIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Fizika középszint 151 ÉRETTSÉGI VIZSGA 015. május 18. FIZIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ EMBERI ERŐFORRÁSOK MINISZTÉRIUMA A dolgozatokat az útmutató utasításai szerint,

Részletesebben

A 2010/2011. tanévi FIZIKA Országos Középiskolai Tanulmányi Verseny első fordulójának. feladatai fizikából. I. kategória

A 2010/2011. tanévi FIZIKA Országos Középiskolai Tanulmányi Verseny első fordulójának. feladatai fizikából. I. kategória Oktatási Hivatal A 2010/2011. tanévi FIZIKA Országos Középiskolai Tanulmányi Verseny első fordulójának feladatai fizikából I. kategória A dolgozatok elkészítéséhez minden segédeszköz használható. Megoldandó

Részletesebben

1. Feladatok merev testek fizikájának tárgyköréből

1. Feladatok merev testek fizikájának tárgyköréből 1. Feladatok merev testek fizikájának tárgyköréből Forgatónyomaték, impulzusmomentum, impulzusmomentum tétel 1.1. Feladat: (HN 13B-7) Homogén tömör henger csúszás nélkül gördül le az α szög alatt hajló

Részletesebben

A 2015/2016. tanévi Országos Középiskolai Tanulmányi Verseny első forduló FIZIKA I. KATEGÓRIA. Javítási-értékelési útmutató

A 2015/2016. tanévi Országos Középiskolai Tanulmányi Verseny első forduló FIZIKA I. KATEGÓRIA. Javítási-értékelési útmutató Oktatási Hivatal A 015/016. tanévi Országos Középiskolai Tanulmányi Verseny első forduló FIZIKA I. KATEGÓRIA Javítási-értékelési útmutató 1. feladat: A képzeletbeli OKTV/016 csillag körül körpályán keringő,

Részletesebben

Haladó mozgások A hely és a mozgás viszonylagos. A testek helyét, mozgását valamilyen vonatkoztatási ponthoz, vonatkoztatási rendszerhez képest adjuk

Haladó mozgások A hely és a mozgás viszonylagos. A testek helyét, mozgását valamilyen vonatkoztatási ponthoz, vonatkoztatási rendszerhez képest adjuk Haladó mozgások A hely és a mozgás viszonylagos. A testek helyét, mozgását valamilyen vonatkoztatási ponthoz, vonatkoztatási rendszerhez képest adjuk meg, ahhoz viszonyítjuk. pl. A vonatban utazó ember

Részletesebben

KÖRMOZGÁS, REZGŐMOZGÁS, FORGÓMOZGÁS

KÖRMOZGÁS, REZGŐMOZGÁS, FORGÓMOZGÁS KÖRMOZGÁS, REZGŐMOZGÁS, FORGÓMOZGÁS 1 EGYENLETES KÖRMOZGÁS Pálya kör Út ív Definíció: Test körpályán azonos irányban haladva azonos időközönként egyenlő íveket tesz meg. Periodikus mozgás 2 PERIODICITÁS

Részletesebben

Osztályozó, javító vizsga 9. évfolyam gimnázium. Írásbeli vizsgarész ELSŐ RÉSZ

Osztályozó, javító vizsga 9. évfolyam gimnázium. Írásbeli vizsgarész ELSŐ RÉSZ Írásbeli vizsgarész ELSŐ RÉSZ 1. Egy téglalap alakú háztömb egyik sarkából elindulva 80 m, 150 m, 80 m utat tettünk meg az egyes házoldalak mentén, míg a szomszédos sarokig értünk. Mekkora az elmozdulásunk?

Részletesebben

Mágneses szuszceptibilitás mérése

Mágneses szuszceptibilitás mérése KLASSZIKUS FIZIKA LABORATÓRIUM 7. MÉRÉS Mágneses szuszceptibilitás mérése Mérést végezte: Enyingi Vera Atala ENVSAAT.ELTE Mérés időpontja: 2011. október 5. Szerda délelőtti csoport 1. A mérés célja Az

Részletesebben

TOL A MEGYEI SZILÁRD LEÓ FIZIKAVERSE Y Szekszárd, március óra 11. osztály

TOL A MEGYEI SZILÁRD LEÓ FIZIKAVERSE Y Szekszárd, március óra 11. osztály TOL A MEGYEI SZILÁRD LEÓ FIZIKAVERSE Y Szekszárd, 2002 március 13 9-12 óra 11 osztály 1 Egyatomos ideális gáz az ábrán látható folyamatot végzi A folyamat elsõ szakasza izobár folyamat, a második szakasz

Részletesebben

Mágneses erőtér. Ahol az áramtól átjárt vezetőre (vagy mágnestűre) erő hat. A villamos forgógépek mutatós műszerek működésének alapja

Mágneses erőtér. Ahol az áramtól átjárt vezetőre (vagy mágnestűre) erő hat. A villamos forgógépek mutatós műszerek működésének alapja Mágneses erőtér Ahol az áramtól átjárt vezetőre (vagy mágnestűre) erő hat A villamos forgógépek mutatós műszerek működésének alapja Magnetosztatikai mező: nyugvó állandó mágnesek és egyenáramok időben

Részletesebben

ÖVEGES JÓZSEF ORSZÁGOS FIZIKAVERSENY II. fordulója feladatainak javítókulcsa április 5.

ÖVEGES JÓZSEF ORSZÁGOS FIZIKAVERSENY II. fordulója feladatainak javítókulcsa április 5. ÖVEGES JÓZSEF ORSZÁGOS FIZIKAVERSENY II. fordulója feladatainak javítókulcsa 2005. április 5. Számítási feladatok Valamennyi számítási feladat javítására érvényes: ha a versenyző számítási hibát vét, de

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Koordináta-geometria

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Koordináta-geometria MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Koordináta-geometria A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT. Koordináta-geometria

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT. Koordináta-geometria MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT 1) Adott két pont: A 4; 1 felezőpontjának koordinátáit! AB felezőpontja legyen F. Koordináta-geometria és B 3 1; Írja fel az AB szakasz 1 3 4

Részletesebben

= 163, 63V. Felírható az R 2 ellenállásra, hogy: 163,63V. blokk sorosan van kapcsolva a baloldali R 1 -gyel, és tudjuk, hogy

= 163, 63V. Felírható az R 2 ellenállásra, hogy: 163,63V. blokk sorosan van kapcsolva a baloldali R 1 -gyel, és tudjuk, hogy Határozzuk meg és ellenállások értékét, ha =00V, = 00, az ampermérő 88mA áramot, a voltmérő,v feszültséget jelez! Az ampermérő ellenállását elhanyagolhatóan kicsinek, a voltmérőét végtelen nagynak tekinthetjük

Részletesebben

Folyadékok és gázok mechanikája

Folyadékok és gázok mechanikája Folyadékok és gázok mechanikája Hidrosztatikai nyomás A folyadékok és gázok közös tulajdonsága, hogy alakjukat szabadon változtatják. Hidrosztatika: nyugvó folyadékok mechanikája Nyomás: Egy pontban a

Részletesebben

Érettségi feladatok: Koordináta-geometria 1/5

Érettségi feladatok: Koordináta-geometria 1/5 Érettségi feladatok: Koordináta-geometria 1/5 2003. Próba/ 13. Adott egy háromszög három csúcspontja a koordinátáival: A( 4; 4), B(4; 4) és C( 4; 8). Számítsa ki a C csúcsból induló súlyvonal és az A csúcsból

Részletesebben

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Fizika középszint 0622 ÉRETTSÉGI VIZSGA 2007. november 7. FIZIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM A dolgozatokat az útmutató utasításai

Részletesebben

Fizika 1i (keresztfélév) vizsgakérdések kidolgozása

Fizika 1i (keresztfélév) vizsgakérdések kidolgozása Fizika 1i (keresztfélév) vizsgakérdések kidolgozása Készítette: Hornich Gergely, 2013.12.31. Kiegészítette: Mosonyi Máté (10., 32. feladatok), 2015.01.21. (Talapa Viktor 2013.01.15.-i feladatgyűjteménye

Részletesebben

Fizika példák a döntőben

Fizika példák a döntőben Fizika példák a döntőben F. 1. Legyen két villamosmegálló közötti távolság 500 m, a villamos gyorsulása pedig 0,5 m/s! A villamos 0 s időtartamig gyorsuljon, majd állandó sebességgel megy, végül szintén

Részletesebben

Mérés: Millikan olajcsepp-kísérlete

Mérés: Millikan olajcsepp-kísérlete Mérés: Millikan olajcsepp-kísérlete Mérés célja: 1909-ben ezt a mérést Robert Millikan végezte el először. Mérése során meg tudta határozni az elemi részecskék töltését. Ezért a felfedezéséért Nobel-díjat

Részletesebben

Exponenciális és logaritmusos kifejezések, egyenletek

Exponenciális és logaritmusos kifejezések, egyenletek Eponenciális és logaritmusos kifejezések, egyenletek. Hatványozási azonosságok. Számítsd ki a következő hatványok pontos értékét! a) 8 b) 4 c) d) 7 e) f) 9 0, g) 0, 9 h) 6 0, 7,, i) 8 j) 6 k) 4 l) 49,.

Részletesebben

Bevezetés a modern fizika fejezeteibe. 1.(a) Rugalmas hullámok. Utolsó módosítás: szeptember 28. Dr. Márkus Ferenc BME Fizika Tanszék

Bevezetés a modern fizika fejezeteibe. 1.(a) Rugalmas hullámok. Utolsó módosítás: szeptember 28. Dr. Márkus Ferenc BME Fizika Tanszék Bevezetés a modern fizika fejezeteibe 1.(a) Rugalmas hullámok Utolsó módosítás: 2012. szeptember 28. 1 A deformálható testek mozgása (1) A Helmholtz-féle kinematikai alaptétel: A deformálható test elegendően

Részletesebben

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Fizika középszint ÉRETTSÉGI VIZSGA 2005. november 5. FIZIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI MINISZTÉRIUM A dolgozatokat az útmutató utasításai szerint, jól követhetően

Részletesebben

Vezetők elektrosztatikus térben

Vezetők elektrosztatikus térben Vezetők elektrosztatikus térben Vezető: a töltések szabadon elmozdulhatnak Ha a vezető belsejében a térerősség nem lenne nulla akkor áram folyna. Ha a felületen a térerősségnek lenne tangenciális (párhuzamos)

Részletesebben

Háromszögek ismétlés Háromszög egyenlőtlenség(tétel a háromszög oldalairól.) Háromszög szögei (Belső, külső szögek fogalma és összegük) Háromszögek

Háromszögek ismétlés Háromszög egyenlőtlenség(tétel a háromszög oldalairól.) Háromszög szögei (Belső, külső szögek fogalma és összegük) Háromszögek 2013. 11.19. Háromszögek ismétlés Háromszög egyenlőtlenség(tétel a háromszög oldalairól.) Háromszög szögei (Belső, külső szögek fogalma és összegük) Háromszögek csoportosítása szögeik szerint (hegyes-,

Részletesebben

Érettségi feladatok Koordinátageometria_rendszerezve / 5

Érettségi feladatok Koordinátageometria_rendszerezve / 5 Érettségi feladatok Koordinátageometria_rendszerezve 2005-2013 1/ 5 Vektorok 2005. május 28./12. Adottak az a (4; 3) és b ( 2; 1) vektorok. a) Adja meg az a hosszát! b) Számítsa ki az a + b koordinátáit!

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA MATEmATIkA I 8 VIII VEkTOROk 1 VEkTOR Vektoron irányított szakaszt értünk Jelölése: stb Vektorok hossza A vektor abszolút értéke az irányított szakasz hossza Ha a vektor hossza egységnyi akkor

Részletesebben

Lendület. Lendület (impulzus): A test tömegének és sebességének szorzata. vektormennyiség: iránya a sebesség vektor iránya.

Lendület. Lendület (impulzus): A test tömegének és sebességének szorzata. vektormennyiség: iránya a sebesség vektor iránya. Lendület Lendület (impulzus): A test tömegének és sebességének szorzata. vektormennyiség: iránya a sebesség vektor iránya. Lendülettétel: Az lendület erő hatására változik meg. Az eredő erő határozza meg

Részletesebben

EGYENES VONALÚ MOZGÁSOK KINEMATIKAI ÉS DINAMIKAI LEÍRÁSA

EGYENES VONALÚ MOZGÁSOK KINEMATIKAI ÉS DINAMIKAI LEÍRÁSA EGYENES VONALÚ MOZGÁSOK KINEMATIKAI ÉS DINAMIKAI LEÍRÁSA 1. A kinematika és a dinamika tárgya. Egyenes onalú egyenletes mozgás a) Kísérlet és a belőle leont köetkeztetés b) A mozgás jellemző grafikonjai

Részletesebben

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Sorozatok II.

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Sorozatok II. Sorozatok II. DEFINÍCIÓ: (Mértani sorozat) Az (a n ) valós számsorozatot mértani sorozatnak nevezzük, ha van olyan valós szám, amellyel a sorozat bármely tagját megszorozva a következő tagot kapjuk. Jelöléssel:

Részletesebben

PONTSZÁM:S50p / p = 0. Név:. NEPTUN kód: ÜLŐHELY sorszám

PONTSZÁM:S50p / p = 0. Név:. NEPTUN kód: ÜLŐHELY sorszám Kérem, þ jellel jelölje be képzését! AKM1 VBK Környezetmérnök BSc AT01 Ipari termék- és formatervező BSc AM01 Mechatronikus BSc AM11 Mechatronikus BSc ÁRAMLÁSTAN 2. FAK.ZH - 2013.0.16. 18:1-19:4 KF81 Név:.

Részletesebben

Bevezető fizika (infó), 8. feladatsor Egyenáram, egyenáramú áramkörök 2.

Bevezető fizika (infó), 8. feladatsor Egyenáram, egyenáramú áramkörök 2. evezető fizika (infó), 8 feladatsor Egyenáram, egyenáramú áramkörök 04 november, 3:9 mai órához szükséges elméleti anyag: Kirchhoff törvényei: I Minden csomópontban a befolyó és kifolyó áramok előjeles

Részletesebben

XVIII. TORNYAI SÁNDOR ORSZÁGOS FIZIKAI FELADATMEGOLDÓ VERSENY

XVIII. TORNYAI SÁNDOR ORSZÁGOS FIZIKAI FELADATMEGOLDÓ VERSENY Hódmezővásárhely, 014. március 8-30. évfolyamon 5 feladatot kell megoldani. Egy-egy feladat hibátlan megoldása 0 pontot ér, a tesztfeladat esetén a 9. évfolyam 9/1. feladat. Egy kerékpáros m/s gyorsulással

Részletesebben

Feladatok megoldásokkal a harmadik gyakorlathoz (érintési paraméterek, L Hospital szabály, elaszticitás) y = 1 + 2(x 1). y = 2x 1.

Feladatok megoldásokkal a harmadik gyakorlathoz (érintési paraméterek, L Hospital szabály, elaszticitás) y = 1 + 2(x 1). y = 2x 1. Feladatok megoldásokkal a harmadik gyakorlathoz (érintési paraméterek, L Hospital szabály, elaszticitás). Feladat. Írjuk fel az f() = függvény 0 = pontbeli érintőjének egyenletét! Az érintő egyenlete y

Részletesebben

Mágneses mező jellemzése

Mágneses mező jellemzése pólusok dipólus mező mező jellemzése vonalak pólusok dipólus mező vonalak Tartalom, erőhatások pólusok dipólus mező, szemléltetése meghatározása forgatónyomaték méréssel Elektromotor nagysága különböző

Részletesebben

Matematika 11 Koordináta geometria. matematika és fizika szakos középiskolai tanár. > o < szeptember 27.

Matematika 11 Koordináta geometria. matematika és fizika szakos középiskolai tanár. > o < szeptember 27. Matematika 11 Koordináta geometria Juhász László matematika és fizika szakos középiskolai tanár > o < 2015. szeptember 27. copyright: c Juhász László Ennek a könyvnek a használatát szerzői jog védi. A

Részletesebben

NÉGYOSZTÁLYOS FELVÉTELI Részletes megoldás és pontozás a Gyakorló feladatsor II.-hoz

NÉGYOSZTÁLYOS FELVÉTELI Részletes megoldás és pontozás a Gyakorló feladatsor II.-hoz NÉGYOSZTÁLYOS FELVÉTELI Részletes megoldás és pontozás a Gyakorló feladatsor II.-hoz Gedeon Veronika (Budapest) A javítókulcsban feltüntetett válaszokra a megadott pontszámok adhatók. A pontszámok részekre

Részletesebben

Fizika alapok. Az előadás témája

Fizika alapok. Az előadás témája Az előadás témája Körmozgás jellemzőinek értelmezése Általános megoldási módszer egyenletes körmozgásnál egy feladaton keresztül Testek mozgásának vizsgálata nem inerciarendszerhez képest Centripetális

Részletesebben

Elektrotechnika. Ballagi Áron

Elektrotechnika. Ballagi Áron Elektrotechnika Ballagi Áron Mágneses tér Elektrotechnika x/2 Mágneses indukció kísérlet Állandó mágneses térben helyezzünk el egy l hosszúságú vezetőt, és bocsássunk a vezetőbe I áramot! Tapasztalat:

Részletesebben

Termodinamika (Hőtan)

Termodinamika (Hőtan) Termodinamika (Hőtan) Termodinamika A hőtan nagyszámú részecskéből (pl. gázmolekulából) álló makroszkópikus rendszerekkel foglalkozik. A nagy számok miatt érdemes a mólt bevezetni, ami egy Avogadro-számnyi

Részletesebben

2. Rugalmas állandók mérése jegyzőkönyv javított. Zsigmond Anna Fizika Bsc II. Mérés dátuma: Leadás dátuma:

2. Rugalmas állandók mérése jegyzőkönyv javított. Zsigmond Anna Fizika Bsc II. Mérés dátuma: Leadás dátuma: 2. Rugalmas állandók mérése jegyzőkönyv javított Zsigmond Anna Fizika Bsc II. Mérés dátuma: 2008. 09. 17. Leadás dátuma: 2008. 10. 08. 1 1. Mérések ismertetése Az első részben egy téglalap keresztmetszetű

Részletesebben

pont százalék % érdemjegy (jeles) (jó) (közepes) (elégséges) alatt 1 (elégtelen

pont százalék % érdemjegy (jeles) (jó) (közepes) (elégséges) alatt 1 (elégtelen A dolgozat feladatai az órán megoldott feladatok valamelyike, vagy ahhoz nagyon hasonló. A dolgozat 8 feladatból áll. 1. feladat 13 pont. feladat 8 pont 3. feladat 4. feladat 5. feladat 5 pont 6. feladat

Részletesebben

Vektoralgebra. 1.) Mekkora a pillanatnyi sebesség 3 s elteltével, ha a kezdősebesség (15;9;7) m/s, a gravitációs gyorsulás pedig (0;0;-10) m/s 2?

Vektoralgebra. 1.) Mekkora a pillanatnyi sebesség 3 s elteltével, ha a kezdősebesség (15;9;7) m/s, a gravitációs gyorsulás pedig (0;0;-10) m/s 2? Vektoralgebra Elmélet: http://digitus.itk.ppke.hu/~b_novak/dmat/vektorfolcop.pdf Mikor érdemes más, nem ortonormált bázist alkalmazni? Fizikában a ferde hajításoknál megéri úgynevezett ferdeszögű koordináta-rendszert

Részletesebben

Mágneses mező tesztek. d) Egy mágnesrúd északi pólusához egy másik mágnesrúd déli pólusát közelítjük.

Mágneses mező tesztek. d) Egy mágnesrúd északi pólusához egy másik mágnesrúd déli pólusát közelítjük. Mágneses mező tesztek 1. Melyik esetben nem tapasztalunk vonzóerőt? a) A mágnesrúd északi pólusához vasdarabot közelítünk. b) A mágnesrúd közepéhez vasdarabot közelítünk. c) A mágnesrúd déli pólusához

Részletesebben

SZÁMÍTÁSI FELADATOK I.

SZÁMÍTÁSI FELADATOK I. SZÁMÍTÁSI FELADATOK I. A feladatokat figyelmesen olvassa el! A válaszokat a feladatban előírt módon adja meg! A számítást igénylő feladatoknál minden esetben először írja fel a megfelelő összefüggést (képletet),

Részletesebben

Elektromágnesség tesztek

Elektromágnesség tesztek Elektromágnesség tesztek 1. Melyik esetben nem tapasztalunk vonzóerőt? a) A mágnesrúd északi pólusához vasdarabot közelítünk. b) A mágnesrúd közepéhez vasdarabot közelítünk. c) A mágnesrúd déli pólusához

Részletesebben

Koordináta-geometria feladatok (középszint)

Koordináta-geometria feladatok (középszint) Koordináta-geometria feladatok (középszint) 1. (KSZÉV Minta (1) 2004.05/I/4) Adott az A(2; 5) és B(1; 3) pont. Adja meg az AB szakasz felezőpontjának koordinátáit! 2. (KSZÉV Minta (2) 2004.05/I/7) Egy

Részletesebben

NULLADIK MATEMATIKA szeptember 13.

NULLADIK MATEMATIKA szeptember 13. A NULLADIK MATEMATIKA ZÁRTHELYI 0. szeptember. Terem: Munkaidő: 0 perc. A dolgozat megírásához íróeszközön kívül semmilyen segédeszköz nem használható nálható. Válaszait csak az üres mezőkbe írja! A javítók

Részletesebben

35. Mikola Sándor Országos Tehetségkutató Fizikaverseny. III. forduló május 1. Gyöngyös, 9. évfolyam. Szakközépiskola

35. Mikola Sándor Országos Tehetségkutató Fizikaverseny. III. forduló május 1. Gyöngyös, 9. évfolyam. Szakközépiskola 5 Mikola Sándor Országos Tehetségkutató Fizikaerseny III forduló 06 ájus Gyöngyös, 9 éfolya Szakközépiskola feladat Soa, aikor a d = 50 széles folyón a partra erőlegesen eez, akkor d/ táolsággal sodródik

Részletesebben

Körmozgás és forgómozgás (Vázlat)

Körmozgás és forgómozgás (Vázlat) Körmozgás és forgómozgás (Vázlat) I. Egyenletes körmozgás a) Mozgás leírását segítő fogalmak, mennyiségek b) Egyenletes körmozgás kinematikai leírása c) Egyenletes körmozgás dinamikai leírása II. Egyenletesen

Részletesebben

Mechanika Kinematika. - Kinematikára: a testek mozgását tanulmányozza anélkül, hogy figyelembe venné a kiváltó

Mechanika Kinematika. - Kinematikára: a testek mozgását tanulmányozza anélkül, hogy figyelembe venné a kiváltó Mechanika Kinematika A mechanika a fizika része mely a testek mozgásával és egyensúlyával foglalkozik. A klasszikus mechanika, mely a fénysebességnél sokkal kisebb sebességű testekre vonatkozik, feloszlik:

Részletesebben

I. Egyenlet fogalma, algebrai megoldása

I. Egyenlet fogalma, algebrai megoldása 11 modul: EGYENLETEK, EGYENLŐTLENSÉGEK MEGOLDÁSA 6 I Egyenlet fogalma, algebrai megoldása Módszertani megjegyzés: Az egyenletek alaphalmazát, értelmezési tartományát később vezetjük be, a törtes egyenletekkel

Részletesebben

Szakács Jenő Megyei Fizika Verseny, az I. forduló feladatainak megoldása 1

Szakács Jenő Megyei Fizika Verseny, az I. forduló feladatainak megoldása 1 Szakác enő Megyei Fizika Vereny, az I. forduló feladatainak megoldáa. t perc, az A fiú ebeége, a B fiú ebeége, b 6 a buz ebeége. t? A rajz alapján: t + t + b t t t + t + 6 t t 7 t t t 7t 4 perc. Így A

Részletesebben

FIZIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

FIZIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Fizika középszint 1011 É RETTSÉGI VIZSGA 010. október 8. FIZIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ NEMZETI ERŐFORRÁS MINISZTÉRIUM A dolgozatokat az útmutató utasításai szerint,

Részletesebben

Kerekes kút 4.: A zuhanó vödör fékezéséről. A feladat. A megoldás

Kerekes kút 4.: A zuhanó vödör fékezéséről. A feladat. A megoldás 1 Kerekes kút 4.: A zuhanó vödör fékezéséről Egy korábbi dolgozatunkban melynek címe: Kerekes kút 2.: A zuhanó vödör mozgásáról nem volt szó fékezésről. Itt most egy egyszerű fékezési modellt vizsgálunk

Részletesebben

Fizika II. feladatsor főiskolai szintű villamosmérnök szak hallgatóinak. Levelező tagozat

Fizika II. feladatsor főiskolai szintű villamosmérnök szak hallgatóinak. Levelező tagozat Fizika. feladatsor főiskolai szintű villamosmérnök szak hallgatóinak Levelező tagozat 1. z ábra szerinti félgömb alakú, ideális vezetőnek tekinthető földelőbe = 10 k erősségű áram folyik be. föld fajlagos

Részletesebben

Elméleti kérdések 11. osztály érettségire el ı készít ı csoport

Elméleti kérdések 11. osztály érettségire el ı készít ı csoport Elméleti kérdések 11. osztály érettségire el ı készít ı csoport MECHANIKA I. 1. Definiálja a helyvektort! 2. Mondja meg mit értünk vonatkoztatási rendszeren! 3. Fogalmazza meg kinematikailag, hogy mikor

Részletesebben

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika középszint 131 ÉRETTSÉGI VIZSGA 013. október 15. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Fontos tudnivalók Formai előírások:

Részletesebben

5. A súrlódás. Kísérlet: Mérje meg a kiadott test és az asztal között mennyi a csúszási súrlódási együttható!

5. A súrlódás. Kísérlet: Mérje meg a kiadott test és az asztal között mennyi a csúszási súrlódási együttható! FIZIKA KÖZÉPSZINTŰ SZÓBELI VIZSGA TÉMAKÖREI ÉS KÍSÉRLETEI a 2015/2016. tanév május-júniusi vizsgaidőszakában Vizsgabizottság: 12.a Vizsgáztató tanár: Bartalosné Agócs Irén 1. Egyenes vonalú mozgások dinamikai

Részletesebben

7. Mágneses szuszceptibilitás mérése jegyzőkönyv. Zsigmond Anna Fizika Bsc II. Mérés dátuma: Leadás dátuma:

7. Mágneses szuszceptibilitás mérése jegyzőkönyv. Zsigmond Anna Fizika Bsc II. Mérés dátuma: Leadás dátuma: 7. Mágneses szuszceptibilitás mérése jegyzőkönyv Zsigmond Anna Fizika Bsc II. Mérés dátuma: 2008. 10. 22. Leadás dátuma: 2008. 11. 05. 1 1. A mérési összeállítás A mérési összeállítás sematikus ábrája

Részletesebben

Mágnesesség, elektromágnes, indukció Tudománytörténeti háttér Már i. e. 600 körül Thalész felfedezte, hogy Magnesia város mellett vannak olyan talált

Mágnesesség, elektromágnes, indukció Tudománytörténeti háttér Már i. e. 600 körül Thalész felfedezte, hogy Magnesia város mellett vannak olyan talált Mágnesesség, elektromágnes, indukció Tudománytörténeti háttér Már i. e. 600 körül Thalész felfedezte, hogy Magnesia város mellett vannak olyan talált ércek, amelyek vonzzák a vasat. Ezeket mágnesnek nevezték

Részletesebben

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Sorozatok II.

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Sorozatok II. Sorozatok II. DEFINÍCIÓ: (Mértani sorozat) Az (a n ) valós számsorozatot mértani sorozatnak nevezzük, ha van olyan valós szám, amellyel a sorozat bármely tagját megszorozva a következő tagot kapjuk. Jelöléssel:

Részletesebben

1. előadás. Gáztörvények. Fizika Biofizika I. 2015/2016. Kapcsolódó irodalom:

1. előadás. Gáztörvények. Fizika Biofizika I. 2015/2016. Kapcsolódó irodalom: 1. előadás Gáztörvények Kapcsolódó irodalom: Fizikai-kémia I: Kémiai Termodinamika(24-26 old) Chemical principles: The quest for insight (Atkins-Jones) 6. fejezet Kapcsolódó multimédiás anyag: Youtube:

Részletesebben

1. gyakorlat. Egyenletes és egyenletesen változó mozgás. 1. példa

1. gyakorlat. Egyenletes és egyenletesen változó mozgás. 1. példa 1. gyakorlat Egyenletes és egyenletesen változó mozgás egyenletes mozgás egyenletesen változó mozgás gyorsulás a = 0 a(t) = a = állandó sebesség v(t) = v = állandó v(t) = v(0) + a t pályakoordináta s(t)

Részletesebben

Méréstechnika. Rezgésmérés. Készítette: Ángyán Béla. Iszak Gábor. Seidl Áron. Veszprém. [Ide írhatja a szöveget] oldal 1

Méréstechnika. Rezgésmérés. Készítette: Ángyán Béla. Iszak Gábor. Seidl Áron. Veszprém. [Ide írhatja a szöveget] oldal 1 Méréstechnika Rezgésmérés Készítette: Ángyán Béla Iszak Gábor Seidl Áron Veszprém 2014 [Ide írhatja a szöveget] oldal 1 A rezgésekkel kapcsolatos alapfogalmak A rezgés a Magyar Értelmező Szótár megfogalmazása

Részletesebben

A 2014/2015. tanévi Országos Középiskolai Tanulmányi Verseny első fordulójának feladatai és megoldásai fizikából FIZIKA I.

A 2014/2015. tanévi Országos Középiskolai Tanulmányi Verseny első fordulójának feladatai és megoldásai fizikából FIZIKA I. Oktatási Hivatal A 014/015. tanévi Országos Középiskolai Tanulmányi Verseny első fordulójának feladatai és megoldásai fizikából FIZIKA I. KATEGÓRIA Javítási-értékelési útmutató 1.) Egy szabályos háromszög

Részletesebben

Feladatok a szinusz- és koszinusztétel témaköréhez 11. osztály, középszint

Feladatok a szinusz- és koszinusztétel témaköréhez 11. osztály, középszint TÁMOP-3.1.4-08/-009-0011 A kompetencia alapú oktatás feltételeinek megteremtése Vas megye közoktatási intézményeiben Feladatok a szinusz- és koszinusztétel témaköréhez 11. osztály, középszint Vasvár, 010.

Részletesebben

Fizikai olimpiász. 52. évfolyam. 2010/2011-es tanév. B kategória

Fizikai olimpiász. 52. évfolyam. 2010/2011-es tanév. B kategória Fizikai olimpiász 52. évfolyam 2010/2011-es tanév B kategória A kerületi forduló feladatai (további információk a http://fpv.uniza.sk/fo honlapokon találhatók) 1. A Föld mágneses pajzsa Ivo Čáp A Napból

Részletesebben

NULLADIK MATEMATIKA ZÁRTHELYI

NULLADIK MATEMATIKA ZÁRTHELYI A NULLADIK MATEMATIKA ZÁRTHELYI 20-09-2 Terem: Munkaidő: 0 perc. A dolgozat megírásához íróeszközön kívül semmilyen segédeszköz nem használható! Csak és kizárólag tollal tölthető ki a feladatlap, a ceruzával

Részletesebben

Vektorgeometria (2) First Prev Next Last Go Back Full Screen Close Quit

Vektorgeometria (2) First Prev Next Last Go Back Full Screen Close Quit Vektorgeometria (2) First Prev Next Last Go Back Full Screen Close Quit 1. Tekintsünk a térben egy P (p 1, p 2, p 3 ) pontot és egy v = (v 1, v 2, v 3 ) = 0 vektort. Ekkor pontosan egy egyenes létezik,

Részletesebben

Szélsőérték feladatok megoldása

Szélsőérték feladatok megoldása Szélsőérték feladatok megoldása A z = f (x,y) függvény lokális szélsőértékének meghatározása: A. Szükséges feltétel: f x (x,y) = 0 f y (x,y) = 0 egyenletrendszer megoldása, amire a továbbiakban az x =

Részletesebben

Kosárra dobás I. Egy érdekes feladattal találkoztunk [ 1 ] - ben, ahol ezt szerkesztéssel oldották meg. Most itt számítással oldjuk meg ugyanezt.

Kosárra dobás I. Egy érdekes feladattal találkoztunk [ 1 ] - ben, ahol ezt szerkesztéssel oldották meg. Most itt számítással oldjuk meg ugyanezt. osárra dobás I. Egy érdekes feladattal találkoztunk [ 1 ] - ben, ahol ezt szerkesztéssel oldották meg. Most itt számítással oldjuk meg ugyanezt. A feladat Az 1. ábrán [ 1 ] egy tornaterem hosszmetszetét

Részletesebben

Érettségi feladatok: Síkgeometria 1/6

Érettségi feladatok: Síkgeometria 1/6 Érettségi feladatok: Síkgeometria 1/6 2005. május 10. 4. Döntse el, hogy a következő állítások közül melyik igaz és melyik hamis! A: A háromszög köré írható kör középpontja mindig valamelyik súlyvonalra

Részletesebben

FIZIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA. ÉRETTSÉGI VIZSGA május 14. JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM

FIZIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA. ÉRETTSÉGI VIZSGA május 14. JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM Fizika középszint 0801 ÉRETTSÉGI VIZSGA 008. május 14. FIZIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM A dolgozatokat az útmutató utasításai

Részletesebben