A Newton és Gauss-Newton módszerek alkalmazása egyenletrendszerek megoldására és nemlineáris optimalizálásra

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "A Newton és Gauss-Newton módszerek alkalmazása egyenletrendszerek megoldására és nemlineáris optimalizálásra"

Átírás

1 A Newton és Gauss-Newton módszerek alkalmazása egyenletrszerek megoldására és nemlineáris optimalizálásra Veress Krisztián július 10. 1

2 Tartalomjegyzék 1. Bevezetés Motiváció és háttér Egy példa a gyökkeresésre Az egyenletrszerek fontossága Egy optimalizálási példa A Newton-módszer A klasszikus módszer ismertetése A szelőmódszer A csillapított Newton-módszer A többdimenziós Newton-módszer A Jacobi mátrix definíciója A Jacobi-mátrix számítása A módszerek hibája és konvergenciája A Gauss-Newton módszer Alul és túlhatározott egyenletrszerek A minimalizálási alapfeladat A módszer elméleti háttere Egyéb algoritmusok A Hesse mátrix definíciója Nemlineáris optimalizálási problémák Megvalósítás MATLAB-ban A módszerek implementációja Az elemzésre használt MATLAB kód Zérushelykeresés és analízis A Gauss-Newton módszerek tesztelése Az Optimization Toolbox alkalmazása nemlineáris optimalizálásra Egyenletrszerek iterációs megoldása A Newton-módszer Az fsolve eljárás A módszerek összehasonlítása Összegzés Függelék Prezentációs MATLAB kódok newton convergence.m secant convergence.m MATLAB algoritmusok newton method.m secant method.m newton method2.m analyze.m analyze2.m Tesztfüggvények f1.m f2.m f3.m f4.m equationf1.m equationf2.m gnlmf1.m gnlmf2.m fsolvef1.m

3 fsolvef2.m fsolvef3.m fngnlm.m Segédfüggvények outfunc.m

4 1. Bevezetés Ezen dokumentum a Szegedi Tudományegyetemen a /2 -es tanévben tartott Nemlineáris programozás és Közelítő és szimbólikus számítások II. című kurzusokra készített esszé dolgozatok egyesített változata. Az esszé tematikája az egyenletrszerek megoldására és a nemlineáris optimalizálás területén alkalmazott gyökkereső eljárások ismertetése, tesztelése és példákon keresztüli bemutatása. Az ismertetett algoritmusokat MATLAB környezetben példaprogramokkal mutatom be, melyek elérhetőek a Függelékben Motiváció és háttér A matematikai számításaink során sokszor futunk olyan problémába, hogy adott egy f függvény (mely leír bizonyos viselkedést), és meg kell határoznunk, hogy milyen feltételek mellett lesz az adott függvény nulla. Azaz keresnünk kell egy x-t úgy, hogy f(x) = 0, ahol az f függvény ismert. Minden ilyen x-t az f függvény gyökének nevezünk. A fenti problémát numerikusan szeretnénk megoldani és tekintettel arra, hogy az f függvényre semmilyen feltételt nem kötöttünk ki (folytonos-e, differenciálható-e, lineáris/nemlineáris-e, stb.), egy általánosan használható algoritmust keresünk. Az optimum megtalálásához közelítő eljárásokat alkalmazunk, melyek iterációt használva olyan számsorozatokat számítanak ki, amelyek (remélhetőleg) egy pontba kovergálnak, s ez a pont lesz a keresett gyök. Az iterációt azonban el kell indítanunk valahonnan, ezért meg kell sejtenünk egy kiindulási pontot, majd a módszer a sorozat következő elemét az előző elem és az f függvényből kiszámítja Egy példa a gyökkeresésre A műszaki alkalmazások területén sokszor találkozhatunk Laplace-transzformált függvényekkel. Esetenként szükség lehet arra, hogy az adott Laplace-transzformált hol vesz fel nullát, azaz szeretnénk megkeresni a függvény zérushelyét. 1. ábra. Egy Laplace transzformált, és annak pár zérushelye 3

5 1.3. Az egyenletrszerek fontossága A műszaki alkalmazások területén (Robotika, Optimalizálás, Irányítástechnika, stb) sokszor futunk olyan problémába, hogy több ismeretlenünk van, és ezen változók között több összefüggés is fennáll. Ha az összefüggések (továbbiakban egyenletek) olyanok, hogy a változóink legfeljebb az első hatványon szerepelnek, lineáris egyenletrszerről beszélhetünk, melyet a következő alakban írhatunk fel: Ax = b ahol A R n m az együtthatómátrix, x R m a kereső vektor, b R n konstansokból álló vektor. Az ilyen típusú egyenletrszereket Gauss-eliminációval, LU felbontással vagy éppen QR transzformációval numerikusan megoldhatjuk. A probléma ott kezdődik, amikor az egyenletrszerben szereplő változóink fokszáma nincs 1-re maximalizálva, azaz nemlineáris egyenletrszerhez jutunk, melynek általános alakja: h i (x) = 0 (i = 1,..., m) ahol h 1,..., h m olyan R n -ből R-be képező függvények, amelyek közül legalább az egyik nemlineáris. Az ilyen típusú egyenletrszerek megoldására szinte kizárólag a többváltozós Newton-módszerek használatosak. Ennek magyarázata az, hogy már az első deriváltak megszerzése sem problémamentes, ugyanakkor a magasabb rű módszerek még az egydimenziós esetben sem feltétlenül hatékonyabbak Egy optimalizálási példa Gazdasági, fizikai vagy paraméter-meghatározási problémákból sokszor erednek szélsőérték-feladatok (minimalizálni kell a költségfüggvényt, maximalizálni a profitot, stb), így elmondhatjuk, hogy szoros kapcsolat van a szélsőérték feladatok és az egyenletrszerek megoldása között. Tekintsünk most egy olyan optimalizálási feladatot, melyben a célfüggvény egy f : R n R az n dimenziós Euklideszi térből a valós számokra képező függvény. Ekkor f minden szélsőértékére igaz, hogy az adott pontban a gradiensvektor eltűnik, azaz: ( ) f f f(x) =,..., = 0 T x 1 x n Láthatjuk, hogy a gradiensvektor elemei is nemlineárisak lehetnek, így egy n ismeretlenes n egyenletből álló nemlineáris egyenletrszerhez jutottunk. Ezen egyenletrszer megoldásai azok a pontok - másnéven stacionárius pontok -, ahol az f függvénynek szélsőértéke lehet. A továbbiakban közelítő numerikus eljárást adunk a nemlineáris egyenletrszerek megoldására, amely azt jelenti, hogy a megoldást legtöbb esetben csak megközelítjük. (Természetesen ez az eljárás használható lesz lineáris egyenletrszerek megoldására is, de nem feltétlenül hatékonyabb, mint a már említett módszerek.) 4

6 2. A Newton-módszer 2.1. A klasszikus módszer ismertetése A Newton-módszer valós, folytonos és differenciálható függvények zérushelyeinek meghatározására használható iteratív eljárás. Az eljárást használhatjuk függvények minimumának/maximumának meghatározására abban az esetben, ha létezik vagy meghatározható a függvény második deriváltja, ugyanis az első derivált zérushelyei azonosítják a függvény szélsőértékeit. A Newton-módszer alapötlete a következő: vegyünk egy olyan pontot, mely relatíve közel van a tényleges zérushelyhez (ez a sejtésünk ), ez lesz az iteráció kiindulási pontja: x i,i=0. Ezekután számítsuk ki az f függvény ismeretében f(x i )-t. Az (x i, f(x i )) pontban húzott érintő zérushelye általában jobb közelítése a függvény zérushelyének, mint x i. Egy adott (x 0, y 0 ) ponton áthaladó, m meredekségű egyenes egyenlete a következő: (y y 0 ) = m(x x 0 ) Tudjuk, hogy egy x i pontban az f (x i ) deriváltfüggvény megadja az adott pontban húzott érintő meredekségét, így m = f (x i ). Mostmár nincs más dolgunk, mint felírni az (x i, f(x i )) ponton áthaladó f függvényhez húzott érintő egyenletét, és meghatározni, hogy az hol metszi az abszcissza-tengelyt: f(x) f(x i ) = f (x i )(x x i ) f(x) = 0 A fenti egyenletrszerből algebrai átalakítások után megkapjuk az iterációt leíró egyenletet: x i+1 = x i f(x i) f (x i ) (1) 2. ábra. A Newton módszer illusztrálása ( newton convergence.m ) Láthatjuk, hogy az f(x i ) pontban húzott érintő és az abszcissza-tengely metszéspontja egy jobb közelítése a gyöknek. A klasszikus Newton-módszert ezen trükk használata miatt érintőmódszernek is szokták nevezni. 5

7 2.2. A szelőmódszer A most ismertetésre kerülő közelítő gyökkereső eljárás a Newton-módszer egy speciális változata. A Newton-módszer igényelte a kiindulási függvényünk első deriváltjának expliciten történő megadását, ezt szeretnénk valahogy kiküszöbölni. Ennek nagy jelentősége van, hiszen olyan eset is elképzelhető, mikor a deriváltfüggvényünk nem áll relkezésre, nem tudjuk kiszámolni, vagy legrosszabb esetben még az f függvényünk is ún. black-box 1 függvény. A feladatunk tehát nem más, mint a Newton-módszer iterációs képletében szereplő f (x i ) tagot kiküszöböljük, és annak valamilyen közelítésével helyettesítsük. Kalkulusból ismeretes, hogy egy f függvény x i helyen vett deriváltja (differenciálhányadosa) : f (x i ) = lim h 0 f(x i + h) f(x i ) h Ez a határérték kellően kicsi h-k esetén helyettesíthető a differenciahányadossal: f (x i ) f(x i + h) f(x i ) h Ha a h = x i 1 x i helyettesítést alkalmazzuk, megkapjuk, hogy: f (x i ) f(x i + x i 1 x i ) f(x i ) x i 1 x i = f(x i 1) f(x i ) x i 1 x i = f(x i) f(x i 1 ) x i x i 1 Ezt behelyettesítve az iterációs képletbe kapjuk, hogy: x i x i 1 x i+1 = x i f(x i ) f(x i ) f(x i 1 ) (2) 3. ábra. A szelőmódszer illusztrálása ( secant convergence.m ) A szelőmódszer geometriai jelentése a következő: az iteráció elkezdéséhez két pontra lesz szükségünk ( x 0, x 1 ) úgy, hogy f(x 0 ) = f(x 1 ). Ezekután egyenest húzunk az (x 0, f(x 0 ) és (x 1, f(x 1 )) pontokra. Ez az f egy szelője lesz, és ha a kezdeti x 0, x 1 pontjainkat közel választottuk az x zérushelyhez, ez a szelő metszeni fogja az abszcissza-tengelyt, legyen ez a pont (x 2, 0). Az eljárást ezekután folytatjuk (x 1, x 2 ) pontokra. A 3.ábrán az f(x) = x 3 + 3x 2 10x függvényt, és annak gyökének közelítését láthatjuk. Az ábrát a következőképpen rajzolhatjuk ki MATLAB-ban: 1 black-box függvény: egy függvényt black-box függvénynek nevezünk, ha a viselkedését csak bemenet-kimeneti párokkal tudjuk leírni és zárt képlete nem ismert 6

8 >> f=inline( x.^3+3*x.^2-10*x ); >> subplot(2,2,1) >> secant_convergence(x,f,4.7,-5.2,4) >> axis([ ]) >> subplot(2,2,2) >> secant_convergence(x,f,4.7,-5.2,4) >> axis([ ]) >> subplot(2,2,3) >> secant_convergence(x,f,4.7,-5.2,4) >> axis([ ]) >> subplot(2,2,4) >> secant_convergence(x,f,4.7,-5.2,4) >> axis([ ]) Vegyük észre, hogy itt csak egyetlen függvénykiértékelésre van szükségünk egy iterációban (az f(x i 1 ) -t az előző iterációban már kiszámoltuk ) szemben a hagyományos Newton-módszerrel, és ez már szélesebb körben használható eljárás, hiszen nincs szükségünk a deriváltra. Ha feltételezzük, hogy ugyanannyi költség kiértékelni f-t és f -t, és minden más járulékos költséget elhagyunk, ugyanannyi költségbe kerül két lépést végrehajtani a szelőmódszerrel, mint egyet a Newton-módszerrel. A differenciálhányados helyettesítése a differenciahányadossal megfelelően kicsi h érték esetén alkalmazható. Mivel h = x i 1 x i, ezért azt mondhatjuk, hogy a most kapott iterációs eljárásunk olyan esetekben fog a Newton-módszer-hez hasonló konvergenciát mutatni, amikor már a tényleges x gyök közelében vagyunk. A fent ismertetett eljárásokat használják megbízható számítású rszerekben is, ez általában intervallumos számítást jelent (lásd [5] Vinkó) A csillapított Newton-módszer Az imént ismertetett eljárások nagy hátránya, hogy csak lokálisan konvergensek (a konvergenciát részletesebben később vizsgáljuk), azaz egy x gyökhöz akkor és csakis akkor tart az iterációs sorozat, ha az iterációt egy, az x gyökhöz közeli pontból indítottuk. A célunk tehát nem más, mint elérni, hogy minél,,távolabbi kezdősejtéssel is elérhessük a konvergenciát, esetleg a teljes abszcisszatengelyre kiterjesszük a konvergencia-intervallumot, így globális konvergenciát érjünk el. Ehhez módosítsuk a (1) iterációs képletet a következőképpen: x i+1 = x i t i f(x i ) f (x i ) ahol a t i paraméter az ún. csillapítási paraméter. Nyilvánvaló, hogy az iteráció elindításához szükségünk van t 0 értékére. Ezt meghatározhatjuk a következő összefüggés segítségével: (3) ln f(x) t 0 = lim x x 0 ln f(x)f (x) ahol x 0 D f Hasonlóan, minden egyes iterációban a t i származtatva könnyen megtehetjük: paramétert frissítenünk kell, ezt az előbbi összefüggésből ln f(x) t i = lim x x i ln f(x)f (x) ahol x i az aktuális közelítésünk. Ha t értékét maximáljuk, akkor a konvergencia sebessége nő, azonban a konvergencia-intervallum szélessége csökken. Ellenkező esetben pedig a konvergencia sebessége csökken, a konvergencia-intervallum szélessége nő. Ha t < 1, akkor csillapított Newton-módszerről beszélünk. Ekkor a klasszikus Newton-módszer lokális konvergenciáját globális konvergenciává terjesztettük ki (ugyanakkor a konvergencia sebessége csökkent!). A gyakorlatban a csillapított módszer általában eléri azt a gyök-közelítést, amelyet a klasszikus Newtonmódszernek adtunk meg kezdősejtésnek, és ettől kezdve t = 1 teljesül, azaz a klasszikus Newton-módszer hajtódik végre. 7

9 2.4. A többdimenziós Newton-módszer Az eddig tárgyalt módszereket egyváltozós függvényekre definiáltuk. Lehetőség van a fenti iterációs eljárások használatára többváltozós függvények esetében is. Egyenletrszerek megoldására sem igazán használhatók az előbb ismertetett egydimenziós iterációs eljárások, hiszen ezeket csak akkor használhatjuk, ha egyetlen változónk és egyetlen egyenletünk van. Legyen most f : R n R leképezés az n-dimenziós Euklideszi térből a valós számokra. Ekkor minden dimenzióban kell venni a (1) egyenletet, de mivel a függvényünk többváltozós, a deriváltfüggvény helyét átveszik a parciális deriváltak : vagy átírva mátrix-alakra: f(x i ). = f(x i ) f(x i ) = f (x i )(x 1 x i,1 ) x 1.. f(x i ) = f (x i )(x n x i,n ) x n f (x i ) 0 0 x f 0 0 (x i ) x n x 1 x i,1.. x m x i,n A fenti egyenletből a gradiensvektort tartalmazó diagonális mátrix inverzével balról beszorozva, majd az x i vektort hozzáadva mindkét oldalhoz kapjuk, hogy: x i+1,1 = x i,1 f(x i) f x 1 (x i ). x i+1,m = x i,m f(x i) f x m (x i ) Láthatjuk, hogy az f függvény n-változós, így jelen esetben egy n-változós, egy egyenletből álló egyenletrszerhez készítettünk iterációs eljárást, mely az f(x) = 0 egyenlet megoldásának egy közelítését állítja elő. Legyen most f : R n R m az n dimenziós térből az m dimenziós térbe képező függvény. Ebben az esetben a derivált-függvényt a Jacobi-mátrixszal kell helyettesítenünk. A Jacobi-mátrix segítségével felírhatjuk az f függvényünk x i ponton áthaladó érintő hipersíkját: f(x i ) = J f (x i )(x x i ) A többdimenziós esetben használható iterációs algoritmusunk iterációs képletet pedig úgy kaphatjuk meg, ha a fenti egyenletet x -ra rezzük: A Jacobi mátrix definíciója x i+1 = x i J f (x i ) 1 f(x i ) (4) A Jacobi-mátrix megadja egy p R n pontban a p pontban differenciálható f : R n R m függvény deriváltját, mely a legjobb lineáris approximációja f-nek a p pont körül. Egy f : R n R m függvényt felfoghatunk m darab y i : R n R i = (1,..., m) függvényként, y 1 (x 1,..., x n )... y m (x 1,..., x n ). Ez utóbbi függvények parciális deriváltjait (feltéve, hogy azok léteznek) egy m n-es mátrixba rezhetjük, mely az f függvény ún. Jacobi-mátrixa : y 1 y 1... x 1 x n J f (x) =.. y m... x y m x n

10 Vegyük észre, hogy a Jacobi mátrix i-edik sora pontosan az y i függvény gradiensének transzponáltja A Jacobi-mátrix számítása A (4) iterációs egyenletben szereplő Jacobi-mátrix invertálása kapcsán kétségeink merülhetnek fel. A numerikus matematikából ismeretes (lásd Cses [6]), hogy egy mátrix invertálása egyrészt nehéz feladat, másrészt igencsak költséges. Ezért szükség lenne a Jacobi-mátrix inverzének egy hatékony kiszámítási módjára, nos erre több lehetőség is felmerül: A Jacobi-mátrix kiszámításának problémáját át lehet ruházni a majdani felhasználóra (programozza le ő maga a deriváltakat). Egy jobb megoldás az, ha a deriváltakat az eljáráson belül formulamanipulációval (pl szimbólikus számításokkal) számítjuk ki, ami elvileg és gyakorlatilag is megoldott feladat, bár nem egészen problémamentes. Speciális, f i (x) = a ij x j + b ijl x j x l = 0 j 1 a ij = c ij e dij/x1 j l>1 alakú egyenletek (Hik [12]) esetén hasznos ezt a megoldást választani. Ha a deriváltak pontos értékei relkezésünkre állnak, akkor érdemes figyelni a Jacobi-mátrix tárolására is. Ugyanis nagy n-re a nemlineáris egyenletrszerek Jacobi-mátrixai tipikusan ritkák, azaz a nemzérus elemek száma N jóval kisebb a mátrix méretéhez viszonyítva (N n). A ritka mátrix tárolása azért ennyire fontos, mert szeretnénk elkerülni a sok 0-val való szorzást és 0-val való összeadást. Egy járható út az is, ha a parciális deriváltakat a differenciaképlettel helyettesítjük (lásd a szelőmódszer esetében is). A többdimenziós esetben diszkretizált Newton-módszerről beszélünk, ha minden k iterációs lépésre a J f (x k ) Jacobi-mátrix elemeit a J f (x k ) = J ij = f i x j f i(x k + h ij x j ) f i (x k ) h ij, i, j = 1,..., n elsőrű közelítéssel számítjuk, ahol e j a j-edik koordináta menti egységvektor és h ij -k nemnulla valós számok. Egy numerikusan is könnyen számítható eljárás az, ha a J f (x i )s i = f(x i ) linearizált egyenletrszert s i -re megoldjuk, és így az x i+1 = x i + s i relációval egy, a (4) rekurzív összefüggéssel ekvivalens alakot kapunk, amely egyben a kiindulási nemlináris egyenletrszerünk megoldásának egy újabb közelítése lesz. 9

11 2.5. A módszerek hibája és konvergenciája Felmerül a kérdés, hogy vajon bármilyen x 0 pontból kiindulva megtalálhatjuk a zérushelyet? A válasz nemleges, a módszer csak lokálisan, de nem globálisan konvergens. Általában a konvergencia sebessége kvadratikus, azaz minden iterációs lépés után a közelítő megoldás pontos jegyeinek száma megduplázódik. Azonban a Newton-módszer nagy hátrányai, hogy az f függvény deriváltját expliciten meg kell adnunk, illetve ha a tényleges x gyöktől távoli x 0 pontot sejtünk meg, a módszer nem konvergál. A konvergencia részletesebb vizsgálatához vezessük be az osztott differenciák fogalmát: Definíció. Elsőrű osztott differencia : Definíció. Másodrű osztott differencia : f [x i, x i+1 ] = f(x i+1) f(x i ) x i+1 x i f [x i, x i+1, x i+2 ] = f [x i+1, x i+2 ] f [x i, x i+1 ] x i+2 x i Ezekután vizsgáljuk meg a szelőmódszer hibáját az n + 1-edik lépésben : ε n+1 = x n+1 x x n x n 1 = x n f(x n ) f(x n ) f(x n 1 ) x Ha felhasználjuk az f(x ) = 0 tényt, és a fenti egyenlet jobboldalának középső tagját bővítjük x n x -al, akkor a következőhöz jutunk: ε n+1 = x n (f(x n ) f(x x n x n 1 x n x )) f(x n ) f(x n 1 ) x n x x = x n x f [x, x n ] f [x n 1, x n ] (x n x ) ( = ε n 1 f ) [x, x n ] f [x n 1, x n ] ( f [xn 1, x n ] f [x ), x n ] ε n 1 = ε n f [x n 1, x n ] x n 1 x f [x, x n 1, x n ] = ε n ε n 1 f [x n 1, x n ] x n x Használjuk fel az osztott differenciák és a deriváltak közötti összefüggést ([3] Hegedűs), mely szerint ha f n + 1-szer folytonosan differenciálható [a, b]-n, x [a, b], x x i, akkor létezik olyan ξ x [a, b], melyre: f [x, x 0, x 1,..., x n ] = f n+1 (ξ x ) (n + 1!) és ha alkalmazzuk az x n 1 x n határátmenetet, azt kapjuk, hogy: ε n+1 = ε 2 f (ξ) n 2f (x n ), ξ [x n, x ] amelyből már könnyen leolvasható, hogy a módszer konvergenciagyorsasága kvadratikus. Természetesen a kvadratikus konvergenciagyorsaság igaz a többdimenziós esetben is, ott a tényleges gyök egy δ sugarú hipergömb környezetében kell lennünk a konvergencia eléréséhez (lásd [11] HIK). A bizonyítást nyomon lehet követni a [6] Cses, [7] Mathworld, [9] HIK forrásokban is. 10

12 3. A Gauss-Newton módszer A természettudományi területeken végzett kutatások, mérések során illetve az iparban nagyon sokszor ütközünk paraméter-meghatározási problémákba. Tegyük fel, hogy egy összetett ipari robot dinamikai modelljét vizsgáljuk, amely egy m = g(t, x 1,..., x n ) alakban írható fel, ahol az m mennyiség egy mérhető érték (pl. az aktuátor által a munkadarabra kifejtett erő), x i -k pedig a modell belső változói, a robot paraméterei (forgatónyomatékok, elfordulási szögek, stb.), míg t az időt szimbolizálja. Ha különböző t j időpontokban k-szor megmérjük az m mennyiséget, megkapjuk az m k értékeket. Ezekután az a feladatunk, hogy a f i = g(t i, x 1,..., x n ) m i, i = 1,..., k függvényekkel megfogalmazott feladatot megoldjuk, azaz meghatározzuk a modell x 1,..., x k paramétereit, oly módon, hogy a lehető legkevesebbet tévedjünk. A most ismertető eljárásokat többek között paraméter-becslési feladatok és egyenletrszerek megoldására illetve többváltozós nemlineáris vektorfüggvények minimalizálására használhatjuk. Először vezessünk be pár fogalmat Alul és túlhatározott egyenletrszerek Meg kell említenünk azokat a speciális eseteket, mikor olyan egyenletrszerrel állunk szemben, mely alul vagy túlhatározott Definíció. Egy egyenletrszer túlhatározott, ha a benne szereplő független változók száma kevesebb, mint a változók között fennálló ekvivalenciák száma, azaz több egyenletünk van, mint változónk. Ezt megfeleltethetjük egy f : R n R m, n < m vektorfüggvénnyel Definíció. Egy egyenletrszert alulhatározottnak tekintünk, ha a benne szereplő független változók száma nagyobb, mint a változók között fennálló ekvivalenciák száma, azaz kevesebb egyenletünk van, mint változónk. Ezt megfeleltethetjük egy f : R n R m, n > m vektorfüggvénnyel. Nyilvánvaló, hogy a túlhatározottság jelentheti az egyenletrszer megoldásának hiányát, az alulhatározottság pedig végtelen sok megoldást. Ekkor mondhatnánk azt, hogy megállunk, hiszen nincs megoldás, vagy végtelen sok megoldás van, azonban a valós rszerekben (pl. ipari alkalmazások területén) ilyen viselkedés elkerülő. Értelmezhetjük tehát az alulhatározott egyenletrszerünk megoldását oly módon, hogy a lehetséges megoldások közül melyik tér el a legkevésbé az igazi megoldástól, míg a túlhatározott esetben is adhatunk olyan megoldást, mely ugyan nem elégíti ki az egyenletrszerünket, de legkisebb a hibája. A következő eljárásokat ilyen típusú egyenletrszerek esetén vethetjük be. Ahhoz, hogy egyenletrszerünkhöz ilyen megoldásokat keressünk, át kell azt transzformálni egy azzal ekvivalens minimalizálási feladatra A minimalizálási alapfeladat Tekintsük a következő minimalizálási feladatot: Adott f : R n R m, m > n függvényhez keressük az f(x) = 0 nemlineráris egyenletrszer megoldását legkisebb négyzetek értelmében, azaz f(x) = ( f 1 (x),..., f m (x)) T, f(x) 2 min x R n! (5) ahol a. az Euklideszi normát jelenti. A normát ilyenkor legtöbbször 11

13 m ( 2 f(x) 2 = f i (x)) vagy f(x) 2 = i=1 m i=1 ) 2 w i (f i (x) alapján szokták definiálni. A példaként említett paraméter-becslési feladatra a második definíció lenne a megfelelőbb választás, hiszen a w i súlyokkal jellemezhetjük az m i értékek mérési pontosságait. Jól látható, hogy a minimalizálási alapfeladatunkat és az egyenletrszert oda-vissza transzformálhatjuk egymásba. Azaz, ha egy egyenletrszert kell megoldanunk, megoldhatjuk azt minimalizálási feladatként is, és fordítva Példa. Oldjuk meg a következő egyenletrszert: x 1 2x 2 = 0 x 1 4 = 0 3x 1 + x 1 x 2 2 = 0 Felfoghatjuk az egyenletrszerünket egy f : R 2 R 3 vektorfüggvényként, és így társíthatjuk a következő minimalizálási feladatot: f(x) = (x 1 2x 2 ) 2 + (x 1 4) 2 + (3x 1 + x 1 x 2 2) 2 min! Mivel f(x) teljes négyzetek összegeként áll elő, így minimumát akkor veszi fel, ha minden egyes négyzetes tag zérus. Azaz a társított minimalizálási feladat optimális megoldása egyben megoldása az egyenletrszerünknek is. Ha nincs optimális megoldás, az azt jelenti, hogy az egyenletrszerünk nem elégíthető ki, végtelen sok optimális megoldás esetén pedig végtelen sok megoldása van az egyenletrszerünknek is. Tekintettel arra, hogy az abszolút optimális megoldás (jelen esetünkben az x úgy, hogy f(x ) = 0) hiánya esetén is tudjuk minimalizálni a célfüggvényünket, így tudunk legkisebb négyzetes értelemben megoldást adni az egyenletrszerünkre. Levonhatjuk tehát azt a következtetést, hogy egyenletrszerek megoldása általában transzformálható olyan optimalizálási feladatra, amely optimális megoldása megegyezik az egyenletrszer megoldásával. Felismervén az alul és túlhatározott egyeletrszerek és a legkisebb négyzetes közelítési probléma közötti szoros kapcsolatot, a továbbiakban csak ilyen feladatokat vizsgálunk A módszer elméleti háttere A Gauss-Newton módszer egy iteratív közelítő eljárás, az optimumnak mindig csak egy közelítését állítja elő, azt nem feltétlenül éri el, minden egyes lépés után annak egy (várhatóan) jobb közelítését kapjuk, és támaszkodik az optimum egy kezdeti sejtésére. Az eljárás a megoldandó nemlineáris legkisebb négyzetes probléma (továbbiakban NLLS) megoldását visszavezeti a lineáris legkisebb négyzetes probléma (továbbiakban LS) megoldására. Minden egyes iterációban az adott x i közelítésnél linearizálni próbáljuk a minimalizálandó célfüggvényt, mégpedig a következő módon: f(x) f(x i ) + J f (x i )(x x i ) ahol J a Jacobi mátrix (6) Ezekután írjuk fel a lineáris közelítést a következőképpen: f(x i ) + J f (x i )(x x i ) = A i x b i ahol A i = J f (x i ) és b i = J f (x i )x i f(x i ) (7) Ilyen módon felírva az NLLS problémánkat, az A i és b i által leírt LS probléma megoldása egy közelítése lesz a kiindulási nemlináris problémánknak, azaz A fenti LS probléma megoldása az f(x) 2 = A i x b i 2 x i+1 = (A T i A i ) 1 A T i b i (8) 12

14 vektor. A (7) és (3.3) egyenletekből felírhatjuk a Gauss-Newton módszer iterációs képletét: mely leegyszerűsítve a következő alakban írható: x i+1 = (J f (x i ) T J f (x i )) 1 J f (x i ) T (J f (x i )x i f(x i )) x i+1 = x i (J f (x i ) T J f (x i )) 1 J f (x i ) T f(x i ) (9) A gyakorlatban az (9) iterációs egyenletben szereplő mátrixinverzet sosem invertálással számítjuk. Ehelyett az ezzel ekvivalens x i+1 = x i + δ i helyettesítéssel élve megoldjuk a következő lineáris egyenletrszert: J f (x i ) T J f (x i )δ i = J f (x i ) T f(x i ) A fenti helyettesítésre egy jobb megoldás, ha egyenesmenti keresést alkalmazunk, azaz a helyettesítésünket most x i+1 = x i + α i δ i alakban írjuk, ahol α i valamely értelemben optimális számunkra. Így lehetőségünk nyílik arra is, hogy az eljárást gyorsítsuk (pl. a függvénykiértékelések számát minimalizáljuk, vagy a futásidőt, tárigényt csökkentsük, stb.) Egyéb algoritmusok Klasszikus Newton-módszer A (5) probléma megoldására használhatjuk a klasszikus többváltozós Newton-módszert is, ha a célfüggvény deriváltjának keressük zérushelyeit. Ekkor szükségünk van a célfüggvény Jacobi és Hessemátrixára is. Egyenletrszerek vizsgálata esetén jusson eszünkbe, hogy most az alul- illetve túlhatározott esetre keresünk megoldást, így a kiindulási egyenletrszerünkre hiába alkalmaznánk a klasszikus többváltozós Newton-módszert, az nem konvergálna A Hesse mátrix definíciója A Hesse-mátrix megadja egy p R n pontban a p pontban differenciálható f : R n R m függvény második deriváltját a p pont körül. 2 f(x) 2 f(x) 2 f(x) x x 1 x 2 x 1 x n 2 f(x) 2 f(x) 2 f(x) H f (x) = x 2 x 1 x x 2 x n f(x) 2 f(x) 2 f(x)... x m x 1 x m x 2 x m x n A Hesse-mátrix (i, j) eleme megadja az f függvény i-edik változó szerinti elsőrű parciális deriváltjának a j -edik változó szerinti parciális deriváltját, azaz 2 f(x) x i x j = x j ( ) f(x) A Young-tétel értelmében pedig ha az f függvény másodrű parciális deriváltjai folytonosak egy nyílt tarományon (lásd még [4] Szabó), akkor x i 2 f(x) x i x j = 2 f(x) x j x i A Hesse-mátrix ismeretében felírhatjuk a Newton-iterációs egyenletet: 13

15 m ( 2 x i+1 = x i (H S (x i )x i ) 1 J S (x i ) ahol S(x) = f i (x)) azaz x i+1 = x i ( J f (x i ) T J f (x i ) + m i=1 i=1 ( ) 1 f i (x i ) H fi (x i )) J f (x i ) T f(x i ) Meg kell továbbá említenünk a DFP (Davidon-Fletcher-Powell) és a BFGS (Broyden-Fletcher - Goldfarb-Shanno) két igen hatékony kvázi-newton eljárást is. (A kvázi-newton eljárások olyan közelítő Newton eljárások, amelyekben nem használjuk a célfüggvény Hesse-mátrixát, hanem azt csak alkalmas módon közelítjük.) Ezekről több információt lehet találni az irodalomjegyzék elemei közt (lásd [4] Szabo, [10] Hik, [1] Wikipedia, [2] Mathworld ). Levenberg-Marquardt eljárás Egy jól használható algoritmus még az ún. Levenberg-Marquardt féle iterációs eljárás, mely ötvözi a Gauss-Newton módszer és a gradiensmódszer előnyeit. Ezt az eljárást a legkisebb négyzetes függvényközelítési probléma megoldására használják, így használható nemlináris függvények gyökösszegének minimalizálására is, azaz az feladat megoldására. F (x) = 1 2 m i=1 ( f i (x)) 2 min! (10) A Levenberg és Marguardt által javasolt iterációs eljárás egy p vektor által adott irány mentén keresi a minimumot ([1] Wikipedia,[2] Mathworld ): Először választanunk kell egy sejtést p-re, általában megfelelő választás a p T = (1, 1,..., 1). Minden iterációban a p irányt megpróbáljuk javítani p + q -ra, ahol p-t úgy számítjuk, hogy az f i (p + q) függvényeket helyettesítjük azok linearizált megfelelőikkel, azaz f i (p + q) f(p) + J f (q) ahol J f az f Jacobi-mátrixa Tudjuk, hogy ott lehet minimális F (x), ahol q F (x) = 0. Így kapjuk q-ra, hogy (J T f i (x i )J fi (x i ))q = J T f i (x i )f i (x i ) amelyből q-t a (J T f i J fi ) mátrix invertálásával megkaphatjuk. A Levenberg-Marquardt eljárás azonban a fenti egyenletet helyettesíti annak egy skálázott alakjával: (J T (x i )J(x i ) + λ i I)q i = J T (x i )F (x i ) ahol λ i -k skalárok, az I pedig az identikus mátrix. A λ -k ily módon való bevezetésével elérték azt, hogy teszőlegesen mozoghassunk a Gauss-Newtonmódszer és a gradiensmódszer között. Ha ugyanis azt tapasztaljuk, hogy F (x) minimumára adott közelítésünk gyorsan csökken, kis λ -t választva a Gauss-Newton módszer felé terelhetjük algoritmusunkat, míg lassú csökkenés esetén nagy λ-t választunk, így a gradiensmódszerhez hasonló algoritmust kapunk. A Gauss-Newton és Levenberg-Marquardt eljárások működését interaktívan meg lehet tekinteni a következő webcímeken: 14

16 4. Nemlineáris optimalizálási problémák 4.1. Megvalósítás MATLAB-ban Az előző fejezetben ismertetett gyökkeresési eljárásokra most implementációt adunk MATLAB környezetben. A klasszikus Newton-módszerhez szükségünk van a deriváltfüggvényre, amelyet az INTLAB Toolbox-ban megtalálható eljárásokkal fogunk számítani. A Toolbox-t le lehet tölteni a webcímen. A MATLAB-ban be kell állítani a File Set Path menüpontban a letöltött Toolbox elérési útvonalát, s ezekután elérhetőek lesznek a Toolbox által definiált függvények A módszerek implementációja A Függelékben megadott newton method.m MATLAB függvény tartalmazza a klasszikus Newtonmódszer míg a secant method.m a szelőmódszer implementálását a f : R R és f : R m R függvénycsaládokra. Mindkét függvény 4 paramétert vár : azt a függvényt, amelynek egy zérushelyét keressük (ezt külön MATLAB.m fájlban kell megvalósítani) a gyök egy sejtését (a szelőmódszer esetében két pontot) a maximális iterációk számát (ezzel tudjuk biztosítani az algoritmus végességét) egy kívánt pontosságot A két algoritmus keretrszere megegyezik, először megvizsgáljuk a függvények által kapott argumentumokat, és beállítjuk az iterációhoz szükséges értékeket (max iteration, epsilon változók). Ezekután megállapítjuk a gyök sejtéséből a feladat dimenzióját, és létrehozunk egy D (M + 1) méretű mátrixot (xv mátrix) (D (M + 2) méretűt a szelőmódszer esetében), ahol D a feladat dimenziója, M pedig a maximális iterációk száma. Ez a mátrix fogja tartalmazni az iteráció során előállított közelítéseket. A létrehozott mátrix első sorát beállítjuk a gyök sejtésére (szelőmódszer esetén az első két sorát). Az algoritmusok következő lépése az (1) illetve a (2) egyenletek által leírt iterációk megvalósítása. Az iteráció legfeljebb M lépésben megáll, ha azonban egy i M iterációs lépésben az xv mátrixra teljesül, hogy xv(i) xv(i 1) < epsilon, akkor az iteráció leáll, hiszen elértük a kívánt pontosságot. A függvények ezekután visszatérnek az iteráció során előállított közelítések mátrixával (xv) illetve az elért legjobb közelítéssel (xv mátrix legutolsó nem nulla sora). Az eljárásokhoz MATLAB segítséget is írtam, ezt megtekinthetjük a következő parancs kiadásával: >> help newton_method Függvények zérushelyének megtalálása Newton-iterációval NEWTON_METHOD(func_handle, initial_guess, max_iteration, epsilon) a func_handle függvény initial_guess pont közelében található zérushelyét közelíti meg epsilon pontossággal, legfeljebb max_iteration iterációt végrehajtva. func_handle : vektorizált függvény, pl (y = (x(1)-2.345).^2 + (x(2)-5.678).^2;) initial_guess : sorvektor, dimenziója megegyezik a func_handle dimenziójával max_iteration : egész szám, ha nem adjuk meg, alapértelmezetten 100 epsilon : lebeg}opontos szám, ha az eltérés két közelítés között kisebb, mint epsilon, az iteráció megáll. az alapértelmezés 1e-10 visszatérési érték : [ xv approxroot ]... 15

17 4.3. Az elemzésre használt MATLAB kód Ahhoz hogy a klasszikus Newton-módszer illetve a szelőmódszer viselkedését könnyen elemezhessük több függvényen és több dimenzióban, elkészítettem egy olyan MATLAB függvényt (analyze.m), mely az eljárások által visszaadott xv gyök-közelítéseket tartalmazó mátrixot elemzi, és grafikonon ábrázolja az abszolút hibát abszolút relatív hibát abszolút közelítési hibát illetve az abszolút relatív közelítési hibát. Abszolút hiba Legyen x az f függvény tényleges gyöke, x i pedig annak egy közelítése. Ekkor a x x i értéket az x i közelítés abszolút hibájának nevezzük. Ez az érték kifejezi a közelítés jóságát, megmondja, milyen távol vagyunk a tényleges gyöktől. Ha az abszolút hibát az iterációk függvényében ábrázoljuk grafikonon, akkor ha azt látjuk, hogy az abszolút hiba csökken, akkor egy re jobb közelítéseket állítunk elő nő, akkor egyre rosszabb közelítéseket állítunk elő oszcillál, akkor nem konvergens az iterációnk Abszolút relatív hiba Legyen x az f függvény tényleges gyöke, x i pedig annak egy közelítése. Ekkor a x x i x vagy x x i x 100 értéket a x i közelítés relatív hibájának nevezzük. A relatív hiba az eltérésnek a pontos érték nagyságrjéhez való viszonyát mondja meg. Ez már sokkal jobban jellemzi a közelítés pontosságát, mint az abszolút hiba. Minél kisebb ez az érték, annál közelebb vagyunk a pontos megoldáshoz. Ha a második százalékosan kifejezett abszolút relatív hiba 5% alá megy, azt mondhatjuk, hogy az aktuális közelítés 95%-os pontosságú. Abszolút közelítési hiba Legyen x az f függvény tényleges gyöke, x i illetve x i+1 pedig annak két egymás utáni közelítése. Ekkor az x i+1 x i értéket a közelítő eljárás abszolút közelítési hibájának nevezzük. Látjuk, hogy ez az érték két egymás utáni közelítés közötti különbséget adja meg, azaz ha ez az érték kicsi, feltételezhetjük, hogy a legutolsó közelítések már jól megközelítettek egy gyököt. Abszolút relatív közelítési hiba Legyen x az f függvény tényleges gyöke, x i illetve x i+1 pedig annak két egymás utáni közelítése. Ekkor a x i+1 x i x i+1 vagy x i+1 x i x i értéket a közelítő eljárás abszolút relatív approximációs (közelítési) hibájának nevezzük. A kifejezésekből láthatjuk, hogy ennek a hibafajtának a százalékos értékét is minimalizálni szeretnénk. Ehhez a függvényhez is készítettem MATLAB help-t (lásd help analyze). 16

18 4.4. Zérushelykeresés és analízis Példa. Keressük meg az alábbi függvény egy zérushelyét! f(x) = (x ) 2 1 Megoldás. Készítsünk egy f1.m nevű MATLAB függvényt, melynek tartalma legyen a következő: f1.m function z = f1(x) z = (x-2.345)^2-1; Most futtassuk a klasszikus Newton-módszert, majd az analizáló függvényt (tudjuk, hogy a fenti függvény két zérushelye a illetve ): >> [xr r] = performed_iteration = 8 approxroot = >> analyze(3.3450,xr); Láthatjuk, hogy 8 iteráció után elértük az alapértelmezett 1 10 pontosságot, és megtaláltuk a nagyobbik gyököt. 4. ábra. A klasszikus Newton-módszer hiba-karakterisztikája a (x ) 2 1 függvényen Ha a kisebbik gyököt szeretnénk megtalálni, egy olyan kezdőpontot kell választanunk, mely közelebb van ez utóbbihoz. Ennek vizsgálata során állítsunk be hosszú formázást, és maximalizáljuk az iterációk számát először 4-re, majd 10-re: >> format long >> [xr r] = performed_iteration = 4 approxroot = 17

19 >> [xr r] = performed_iteration = 7 approxroot = Látható, hogy az első 4 iteráció után még nem kaptunk pontos megoldást, ugyanakkor nem is kellett 10 iteráció a gyök 10 jegyre pontos értékének meghatározásához Példa. Adjuk meg az alábbi függvény egy zérushelyét! f(x) = e x 10 x2 Megoldás. A vizsgált függvény zérushelyeit keressük meg a MATLAB beépített solve függvényével: >> solve( exp(x)-10^(x^2) ) ans = 0 1/log(10) >> 1/log(10) ans = >> 5. ábra. Az e x 10 x2 függvény grafikonja Most a szelőmódszert alkalmazzuk a második gyök megtalálására. Ehhez szükségünk lesz két olyan x 1 és x 2 értékre, mely helyeken az e x 10 x2 függvény ellentétes előjelű értékeket vesz fel. Legyen ez a két pont x 1 = 0.25 és x 2 = Ellenőrizzük a kezdeti sejtésünket: >> [f2(0.25) f2(0.73)] ans = Látjuk, hogy ez a két inicializáló pont megfelel a szelőmódszernek. Indítsuk el az algoritmust, és kérjünk 5 jegy pontosságot, maximálisan 20 iterációval: >> [xr r] = performed_iteration = 10 approxroot =

20 Most vizsgáljuk meg az imént futtatott algoritmus közelítési hibáit az egyes iterációk során! Ha megnézzük a 6.ábrán az abszolút hiba grafikonját, látjuk, hogy nem monoton csökken. Ez egy fontos tulajdonsága a szelőmódszernek, de emlékezzünk arra, hogy a szelőmódszer esetében nem volt szükségünk a deriváltfüggvényre! >> analyze(1/log(10),xr) 6. ábra. Az approximációs hibák alakulása a szelőmódszer alkalmazása során Példa. Határozzunk meg egy olyan x vektort, mely zérushelye a következő vektorfüggvénynek! f(x) = (x ) 2 + x (x ) 2 + (x ) 2 + x 2 5; Megoldás. A most vizsgálandó függvény az 5 dimenziós Euklideszi térből képez a valós számokra. Egy triviális gyökét könnyen leolvashatjuk, ezt próbáljuk meg megtalálni a klasszikus Newton-módszerrel: >> [xr r] = ],20); performed_iteration = 20 approxroot = Columns 1 through Columns 4 through >> analyze([ ],xr); >> Az analyze függvény meghívása után a kapott grafikonokról szépen leolvasható, hogy a Newton-eljárásunk minden egyes lépésben egy adott dimenzióban,,lép egyet a megoldás felé. Az abszolút közelítési hiba is folyamatosan csökken az egyes dimenziókban, és 15 iteráció után már jól közelíti a nullát. Ez azt jelenti, hogy az iterációnk konvergens volt, tehát egy valódi gyökhöz közelítettünk. A grafikonokon a kvadratikus konvergencia is jól látható, az abszolút hiba diszkrét pontjaira egy 1 x 2 -es függvény illeszkedne. 19

21 7. ábra. Az abszolút (relatív) hibák alakulása az egyes dimenziókban 8. ábra. A közelítési hibák csökkenése többdimenziós gyökkeresés esetén Példa. Határozzunk meg legalább egy gyököt, ha a függvényünk a következő : f(x) = (x + ln20 + sin(x))e x2 2x Megoldás. A most megvizsgálandó függvény tartalmaz egy periodikus tagot, mely komoly ellensége lehet a Newton-módszereknek. 9. ábra. A (x + ln20 + sin(x))e x2 2x függvény grafikonja és egyetlen zérushelye Ha ugyanis a tényleges gyökhöz nem megfelelően közel választjuk az iteráció kezdőpontját, a közelítés divergálhat. Ha a gyök sejtésének x 0 = t választunk, a klasszikus Newton-módszer divergens lesz. >> solve( (x + log(20) + sin(x))*exp(-x^2/(2*x)) ) ans = 20

22 >> [xr r] = performed_iteration = 100 approxroot = e+02 >> >> analyze( ,xr) 10. ábra. A (x + ln(20) + sin(x))e x2 2x függvény zérushelyének megtalálásakor kudarcot vallunk Ha megnézzük a 10.ábrán található abszolút hiba grafikont, látjuk, hogy az lineárisan nő az iterációk előrehaladtával, ebből kifolyólag a relatív hiba is nő, tehát kijelenthetjük, hogy az x 0 = gyöksejtés nem vezethet minket helyes eredményhez. A konvergenciasebesség tárgyalásakor említettük, hogy a Newton-módszerek konvergenciasebessége a gyök közvetlen közelében a legjobb. Példának okáért az intervallumos globális optimalizálási feladatok esetében is csak kis szélességű intervallumok esetén hajtunk végre Newton-lépéseket. Széles intervallumok esetén nem érünk el szignifikáns eredményeket, míg a kis intervallumok esetén a pontos jegyek számát megduplázhatjuk. Ha a most vizsgált függvény egy valódi probléma leírása lenne, a gyök megkereséséhez más módszerekkel kellene keresni egy jobb gyök-sejtést. Tegyük fel, hogy ilyen módszerek relkezésünkre állnak, és találtunk egy jobb közelítést : x 0 = Ez már közel van a valódi gyökhöz, de a 2 tizedesjegyre pontos értékből 13 jegyre pontos értéket szeretnénk kapni. Ilyenkor igazán hatékony a Newton-módszer: >> [xr r] = performed_iteration = 4 approxroot = >> Ha mégsem állna relkezésünkre más gyök-közelítési módszer, használhatjuk a szelőmódszert felismervén azt, hogy a függvénynek egy zérushelye van, monoton nő, és az értékkészlete a valós számok halmaza: 21

23 >> [xr r] = performed_iteration = 9 approxroot = >> r ans = >> Példa. Keressük iterációs eljárással egy zérushelyét az függvénynek! f(x) = cos(x) Megoldás. Az cos függvény elég egyszerűnek néz ki ahhoz, hogy elfeledkezzünk arról, hogy a Newtonmódszerek nem globálisan konvergensek. Az előző függvény esetében láttuk, hogy a Newton-módszer divergálhat, ebben az esetben viszont egy újabb jelenséget tapasztalhatunk! Keressük meg a cos függvény zérushelyét klasszikus Newton-módszerrel, s legyen a kiindulási sejtésünk speciálisan ! >> [xr r] = performed_iteration = 10 approxroot = >> analyze(3/2*pi,xr) >> 11. ábra. A cos(x) függvényen a Newton-módszer oszcillációja Most az iterációk számát ne 10-re, hanem 30-ra maximalizáljuk: 22

24 >> [xr r] = performed_iteration = 15 approxroot = >> analyze(3/2*pi,xr) >> A 12.ábrán látható abszolút és abszolút relatív hiba grafikonjáról szépen leolvashatjuk, hogy egy szerencsétlenül választott sejtéssel elindított Newton-féle gyökkeresési eljárás az első pár lépésben oszcillál, majd 11 iterációs lépés megtétele után kezd konvergálni a függvény zérushelyéhez. 12. ábra. A cos(x) függvényen a Newton-módszer csak 10 lépés után konvergál Ez a megállapítás azért fontos, mert például az intervallumos globális optimalizálás területén alkalmazott ún. intervallumos Branch and Bound (Korlátozás és Szétválasztás) módszer is alkalmazza a Newton-módszert abból a célból, hogy a keresési teret szűkítse (esetünkben egy intervallum szélességét csökkentse). Tekintettel arra, hogy a módszer költségessége miatt csak egyetlen iteációs lépést hajt végre a B&B algoritmus, sokszor előfodulhat, hogy a keresési tér egyáltalán nem szűkül. Az előző függvényeken végzett tesztek alapján megállapíthatjuk, hogy a gyökkeresési problémák megoldására használt Newton-módszer igenis hatékonyan alkalmazható a valódi gyök közelében, ugyanakkor a globális konvergencia hiánya miatt fellépő divergencia és/vagy oszcilláció jelenségét is figyelembe kell vennünk. 23

25 4.5. A Gauss-Newton módszerek tesztelése Az esszé második részében ismertetett többdimenziós, feltétel nélküli optimalizáló eljárásokat a MAT- LAB kiegészítéseként elérhető Optimization Toolbox-al fogom bemutatni. Ez a Toolbox kiegészíti a MAT- LAB numerikus rszerét olyan optimalizáló eljárásokkal, melyek hatékonyan alkalmazhatóak többek között feltétel nélküli nemlineáris optimalizálásra lineáris és kvadratikus programozási feladatok megoldására nemlineáris egyenletrszerek megoldására legkisebb négyzetes függvényközelítésre Az Optimization Toolbox függvényeit nagyméretű optimalizálási feladatokra (Large Scale Optimization Problem) is felkészítették, és ez az alapértelmezett. Ha ezt ki szeretnénk kapcsolni (a tesztelés során nem ilyen feladatokat választottam), akkor a Toolbox által elérhető eljárások mindegyikének megadható LargeScale mezőt off -ra kell állítanunk a következőképpen: options = optimset( LargeScale, off ); majd a használni kívánt optimalizáló függvénynek paraméterül kell adnunk az options vektort Az Optimization Toolbox alkalmazása nemlineáris optimalizálásra A Gauss-Newton és Levenberg-Marquardt módszereket az lsqnonlin függvényben valósították meg. Ha a függvény LargeScale változatát használjuk, akkor egy prekondícionált konjugált gradiens- és ún. Trust-Region módszert használ a nagyméretű feladatunk megoldására. Ha a LargeScale opciót kikapcsoljuk a fent említett módon, akkor Levenberg-Marguardt és Gauss- Newton módszereket használ megfelelő egyenesmenti kereső algoritmusokkal egyetemben. Az alapértelmezett a Levenberg-Marquardt, ha azonban a Gauss-Newton módszer lenne számunkra optimális, a Levenberg-Marquardt opciót kell off -ra állítanunk Példa. Oldjuk meg a következő egyenletrszert közelítő eljárással (Gauss-Newton): x 2 1 4x 2 = 0 6x 1 x 2 2 = 4 3x 1 x 2 = 0 Megoldás. Ehhez a feladathoz társítsuk a következő, vele ekvivalens feladatot: F (x) = 1 ( (x x 2 ) 2 + (6x 1 x 2 2 4) 2 + (3x 1 x 2 ) 2) min! (11) amely feladat legkisebb négyzetes értelemben vett megoldását keressük. Nyilvánvaló, hogy a (11) feladat optimális megoldása egyben megoldása a kiindulási feladatunknak is. Nagyon fontos, hogy az lsqnonlin függvénynek nem f i (x) 2 alakú célfüggvényt kell megadnunk! A célfüggvényünket vektor-függvényként kell megadni, azaz el kell készíteni egy olyan MATLAB függvényt, mely az f 1 (x) f 2 (x) F (x) =. f n (x) vektor-függvényt számítja ki. A (11) feladathoz így a következő MATLAB függvényt kell elkészítenünk: gnlmf1.m function y = gnlmf1(x) y(1) = x(1).^2-4*x(2); y(2) = 6*x(1) - x(2).^2-4; y(3) = 3*x(1).*x(2); Ezekután futtassuk le a Gauss-Newton módszert a most definiált függvényünkön: 24

26 >> x0 = [ ] x0 = >> options = optimset( LargeScale, off, LevenbergMarquardt, off ); >> [r,resnorm,residual,exitflag,output] = Optimization terminated: directional derivative along search direction less than TolFun and infinity-norm of gradient less than 10*(TolFun+TolX). r = resnorm = residual = exitflag = 1 output = iterations: 8 funccount: 47 stepsize: cgiterations: [] firstorderopt: [] algorithm: medium-scale: Gauss-Newton, line-search message: [1x147 char] >> >> gnlmf1(r) ans = Láthatjuk, hogy az r vektorban megkapott minimum-közelítés elég jó közelítése a 0 vektornak, amely a valódi megoldás. Ezt megkaptuk 8 iterációból, és mindössze 47 függvénykiértékeléssel. 13. ábra. A Gauss-Newton módszer kezdő- és vég-közelítésének helyzete a célfüggvény felületén 25

27 Példa. Oldjuk meg az alábbi gyökkeresési feladatot! F (x) = x x 1 x 2 + 8y e (x1 4)2 + 40e x2 2 sin(x1 ) + e x1x2 = 0! Megoldás. A következő három MATLAB utasítással kirajzolhatjuk a kétváltozós függvény által a térben kifeszített kifejezetten szép felületet: >> [x,y] = meshgrid(linspace(-2.3,2.3,60)); >> surf(x,y,x.^2-12.*x.*y+8.*y.^2+40.*exp(-(x-.4).^2)+40.*exp(-y.^2).*sin(x)+exp(x.*y)) >> colormap hot 14. ábra. Az x x 1 x 2 + 8y e (x1 4)2 + 40e x2 2 sin(x1 ) + e x1x2 függvény grafikonja. Ahhoz, hogy F (x) egy gyökét megtaláljuk, minimalizálnunk kell az F (x) 2 függvényt. Válasszuk a minimum sejtésének az x 0 = ( 2.1, 2.1) pontot. >> x0=[ ]; Kapcsoljuk ki a LargeScale módot, viszont használjuk a Gauss-Newton módszer helyett a Levenberg- Marquardt algoritmust. >> options = optimset( LargeScale, off, LevenbergMarquardt, on ); És indítsuk el az optimalizálást: >> [r,resnorm,residual,exitflag,output] = Optimization terminated: directional derivative along search direction less than TolFun and infinity-norm of gradient less than 10*(TolFun+TolX). >> r r = >> gnlmf2(r) ans = e-06 Azaz 6 jegyre pontos megoldást kaptunk 8 iterációs lépés, és 56 függvénykiértékelés elvégzésével (ezeket az információkat az output.iterations és output.funccount mezőkből tudhatjuk meg). Az előző két tesztünkből levonhatjuk azt a következtetést, hogy még nagyon bonyolult függvények esetén sem reménytelen a gyökkeresési probléma megoldása, hiszen többdimenziós közelítő eljárásaink vannak a megoldás megtalálására, és az Optimization Toolbox függvényei igencsak hatékonyak. 26

28 5. Egyenletrszerek iterációs megoldása Egyenletrszerek vizsgálatát is a már megismert Optimization Toolbox, és a Symbolix Math Toolbox használatával fogom bemutatni. Ezen Toolboxok kiegészítik a MATLAB numerikus rszerét olyan optimalizáló eljárásokkal és szimbólikus számítási lehetőségekkel, melyek hatékonyan alkalmazhatóak többek között feltétel nélküli nemlineáris optimalizálásra lineáris és kvadratikus programozási feladatok megoldására nemlineáris egyenletrszerek megoldására legkisebb négyzetes függvényközelítésre automatikus differenciálásra egyenletrszerek algebrai megoldására 5.1. A Newton-módszer A klasszikus Newton-módszer bemutatására elkészítettem a Függelékben elérhető newton_method2.m MATLAB kódot. Ez a függvény a klasszikus Newton-iterációt hajtja végre. Paraméteréül meg kell adni a célfüggvényt, egy kezdeti sejtést (x 0 ), a kért pontosságot (ɛ), illetve az iterációk maximális számát. A célfüggvényt egy külön.m fájlban kell megvalósítani úgy, hogy egy adott x i helyen felvett függvényértéket, és az adott helyen vett Jacobi-mátrixot is kiszámítja. (Itt tehát nem az INTLAB automatikus differenciáló eljárásával számolunk!) Példa. Oldjuk meg az alábbi egyszerű egyenletrszert! 3x 1 4x 2 + x 3 = 7 5x 1 + x 2 = 4 x 1 x 2 3x 3 = 5 Az egyenletrszerünket most egy F : R 3 R 3 vektorfüggvényként kell kezelnünk. Ezen vektorfüggvény Jacobi mátrixa a következő lesz: [ Fi (x) J F (x) = x j ] 3 i,j=1 = Így a következőképpen kell egy MATLAB kóddal megvalósítanunk célfüggvényünket, és annak Jacobimátrixának kiszámítását: equationf1.m function [y,j] = equationf1(x) y(1) = 3*x(1)-4*x(2)+x(3)-7; y(2) = 5*x(1)+x(2)-4; y(3) = x(1)-x(2)-3*x(3)+5; J = [3-4 1; 5 1 0; ]; Az első három sorral már megbarátkoztunk, az számítja ki a vektorfüggvényt, míg a függvény negyedik sora a Jacobi-mátrixot adja. Most alkalmazzuk a Newton-módszert, és rajzoltassuk ki az abszolút közelítési és abszolút relatív közelítési hiba grafikonját: >> [xv r] = 4 5],1e-14,100); performed_iteration = 2 27

29 approxroot = >> equationf1(r) ans = >> analyze2(xv) Láthatjuk, hogy mindössze két iteráció elvégzése után megtaláltuk a pontos gyököt (onnan tudjuk, hogy pontos, hogy az ans vektor elemei 0-k, és nem k!). Nyilvánvaló, hogy az előbbi egyenletrszerünk túl egyszerű volt, és ezért kaptunk ilyen gyorsan pontos megoldást. Most nézzünk egy nehezebb feladatot! Példa. Adjunk közelítő megoldást az alábbi egyenletrszerre! 3x 2 1 5x 1 x 2 x x2 2x 3 = 0 sin(x 1 )x 2 + sin(x 2 )x 3 cos(x 3 )x 1 x 2 = 1 2 x 1 x 2 + (x 3 2x 1 ) 2 = 20 Az egyenletrszerünket most is F : R 3 R 3 vektorfüggvényként kezeljük. A Jacobi-mátrix a következő lesz: J F (x) = 6x 1 5x 2 x 2 3 5x 1 x x 2x 3 10x 1 x 2 x x2 2 x 2 cos(x 1 ) cos(x 3 )x 2 sin(x 1 ) + x 3 cos(x 2 ) cos(x 3 )x 1 sin(x 2 ) + sin(x 3 )x 1 x 2 x 2 + 4(x 3 2x 1 ) x 1 2(x 3 2x 1 ) Az ehhez tartozó MATLAB függvény a következőképpen kell, hogy kinézzen: equationf2.m function [F,J] = equationf2(x) y = x(2); z = x(3); x = x(1); F = zeros(1,3); F(1) = 3*x^2-5*x*y.*z^2 + 1/3*y^2*z; F(2) = sin(x)*y + sin(y)*z - cos(z)*x*y+.5; F(3) = x*y+(z-2*x).^2-20; j1 = [(6*x - 5*y*z^2) (-5*x*z^2 + 2/3*y*z) (-10*x*y*z+1/3*y^2)]; j2 = [(y.*cos(x)-cos(z)*y) (sin(x)+ z*cos(y)-cos(z)*x) (sin(y)+sin(z)*x*y)]; j3 = [(y+4*(z-2*x)) (x) (2*(z-2*x))]; J = [j1;j2;j3]; Az első sorral (x,y és z változók bevezetésével) csak az olvashatóságot javítjuk. A következő három sorral kiszámítjuk az adott x helyen felvett függvényértéket, majd pedig a j1,j2 és j3 változók segítségével felépítjük a Jacobi-mátrixot az utolsó sorban. Keressünk közelítő megoldást az egyenletrszerünkre: 28

30 >> [xv r] = 4 5],1e-14,100); performed_iteration = 21 approxroot = >> equationf2(r) ans = 1.0e-14 * >> analyze2(xv) >> Azt kaptuk, hogy 21 iteráció elvégzése után 14 jegyre pontos eredményt kaptunk. A grafikonokról szépen leolvasható, hogy az első 4-5 iteráció során még ténylegesen csak kerestük a gyököt, majd 7-8 iteráció után a megtalált közelítést csak finomítottuk. Azaz a gyök egy jó közelítését már 5-6 iteráció után megkaphattuk volna Az fsolve eljárás Az fsolve eljárás az Optimization Toolbox egyik fontos függvénye, nemlineáris egyenletrszert old meg közelítő eljárásokkal. Alapértelemezzen az ún. Trust-Region Dogleg módszer alkalmazza, azonban rá tudjuk bírni a Gauss-Newton és Levenberg-Marquardt módszerekre is a NonlEqnAlgorithm kapcsolóval. Teknikailag az F (x) = 0 egyenletet oldja meg x-re, ahol x egy vektor, míg F (x) egy vektorfüggvény, melynek visszatérési értéke is egy vektor Példa. Oldjuk meg a következő nemlineáris egyenletrszert: 4x 1 x 2 = e 2x1 x 1 + 2x 2 = e 1 2 x2 Rezzük át az egyenletrszert úgy, hogy minden egyenletet nullára redukálunk: 4x 1 x 2 e 2x1 = 0 x 1 + 2x 2 e 1 2 x2 = 0 Ezt az egyenletrszert szeretnénk megoldani az fsolve eljárással, mégpedig az x 0 = [ 5, 5] sejtésből kiindulva. Ehhez el kell készítenünk az F (x) vektorfüggvényt egy külön.m fájlban: fsolvef1.m function F = fsolvef1(x) F = [4*x(1) - x(2) - exp(-2*x(1)); -x(1) + 2*x(2) - exp(-.5*x(2))]; Ezekután hívjuk meg az optimalizálási eljárásukat: 29

31 >> global xv; >> x0 = [-5; -5]; % Kezd}opont beállítása >> options=optimset( Display, iter, NonlEqnAlgorithm, gn, >> [x,fval] = Directional Iteration Func-count Residual Step-size derivative e e e e e e e e e-15 Optimization terminated: directional derivative along search direction less than TolFun and infinity-norm of gradient less than 10*(TolFun+TolX). x = fval = 1.0e-11 * >> analyze2(xv) 45 függvénykiértékelés után egy gyököt talált az eljárás, amely egyben az egyenletrszerünk közelítő megoldását is adja. Az fval vektor mutatja a redukált egyenletrszerünk baloldalának helyettesítési értékét a közelítésnél. Láthatjuk, hogy a hiba enes nagyságrű. A grafikonokról leolvashatjuk, hogy az fsolve eljárásnak főleg az második dimenzióval ( piros értékek a grafikonon, és x 2 változó az egyenlerszerben) gyűlt meg a baja, hiszen ott volt az abszolút közelítési hiba lényegesen magasabb Példa. Oldjuk meg az alábbi egyenletrszert! x x 3 x 4 = 20 x 1 x 3 + x 2 x 3 = 14 x 1 x 4 + x 2 x 4 = 8 x 3 x 4 + x 2 2 = 6 30

15. LINEÁRIS EGYENLETRENDSZEREK

15. LINEÁRIS EGYENLETRENDSZEREK 15 LINEÁRIS EGYENLETRENDSZEREK 151 Lineáris egyenletrendszer, Gauss elimináció 1 Definíció Lineáris egyenletrendszernek nevezzük az (1) a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a

Részletesebben

9. TÖBBVÁLTOZÓS FÜGGVÉNYEK DIFFERENCIÁLSZÁMITÁSA. 9.1 Metrika és topológia R k -ban

9. TÖBBVÁLTOZÓS FÜGGVÉNYEK DIFFERENCIÁLSZÁMITÁSA. 9.1 Metrika és topológia R k -ban 9. TÖBBVÁLTOZÓS FÜGGVÉNYEK DIFFERENCIÁLSZÁMITÁSA 9.1 Metrika és topológia R k -ban Definíció. A k-dimenziós euklideszi térnek nevezzük és R k val jelöljük a valós számokból alkotott k-tagú x = (x 1, x

Részletesebben

6. Függvények. Legyen függvény és nem üreshalmaz. A függvényt az f K-ra való kiterjesztésének

6. Függvények. Legyen függvény és nem üreshalmaz. A függvényt az f K-ra való kiterjesztésének 6. Függvények I. Elméleti összefoglaló A függvény fogalma, értelmezési tartomány, képhalmaz, értékkészlet Legyen az A és B halmaz egyike sem üreshalmaz. Ha az A halmaz minden egyes eleméhez hozzárendeljük

Részletesebben

First Prev Next Last Go Back Full Screen Close Quit. (Derivált)

First Prev Next Last Go Back Full Screen Close Quit. (Derivált) Valós függvények (3) (Derivált) . Legyen a belső pontja D f -nek. Ha létezik és véges a f(x) f(a) x a x a = f (a) () határérték, akkor f differenciálható a-ban. Az f (a) szám az f a-beli differenciálhányadosa.

Részletesebben

Taylor-polinomok. 1. Alapfeladatok. 2015. április 11. 1. Feladat: Írjuk fel az f(x) = e 2x függvény másodfokú Maclaurinpolinomját!

Taylor-polinomok. 1. Alapfeladatok. 2015. április 11. 1. Feladat: Írjuk fel az f(x) = e 2x függvény másodfokú Maclaurinpolinomját! Taylor-polinomok 205. április.. Alapfeladatok. Feladat: Írjuk fel az fx) = e 2x függvény másodfokú Maclaurinpolinomját! Megoldás: A feladatot kétféle úton is megoldjuk. Az els megoldásban induljunk el

Részletesebben

PTE PMMFK Levelező-távoktatás, villamosmérnök szak

PTE PMMFK Levelező-távoktatás, villamosmérnök szak PTE PMMFK Levelező-távoktatás, villamosmérnök szak MATEMATIKA (A tantárgy tartalma és a tananyag elsajátításának időterve.) Összeállította: Kis Miklós adjunktus Tankönyvek (mindhárom félévre): 1. Scharnitzky

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Függvények

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Függvények MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek

Részletesebben

Határozatlan integrál (2) First Prev Next Last Go Back Full Screen Close Quit

Határozatlan integrál (2) First Prev Next Last Go Back Full Screen Close Quit Határozatlan integrál () First Prev Next Last Go Back Full Screen Close Quit 1. Az összetett függvények integrálására szolgáló egyik módszer a helyettesítéssel való integrálás. Az idevonatkozó tétel pontos

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA MATEmATIkA I 6 VI KOmPLEX SZÁmOk 1 A komplex SZÁmOk HALmAZA A komplex számok olyan halmazt alkotnak amelyekben elvégezhető az összeadás és a szorzás azaz két komplex szám összege és szorzata

Részletesebben

I. feladatsor. (t) z 1 z 3

I. feladatsor. (t) z 1 z 3 I. feladatsor () Töltse ki az alábbi táblázatot: Komple szám Valós rész Képzetes rész Konjugált Abszolútérték 4 + i 3 + 4i 5i 6i 3 5 3 i 7i () Adottak az alábbi komple számok: z = + 3i, z = i, z 3 = i.

Részletesebben

Általános algoritmustervezési módszerek

Általános algoritmustervezési módszerek Általános algoritmustervezési módszerek Ebben a részben arra mutatunk példát, hogy miként használhatóak olyan általános algoritmustervezési módszerek mint a dinamikus programozás és a korlátozás és szétválasztás

Részletesebben

Érettségi feladatok: Függvények 1/9

Érettségi feladatok: Függvények 1/9 Érettségi feladatok: Függvények 1/9 2003. Próba 1. Állapítsa meg a valós számok halmazán értelmezett x x 2-2x - 8 függvény zérushelyeit! 2004. Próba 3. Határozza meg a valós számok halmazán értelmezett

Részletesebben

TANTÁRGYI PROGRAM Matematikai alapok I. útmutató

TANTÁRGYI PROGRAM Matematikai alapok I. útmutató BGF PÉNZÜGYI ÉS SZÁMVITELI KAR Módszertani Intézeti Tanszéki Osztály TANTÁRGYI PROGRAM Matematikai alapok I. útmutató 2014/2015. tanév I. félév Tantárgyi program Tantárgy megnevezése Matematikai alapok

Részletesebben

Diszkrét matematika II., 5. előadás. Lineáris egyenletrendszerek

Diszkrét matematika II., 5. előadás. Lineáris egyenletrendszerek 1 Diszkrét matematika II, 5 előadás Lineáris egyenletrendszerek Dr Takách Géza NyME FMK Informatikai Intézet takach@infnymehu http://infnymehu/ takach/ 2007 március 8 Egyenletrendszerek Középiskolás módszerek:

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 10 X. SZIMULÁCIÓ 1. VÉLETLEN számok A véletlen számok fontos szerepet játszanak a véletlen helyzetek generálásában (pénzérme, dobókocka,

Részletesebben

1. előadás. Lineáris algebra numerikus módszerei. Hibaszámítás Számábrázolás Kerekítés, levágás Klasszikus hibaanalízis Abszolút hiba Relatív hiba

1. előadás. Lineáris algebra numerikus módszerei. Hibaszámítás Számábrázolás Kerekítés, levágás Klasszikus hibaanalízis Abszolút hiba Relatív hiba Hibaforrások Hiba A feladatok megoldása során különféle hibaforrásokkal találkozunk: Modellhiba, amikor a valóságnak egy közelítését használjuk a feladat matematikai alakjának felírásához. (Pl. egy fizikai

Részletesebben

KOVÁCS BÉLA, MATEMATIKA II.

KOVÁCS BÉLA, MATEMATIKA II. KOVÁCS BÉLA, MATEmATIkA II 3 III NUmERIkUS SOROk 1 Alapvető DEFInÍCIÓ ÉS TÉTELEk Végtelen sor Az (1) kifejezést végtelen sornak nevezzük Az számok a végtelen sor tagjai Az, sorozat az (1) végtelen sor

Részletesebben

Egyenletek, egyenlőtlenségek VII.

Egyenletek, egyenlőtlenségek VII. Egyenletek, egyenlőtlenségek VII. Magasabbfokú egyenletek: A 3, vagy annál nagyobb fokú egyenleteket magasabb fokú egyenleteknek nevezzük. Megjegyzés: Egy n - ed fokú egyenletnek legfeljebb n darab valós

Részletesebben

Skalárszorzat, norma, szög, távolság. Dr. Takách Géza NyME FMK Informatikai Intézet takach@inf.nyme.hu http://inf.nyme.hu/ takach/ 2005.

Skalárszorzat, norma, szög, távolság. Dr. Takách Géza NyME FMK Informatikai Intézet takach@inf.nyme.hu http://inf.nyme.hu/ takach/ 2005. 1 Diszkrét matematika II., 4. el adás Skalárszorzat, norma, szög, távolság Dr. Takách Géza NyME FMK Informatikai Intézet takach@inf.nyme.hu http://inf.nyme.hu/ takach/ 2005. március 1 A téma jelent sége

Részletesebben

valós számot tartalmaz, mert az ilyen részhalmazon nem azonosság.

valós számot tartalmaz, mert az ilyen részhalmazon nem azonosság. 2. Közönséges differenciálegyenlet megoldása, megoldhatósága Definíció: Az y függvényt a valós számok H halmazán a közönséges differenciálegyenlet megoldásának nevezzük, ha az y = y(x) helyettesítést elvégezve

Részletesebben

Exponenciális, logaritmikus függvények

Exponenciális, logaritmikus függvények Exponenciális, logaritmikus függvények DEFINÍCIÓ: (Összetett függvény) Ha az értékkészlet elemeihez, mint értelmezési tartományhoz egy újabb egyértelmű hozzárendelést adunk meg, akkor összetett (közvetett)

Részletesebben

TANTÁRGYI PROGRAM Matematikai alapok I. útmutató

TANTÁRGYI PROGRAM Matematikai alapok I. útmutató BGF PÉNZÜGYI ÉS SZÁMVITELI KAR Módszertani Intézeti Tanszéki Osztály TANTÁRGYI PROGRAM Matematikai alapok I. útmutató 2013/2014. tanév II. félév Tantárgyi program Tantárgy megnevezése Matematikai alapok

Részletesebben

Matematika. 4. konzultáció: Kétváltozós függvények szélsőértéke. Parciális függvény, parciális derivált

Matematika. 4. konzultáció: Kétváltozós függvények szélsőértéke. Parciális függvény, parciális derivált Matematika 1 NYME KTK, Egyetemi kiegészítő alapképzés 2004/2005. tanév, I. évf. I.félév Budapest Előadó: Dr. Takách Géza NyME FMK Informatikai Intézet 9400 Sopron, Bajcsy Zs. u. 9. GT fszt. 3. (99) 518

Részletesebben

8. Egyenletek, egyenlőtlenségek, egyenletrendszerek II.

8. Egyenletek, egyenlőtlenségek, egyenletrendszerek II. 8 Egyenletek, egyenlőtlenségek, egyenletrendszerek II Elméleti összefoglaló Az a + b+ c, a egyenletet másodfokú egyenletnek nevezzük A D b ac kifejezést az egyenlet diszkriminánsának nevezzük Ha D >, az

Részletesebben

TANTÁRGYI ÚTMUTATÓ. Gazdasági matematika I. tanulmányokhoz

TANTÁRGYI ÚTMUTATÓ. Gazdasági matematika I. tanulmányokhoz I. évfolyam BA TANTÁRGYI ÚTMUTATÓ Gazdasági matematika I. tanulmányokhoz TÁVOKTATÁS 2015/2016-os tanév I. félév A KURZUS ALAPADATAI Tárgy megnevezése: Gazdasági matematika I. (Analízis) Tanszék: Módszertani

Részletesebben

E-tananyag Matematika 9. évfolyam 2014. Függvények

E-tananyag Matematika 9. évfolyam 2014. Függvények Függvények Függvények értelmezése Legyen adott az A és B két nem üres halmaz. Az A halmaz minden egyes eleméhez rendeljük hozzá a B halmaz egy-egy elemét. Ez a hozzárendelés egyértelmű, és ezt a hozzárendelést

Részletesebben

Sorozatok I. Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma)

Sorozatok I. Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Sorozatok I. DEFINÍCIÓ: (Számsorozat) A számsorozat olyan függvény, amelynek értelmezési tartománya a pozitív egész számok halmaza, értékkészlete a valós számok egy részhalmaza. Jelölés: (a n ), {a n }.

Részletesebben

Fourier-sorok. Lengyelné Dr. Szilágyi Szilvia. 2010. április 7.

Fourier-sorok. Lengyelné Dr. Szilágyi Szilvia. 2010. április 7. ME, Anaĺızis Tanszék 21. április 7. A Taylor-polinom ill. Taylor-sor hátránya, hogy az adott függvényt csak a sorfejtés helyén ill. annak környezetében közeĺıti jól. A sorfejtés helyétől távolodva a közeĺıtés

Részletesebben

Feladatok megoldásokkal az ötödik gyakorlathoz (Taylor polinom, szöveges szélsőérték problémák)

Feladatok megoldásokkal az ötödik gyakorlathoz (Taylor polinom, szöveges szélsőérték problémák) Feladatok megoldásokkal az ötödik gyakorlathoz Taylor polinom, szöveges szélsőérték problémák) 1. Feladat. Írjuk fel az fx) = e x függvény a = 0 pont körüli negyedfokú Taylor polinomját! Ennek segítségével

Részletesebben

Parciális differenciálegyenletek numerikus módszerei számítógépes alkalmazásokkal Karátson, János Horváth, Róbert Izsák, Ferenc

Parciális differenciálegyenletek numerikus módszerei számítógépes alkalmazásokkal Karátson, János Horváth, Róbert Izsák, Ferenc Karátson, János Horváth, Róbert Izsák, Ferenc numerikus módszerei számítógépes írta Karátson, János, Horváth, Róbert, és Izsák, Ferenc Publication date 2013 Szerzői jog 2013 Karátson János, Horváth Róbert,

Részletesebben

Numerikus módszerek 1.

Numerikus módszerek 1. Numerikus módszerek 1. 9. előadás: Paraméteres iterációk, relaxációs módszerek Lócsi Levente ELTE IK Tartalomjegyzék 1 A Richardson-iteráció 2 Relaxált Jacobi-iteráció 3 Relaxált Gauss Seidel-iteráció

Részletesebben

Feladatok a levelező tagozat Gazdasági matematika I. tárgyához. Halmazelmélet

Feladatok a levelező tagozat Gazdasági matematika I. tárgyához. Halmazelmélet Debreceni Egyetem, Közgazdaságtudományi Kar Feladatok a levelező tagozat Gazdasági matematika I. tárgyához a megoldásra feltétlenül ajánlott feladatokat jelöli Halmazelmélet () Legyen A = {, 3, 4}, B =

Részletesebben

Analízis előadás és gyakorlat vázlat

Analízis előadás és gyakorlat vázlat Analízis előadás és gyakorlat vázlat Készült a PTE TTK GI szakos hallgatóinak Király Balázs 00-. I. Félév . fejezet Számhalmazok és tulajdonságaik.. Nevezetes számhalmazok ➀ a) jelölése: N b) elemei:

Részletesebben

MODELLEK ÉS ALGORITMUSOK ELŐADÁS

MODELLEK ÉS ALGORITMUSOK ELŐADÁS MODELLEK ÉS ALGORITMUSOK ELŐADÁS Szerkesztette: Balogh Tamás 214. december 7. Ha hibát találsz, kérlek jelezd a info@baloghtamas.hu e-mail címen! Ez a Mű a Creative Commons Nevezd meg! - Ne add el! - Így

Részletesebben

Gazdasági matematika II. vizsgadolgozat, megoldással,

Gazdasági matematika II. vizsgadolgozat, megoldással, Gazdasági matematika II. vizsgadolgozat, megoldással, levelező képzés Definiálja az alábbi fogalmakat! 1. Kvadratikus mátrix invertálhatósága és inverze. (4 pont) Egy A kvadratikus mátrixot invertálhatónak

Részletesebben

Dierenciálhányados, derivált

Dierenciálhányados, derivált 9. fejezet Dierenciálhányados, derivált A dierenciálhányados deníciója D 9.1 Az egyváltozós valós f függvény x0 pontbeli dierenciálhányadosának nevezzük a lim f(x0 + h) f(x0) h 0 h határértéket, ha ez

Részletesebben

Számsorozatok (1) First Prev Next Last Go Back Full Screen Close Quit

Számsorozatok (1) First Prev Next Last Go Back Full Screen Close Quit Számsorozatok (1) First Prev Next Last Go Back Full Screen Close Quit 1. Valós számsorozaton valós számok meghatározott sorrendű végtelen listáját értjük. A hangsúly az egymásután következés rendjén van.

Részletesebben

Számítógépes geometria (mester kurzus)

Számítógépes geometria (mester kurzus) 2010 sz, Debreceni Egyetem Csuklós szerkezetek animációja (Kép 1985-b l: Tony de Peltrie) Csontváz-modellek Csuklós szerkezet (robotkar) A robotkar részei: csuklók (joints) rotációs prizmatikus (transzlációs)

Részletesebben

ismertetem, hogy milyen probléma vizsgálatában jelent meg ez az eredmény. A kérdés a következő: Mikor mondhatjuk azt, hogy bizonyos események közül

ismertetem, hogy milyen probléma vizsgálatában jelent meg ez az eredmény. A kérdés a következő: Mikor mondhatjuk azt, hogy bizonyos események közül A Borel Cantelli lemma és annak általánosítása. A valószínűségszámítás egyik fontos eredménye a Borel Cantelli lemma. Először informálisan ismertetem, hogy milyen probléma vizsgálatában jelent meg ez az

Részletesebben

karakterisztikus egyenlet Ortogonális mátrixok. Kvadratikus alakok főtengelytranszformációja

karakterisztikus egyenlet Ortogonális mátrixok. Kvadratikus alakok főtengelytranszformációja Mátrixok hasonlósága, karakterisztikus mátrix, karakterisztikus egyenlet Ortogonális mátrixok. Kvadratikus alakok főtengelytranszformációja 1.Mátrixok hasonlósága, karakterisztikus mátrix, karakterisztikus

Részletesebben

A Riemann-Siegel zeta függvény kiugró értékeinek keresése. A matematikai egyik legnehezebb problémája, avagy a prímszámok misztériuma

A Riemann-Siegel zeta függvény kiugró értékeinek keresése. A matematikai egyik legnehezebb problémája, avagy a prímszámok misztériuma A Riemann-Siegel zeta függvény kiugró értékeinek keresése A matematikai egyik legnehezebb problémája, avagy a prímszámok misztériuma 2013 A probléma fontossága és hatása a hétköznapi életre A prímszámok

Részletesebben

egyenlőtlenségnek kell teljesülnie.

egyenlőtlenségnek kell teljesülnie. MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Abszolútértékes és gyökös kifejezések A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval

Részletesebben

Megoldás: Mindkét állítás hamis! Indoklás: a) Azonos alapú hatványokat úgy szorzunk, hogy a kitevőket összeadjuk. Tehát: a 3 * a 4 = a 3+4 = a 7

Megoldás: Mindkét állítás hamis! Indoklás: a) Azonos alapú hatványokat úgy szorzunk, hogy a kitevőket összeadjuk. Tehát: a 3 * a 4 = a 3+4 = a 7 A = {1; 3; 5; 7; 9} A B = {3; 5; 7} A/B = {1; 9} Mindkét állítás hamis! Indoklás: a) Azonos alapú hatványokat úgy szorzunk, hogy a kitevőket összeadjuk. Tehát: a 3 * a 4 = a 3+4 = a 7 Azonos alapú hatványokat

Részletesebben

Számítási feladatok a Számítógépi geometria órához

Számítási feladatok a Számítógépi geometria órához Számítási feladatok a Számítógépi geometria órához Kovács Zoltán Copyright c 2012 Last Revision Date: 2012. október 15. kovacsz@nyf.hu Technikai útmutató a jegyzet használatához A jegyzet képernyőbarát

Részletesebben

Széchenyi István Egyetem, 2005

Széchenyi István Egyetem, 2005 Gáspár Csaba, Molnárka Győző Lineáris algebra és többváltozós függvények Széchenyi István Egyetem, 25 Vektorterek Ebben a fejezetben a geometriai vektorfogalom ( irányított szakasz ) erős általánosítását

Részletesebben

4. Fuzzy relációk. Gépi intelligencia I. Fodor János NIMGI1MIEM BMF NIK IMRI

4. Fuzzy relációk. Gépi intelligencia I. Fodor János NIMGI1MIEM BMF NIK IMRI 4. Fuzzy relációk Gépi intelligencia I. Fodor János BMF NIK IMRI NIMGI1MIEM Tartalomjegyzék I 1 Klasszikus relációk Halmazok Descartes-szorzata Relációk 2 Fuzzy relációk Fuzzy relációk véges alaphalmazok

Részletesebben

út hosszát. Ha a két várost nem köti össze út, akkor legyen c ij = W, ahol W már az előzőekben is alkalmazott megfelelően nagy szám.

út hosszát. Ha a két várost nem köti össze út, akkor legyen c ij = W, ahol W már az előzőekben is alkalmazott megfelelően nagy szám. 1 Az utazó ügynök problémája Utazó ügynök feladat Adott n számú város és a városokat összekötő utak, amelyeknek ismert a hossza. Adott továbbá egy ügynök, akinek adott városból kiindulva, minden várost

Részletesebben

Mátrixjátékok tiszta nyeregponttal

Mátrixjátékok tiszta nyeregponttal 1 Mátrixjátékok tiszta nyeregponttal 1. Példa. Két játékos Aladár és Bendegúz rendelkeznek egy-egy tetraéderrel, melyek lapjaira rendre az 1, 2, 3, 4 számokat írták. Egy megadott jelre egyszerre felmutatják

Részletesebben

Feladatok a Diffrenciálegyenletek IV témakörhöz. 1. Határozzuk meg következő differenciálegyenletek általános megoldását a próba függvény módszerrel.

Feladatok a Diffrenciálegyenletek IV témakörhöz. 1. Határozzuk meg következő differenciálegyenletek általános megoldását a próba függvény módszerrel. Feladatok a Diffrenciálegyenletek IV témakörhöz 1 Határozzuk meg következő differenciálegyenletek általános megoldását a próba függvény módszerrel (a) y 3y 4y = 3e t (b) y 3y 4y = sin t (c) y 3y 4y = 8t

Részletesebben

First Prev Next Last Go Back Full Screen Close Quit. Matematika I

First Prev Next Last Go Back Full Screen Close Quit. Matematika I Matematika I (Analízis) Készítette: Horváth Gábor Kötelező irodalom: Ács László, Gáspár Csaba: Analízis 1 Oktatási segédanyagok és a tantárgyi követelményrendszer megtalálható a http://rs1.szif.hu/ horvathg/horvathg.html

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Exponenciális és Logaritmikus kifejezések

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Exponenciális és Logaritmikus kifejezések MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Eponenciális és Logaritmikus kifejezések A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szoálhatnak fontos információval

Részletesebben

Analízisfeladat-gyűjtemény IV.

Analízisfeladat-gyűjtemény IV. Oktatási segédanyag a Programtervező matematikus szak Analízis. című tantárgyához (003 004. tanév tavaszi félév) Analízisfeladat-gyűjtemény IV. (Függvények határértéke és folytonossága) Összeállította

Részletesebben

Vektorgeometria (2) First Prev Next Last Go Back Full Screen Close Quit

Vektorgeometria (2) First Prev Next Last Go Back Full Screen Close Quit Vektorgeometria (2) First Prev Next Last Go Back Full Screen Close Quit 1. Tekintsünk a térben egy P (p 1, p 2, p 3 ) pontot és egy v = (v 1, v 2, v 3 ) = 0 vektort. Ekkor pontosan egy egyenes létezik,

Részletesebben

LINEÁRIS PROGRAMOZÁSI FELADATOK MEGOLDÁSA SZIMPLEX MÓDSZERREL

LINEÁRIS PROGRAMOZÁSI FELADATOK MEGOLDÁSA SZIMPLEX MÓDSZERREL LINEÁRIS PROGRAMOZÁSI FELADATOK MEGOLDÁSA SZIMPLEX MÓDSZERREL x 1-2x 2 6 -x 1-3x 3 = -7 x 1 - x 2-3x 3-2 3x 1-2x 2-2x 3 4 4x 1-2x 2 + x 3 max Alapfogalmak: feltételrendszer (narancs színnel jelölve), célfüggvény

Részletesebben

2014/2015. tavaszi félév

2014/2015. tavaszi félév Hajder L. és Valasek G. hajder.levente@sztaki.mta.hu Eötvös Loránd Tudományegyetem Informatikai Kar 2014/2015. tavaszi félév Tartalom Geometria modellezés 1 Geometria modellezés 2 Geometria modellezés

Részletesebben

Ismertető A Solver telepítése, illetve indítása A Solver célcella módosuló cellák A feltételek általában a módosuló cellákra hivatkozó képletek.

Ismertető A Solver telepítése, illetve indítása A Solver célcella módosuló cellák A feltételek általában a módosuló cellákra hivatkozó képletek. Ismertető A középiskolában sokféle egyenlet megoldásával megismerkednek a diákok. A matematikaórán azonban csak korlátozott típusú egyenletek fordulnak elő. Nem is cél az egyenletmegoldás általános tárgyalása,

Részletesebben

P 2 P 1. 4.1 ábra Az f(x) függvény globális minimuma (P 1 ) és egy lokális minimuma (P 2 ).

P 2 P 1. 4.1 ábra Az f(x) függvény globális minimuma (P 1 ) és egy lokális minimuma (P 2 ). Paláncz Béla - Numerikus Módszerek - 211-4. Optimalizálás 4 Optimalizálás Bevezetés Az optimalizáció, egy függvény szélsőértéke helyének meghatározása, talán a legfontosabb numerikus eljárások közé tartozik.

Részletesebben

Abszolútértékes egyenlôtlenségek

Abszolútértékes egyenlôtlenségek Abszolútértékes egyenlôtlenségek 575. a) $, $ ; b) < - vagy $, # - vagy > 4. 5 576. a) =, =- 6, 5 =, =-, 7 =, 4 = 5; b) nincs megoldás;! c), = - ; d) =-. Abszolútértékes egyenlôtlenségek 577. a) - # #,

Részletesebben

Irracionális egyenletek, egyenlôtlenségek

Irracionális egyenletek, egyenlôtlenségek 9 Irracionális egyenletek, egyenlôtlenségek Irracionális egyenletek, egyenlôtlenségek Irracionális egyenletek /I a) Az egyenlet bal oldala a nemnegatív számok halmazán, a jobb oldal minden valós szám esetén

Részletesebben

41. Szimmetrikus mátrixok Cholesky-féle felbontása

41. Szimmetrikus mátrixok Cholesky-féle felbontása Benyújtja: Kaszaki Péter (KAPMAAT.SZE) 2005 november 21. 1.oldal Tartalomjegyzék 1. Bevezetés 4 2. A Gauss elimináció és az LU felbontás 4 2.1. Gauss elimináció 4 2.1.2. A Gauss elimináció mátrixos alakban

Részletesebben

DIFFERENCIAEGYENLETEK, MINT A MODELLEZÉS ESZKÖZEI AZ ISKOLAI MATEMATIKÁBAN

DIFFERENCIAEGYENLETEK, MINT A MODELLEZÉS ESZKÖZEI AZ ISKOLAI MATEMATIKÁBAN DIFFERENCIAEGYENLETEK, MINT A MODELLEZÉS ESZKÖZEI AZ ISKOLAI MATEMATIKÁBAN KOVÁCS ZOLTÁN 1. Bevezetés A természeti jelenségeket sokszor differenciálegyenletekkel lehet leírni: a vizsgált mennyiség például

Részletesebben

Új típusú döntési fa építés és annak alkalmazása többtényezős döntés területén

Új típusú döntési fa építés és annak alkalmazása többtényezős döntés területén Új típusú döntési fa építés és annak alkalmazása többtényezős döntés területén Dombi József Szegedi Tudományegyetem Bevezetés - ID3 (Iterative Dichotomiser 3) Az ID algoritmusok egy elemhalmaz felhasználásával

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 2 II. A valószínűségi VÁLTOZÓ És JELLEMZÉsE 1. Valószínűségi VÁLTOZÓ Definíció: Az leképezést valószínűségi változónak nevezzük, ha

Részletesebben

Növényvédő szerek A 500 0 0 0 0 65000 B 0 0 50 500 500 60000 C 50 25 0 50 50 12000 D 0 25 5 50 0 6000

Növényvédő szerek A 500 0 0 0 0 65000 B 0 0 50 500 500 60000 C 50 25 0 50 50 12000 D 0 25 5 50 0 6000 A feladat megoldása során az Excel 2010 használata a javasolt. A feladat elvégzése során a következőket fogjuk gyakorolni: Termelési és optimalizálási feladatok megoldása. Mátrixműveletek alkalmazása.

Részletesebben

MÉRÉSI EREDMÉNYEK PONTOSSÁGA, A HIBASZÁMÍTÁS ELEMEI

MÉRÉSI EREDMÉNYEK PONTOSSÁGA, A HIBASZÁMÍTÁS ELEMEI MÉRÉSI EREDMÉYEK POTOSSÁGA, A HIBASZÁMÍTÁS ELEMEI. A mérési eredmény megadása A mérés során kapott értékek eltérnek a mérendő fizikai mennyiség valódi értékétől. Alapvetően kétféle mérési hibát különböztetünk

Részletesebben

Lineáris Algebra gyakorlatok

Lineáris Algebra gyakorlatok A V 2 és V 3 vektortér áttekintése Lineáris Algebra gyakorlatok Írta: Simon Ilona Lektorálta: DrBereczky Áron Áttekintjük néhány témakör legfontosabb definícióit és a feladatokban használt tételeket kimondjuk

Részletesebben

Diszkrét matematika I. gyakorlat

Diszkrét matematika I. gyakorlat Vizsgafeladatok megoldása 2012. december 5. Tartalom Teljes feladatsor #1 1 Teljes feladatsor #1 2 Teljes feladatsor #2 3 Teljes feladatsor #3 4 Teljes feladatsor #4 5 Válogatott feladatok 6 Végső bölcsesség

Részletesebben

JANUS PANNONIUS TUDOMÁNYEGYETEM. Schipp Ferenc ANALÍZIS I. Sorozatok és sorok

JANUS PANNONIUS TUDOMÁNYEGYETEM. Schipp Ferenc ANALÍZIS I. Sorozatok és sorok JANUS PANNONIUS TUDOMÁNYEGYETEM Schipp Ferenc ANALÍZIS I. Sorozatok és sorok Pécs, 1994 Lektorok: Dr. FEHÉR JÁNOS egyetemi docens, kandidtus. Dr. SIMON PÉTER egyetemi docens, kandidtus 1 Előszó Ez a jegyzet

Részletesebben

ALGORITMUSAI DR. NAGY TAMÁS. egyetemi docens. Miskolci Egyetem Alkalmazott Matematikai Tanszék

ALGORITMUSAI DR. NAGY TAMÁS. egyetemi docens. Miskolci Egyetem Alkalmazott Matematikai Tanszék FELTÉTEL NÉLKÜLI OPTIMALIZÁLÁS ALGORITMUSAI DR. NAGY TAMÁS egyetemi docens Miskolci Egyetem Alkalmazott Matematikai Tanszék A bemutatott kutató munka a TÁMOP-4...B-0//KONV-00-000 jel½u projekt részeként

Részletesebben

Érettségi előkészítő emelt szint 11-12. évf. Matematika. 11. évfolyam. Tematikai egység/fejlesztési cél

Érettségi előkészítő emelt szint 11-12. évf. Matematika. 11. évfolyam. Tematikai egység/fejlesztési cél Emelt szintű matematika érettségi előkészítő 11. évfolyam Tematikai egység/fejlesztési cél Órakeret 72 óra Kötelező Szabad Összesen 1. Gondolkodási módszerek Halmazok, matematikai logika, kombinatorika,

Részletesebben

Ellenőrző kérdések. 36. Ha t szintű indexet használunk, mennyi a keresési költség blokkműveletek számában mérve? (1 pont) log 2 (B(I (t) )) + t

Ellenőrző kérdések. 36. Ha t szintű indexet használunk, mennyi a keresési költség blokkműveletek számában mérve? (1 pont) log 2 (B(I (t) )) + t Ellenőrző kérdések 2. Kis dolgozat kérdései 36. Ha t szintű indexet használunk, mennyi a keresési költség blokkműveletek számában mérve? (1 pont) log 2 (B(I (t) )) + t 37. Ha t szintű indexet használunk,

Részletesebben

EuroOffice Optimalizáló (Solver)

EuroOffice Optimalizáló (Solver) 1. oldal EuroOffice Optimalizáló (Solver) Az EuroOffice Optimalizáló egy OpenOffice.org bővítmény, ami gyors algoritmusokat kínál lineáris programozási és szállítási feladatok megoldására. Szimplex módszer

Részletesebben

összeadjuk 0-t kapunk. Képletben:

összeadjuk 0-t kapunk. Képletben: 814 A ferde kifejtés tétele Ha egy determináns valamely sorának elemeit egy másik sor elemeihez tartozó adjungáltakkal szorozzuk meg és a szorzatokat összeadjuk 0-t kapunk Képletben: n a ij A kj = 0, ha

Részletesebben

Érdekes informatika feladatok

Érdekes informatika feladatok A keres,kkel és adatbázissal ellátott lengyel honlap számos díjat kapott: Spirit of Delphi '98, Delphi Community Award, Poland on the Internet, Golden Bagel Award stb. Az itt megtalálható komponenseket

Részletesebben

First Prev Next Last Go Back Full Screen Close Quit. Komplex számok (2)

First Prev Next Last Go Back Full Screen Close Quit. Komplex számok (2) 2. előadás Komplex számok (2) 1. A a + bi (a, b) kölcsönösen egyértelmű megfeleltetés lehetővé teszi, hogy a komplex számokat a sík pontjaival, illetve helyvektoraival ábrázoljuk. A derékszögű koordináta

Részletesebben

Lineáris programozás. Modellalkotás Grafikus megoldás Feladattípusok Szimplex módszer

Lineáris programozás. Modellalkotás Grafikus megoldás Feladattípusok Szimplex módszer Lineáris programozás Modellalkotás Grafikus megoldás Feladattípusok Szimplex módszer Feladat: Egy gyár kétféle terméket gyárt (A, B): /db Eladási ár 1000 800 Technológiai önköltség 400 300 Normaóraigény

Részletesebben

A matematikai feladatok és megoldások konvenciói

A matematikai feladatok és megoldások konvenciói A matematikai feladatok és megoldások konvenciói Kozárné Fazekas Anna Kántor Sándor Matematika és Informatika Didaktikai Konferencia - Szatmárnémeti 2011. január 28-30. Konvenciók Mindenki által elfogadott

Részletesebben

Matematika 10 Másodfokú egyenletek. matematika és fizika szakos középiskolai tanár. > o < 2015. szeptember 27.

Matematika 10 Másodfokú egyenletek. matematika és fizika szakos középiskolai tanár. > o < 2015. szeptember 27. Matematika 10 Másodfokú egyenletek Juhász László matematika és fizika szakos középiskolai tanár > o < 2015. szeptember 27. copyright: c Juhász László Ennek a könyvnek a használatát szerzői jog védi. A

Részletesebben

M. 33. Határozza meg az összes olyan kétjegyű szám összegét, amelyek 4-gyel osztva maradékul 3-at adnak!

M. 33. Határozza meg az összes olyan kétjegyű szám összegét, amelyek 4-gyel osztva maradékul 3-at adnak! Magyar Ifjúság 6 V SOROZATOK a) Három szám összege 76 E három számot tekinthetjük egy mértani sorozat három egymás után következő elemének vagy pedig egy számtani sorozat első, negyedik és hatodik elemének

Részletesebben

Feladatok a logaritmus témaköréhez 11. osztály, középszint

Feladatok a logaritmus témaköréhez 11. osztály, középszint TÁMOP-4-08/-009-00 A kompetencia alapú oktatás feltételeinek megteremtése Vas megye közoktatási intézményeiben Feladatok a logaritmus témaköréhez osztály, középszint Vasvár, 00 május összeállította: Nagy

Részletesebben

Számítógépes programok alkalmazása az analízisben

Számítógépes programok alkalmazása az analízisben Eötvös Loránd Tudományegyetem Természettudományi Kar Számítógépes programok alkalmazása az analízisben Szakdolgozat Csillagvári Dániel Matematika BSc, elemző szakirány Témavezető: Gémes Margit Analízis

Részletesebben

2) = 0 ahol x 1 és x 2 az ax 2 + bx + c = 0 ( a,b, c R és a 0 )

2) = 0 ahol x 1 és x 2 az ax 2 + bx + c = 0 ( a,b, c R és a 0 ) Fogalom gyűjtemény Abszcissza: az x tengely Abszolút értékes egyenletek: azok az egyenletek, amelyekben abszolút érték jel szerepel. Abszolútérték-függvény: egy elemi egyváltozós valós függvény, mely minden

Részletesebben

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika emelt szint 0613 ÉRETTSÉGI VIZSGA 007. május 8. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM Formai előírások: Fontos tudnivalók

Részletesebben

Bevezetés a számításelméletbe I. feladatgyűjtemény. Szeszlér Dávid, Wiener Gábor

Bevezetés a számításelméletbe I. feladatgyűjtemény. Szeszlér Dávid, Wiener Gábor Bevezetés a számításelméletbe I. feladatgyűjtemény Szeszlér Dávid, Wiener Gábor Tartalomjegyzék Előszó 2 1. Feladatok 5 1.1. Térbeli koordinátageometria........................... 5 1.2. Vektortér, altér..................................

Részletesebben

I. rész. Feladatsor. 2. Andi keresett két olyan számot, amelyre teljesül, hogy a < b. Igaz-e, hogy a < b?

I. rész. Feladatsor. 2. Andi keresett két olyan számot, amelyre teljesül, hogy a < b. Igaz-e, hogy a < b? 1. Feladatsor I. rész 1. Adott két halmaz. A a 9-nél kisebb páros pozitív egészek; B a 30-nál kisebb, 6-tal osztható pozitív egészek halmaza. Adja meg az A B és a B \ A halmazokat!. Andi keresett két olyan

Részletesebben

Fourier-sorok. néhány esetben eltérhetnek az előadáson alkalmazottaktól. Vizsgán. k=1. 1 k = j.

Fourier-sorok. néhány esetben eltérhetnek az előadáson alkalmazottaktól. Vizsgán. k=1. 1 k = j. Fourier-sorok Bevezetés. Az alábbi anyag a vizsgára való felkészülés segítése céljából készült. Az alkalmazott jelölések vagy bizonyítás részletek néhány esetben eltérhetnek az előadáson alkalmazottaktól.

Részletesebben

Megerősítéses tanulás 7. előadás

Megerősítéses tanulás 7. előadás Megerősítéses tanulás 7. előadás 1 Ismétlés: TD becslés s t -ben stratégia szerint lépek! a t, r t, s t+1 TD becslés: tulajdonképpen ezt mintavételezzük: 2 Akcióértékelő függvény számolása TD-vel még mindig

Részletesebben

A következő feladat célja az, hogy egyszerű módon konstruáljunk Poisson folyamatokat.

A következő feladat célja az, hogy egyszerű módon konstruáljunk Poisson folyamatokat. Poisson folyamatok, exponenciális eloszlások Azt mondjuk, hogy a ξ valószínűségi változó Poisson eloszlású λ, 0 < λ

Részletesebben

Lineáris algebra és mátrixok alkalmazása a numerikus analízisben

Lineáris algebra és mátrixok alkalmazása a numerikus analízisben Eötvös Loránd Tudományegyetem Természettudományi kar Lineáris algebra és mátrixok alkalmazása a numerikus analízisben Szakdolgozat Készítette: Borostyán Dóra Matematika BSc matematikai elemző Témavezető:

Részletesebben

Matematika B/1. Tartalomjegyzék. 1. Célkit zések. 2. Általános követelmények. 3. Rövid leírás. 4. Oktatási módszer. Biró Zsolt. 1.

Matematika B/1. Tartalomjegyzék. 1. Célkit zések. 2. Általános követelmények. 3. Rövid leírás. 4. Oktatási módszer. Biró Zsolt. 1. Matematika B/1 Biró Zsolt Tartalomjegyzék 1. Célkit zések 1 2. Általános követelmények 1 3. Rövid leírás 1 4. Oktatási módszer 1 5. Követelmények, pótlások 2 6. Program (el adás) 2 7. Program (gyakorlat)

Részletesebben

Analízis 1. (BSc) vizsgakérdések Programtervez informatikus szak 2008-2009. tanév 2. félév

Analízis 1. (BSc) vizsgakérdések Programtervez informatikus szak 2008-2009. tanév 2. félév Analízis 1. (BSc) vizsgakérdések Programtervez informatikus szak 2008-2009. tanév 2. félév Valós számok 1. Hogyan szól a Bernoulli-egyenl tlenség? Mikor van egyenl ség? Válasz. Minden h 1 valós számra

Részletesebben

Radioaktív anyag felezési idejének mérése

Radioaktív anyag felezési idejének mérése A pályázótársam által ismertetett mérési módszer alkalmazásához Labview szoftverrel készítettem egy mérőműszert, ami lehetőséget nyújt radioaktív anyag felezési idejének meghatározására. 1. ábra: Felhasználói

Részletesebben

Differenciál és integrálszámítás diszkréten

Differenciál és integrálszámítás diszkréten Differenciál és integrálszámítás diszkréten Páles Zsolt Debreceni Egyetem, Matematikai Intézet MAFIÓK, Békéscsaba, 010. augusztus 4-6. Páles Zsolt (Debreceni Egyetem) Diff. és int.-számítás diszkréten

Részletesebben

1. Számsorok, hatványsorok, Taylor-sor, Fourier-sor

1. Számsorok, hatványsorok, Taylor-sor, Fourier-sor . Számsorok, hatványsorok, Taylor-sor, Fourier-sor Vizsgálja meg a következ végtelen sorokat konvergencia szempontjából. Tétel. (Cauchy-féle bels konvergenciakritérium) A a n végtelen sor akkor és csakis

Részletesebben

9. ÉVFOLYAM. Tájékozottság a racionális számkörben. Az azonosságok ismerete és alkalmazásuk. Számok abszolútértéke, normál alakja.

9. ÉVFOLYAM. Tájékozottság a racionális számkörben. Az azonosságok ismerete és alkalmazásuk. Számok abszolútértéke, normál alakja. 9. ÉVFOLYAM Gondolkodási módszerek A szemléletes fogalmak definiálása, tudatosítása. Módszer keresése az összes eset áttekintéséhez. A szükséges és elégséges feltétel megkülönböztetése. A megismert számhalmazok

Részletesebben

Tartalomjegyzék. Bevezetés... 7 A) Függvényegyenletek a természetes számok halmazán... 11 C) Többváltozós függvényegyenletek megoldása

Tartalomjegyzék. Bevezetés... 7 A) Függvényegyenletek a természetes számok halmazán... 11 C) Többváltozós függvényegyenletek megoldása 5 Tartalomjegyzék Bevezetés.......................................................... 7 A) Függvényegyenletek a természetes számok halmazán........... 11 B) Egyváltozós függvényegyenletek megoldása....................

Részletesebben

Az R halmazt a valós számok halmazának nevezzük, ha teljesíti az alábbi 3 axiómacsoport axiómáit.

Az R halmazt a valós számok halmazának nevezzük, ha teljesíti az alábbi 3 axiómacsoport axiómáit. 2. A VALÓS SZÁMOK 2.1 A valós számok aximómarendszere Az R halmazt a valós számok halmazának nevezzük, ha teljesíti az alábbi 3 axiómacsoport axiómáit. 1.Testaxiómák R-ben két művelet van értelmezve, az

Részletesebben

KOVÁCS BÉLA, MATEMATIKA II.

KOVÁCS BÉLA, MATEMATIKA II. KOVÁCS BÉLA MATEmATIkA II 9 IX Magasabbrendű DIFFERENCIÁLEGYENLETEk 1 Alapvető ÖSSZEFÜGGÉSEk n-ed rendű differenciálegyenletek Az alakú ahol n-edrendű differenciálegyenlet általános megoldása tetszőleges

Részletesebben

Osztályozóvizsga követelményei

Osztályozóvizsga követelményei Osztályozóvizsga követelményei Képzés típusa: Tantárgy: Nyolcosztályos gimnázium Matematika Évfolyam: 11 Emelt óraszámú csoport Emelt szintű csoport Vizsga típusa: Írásbeli Követelmények, témakörök: Gondolkodási

Részletesebben

OOP. Alapelvek Elek Tibor

OOP. Alapelvek Elek Tibor OOP Alapelvek Elek Tibor OOP szemlélet Az OOP szemlélete szerint: a valóságot objektumok halmazaként tekintjük. Ezen objektumok egymással kapcsolatban vannak és együttműködnek. Program készítés: Absztrakciós

Részletesebben