Differenciálegyenletek numerikus megoldása

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Differenciálegyenletek numerikus megoldása"

Átírás

1 Differenciálegyenletek numerikus megoldása 2010, Pécsi Tudományegyetem Kollár Bálint (Utolsó változtatás: október 23.) Közönséges differenciálegyenleten olyan egyenletet értünk, amelyben a meghatározandó ismeretlen egy egyváltozós függvény, és az egyenletben ezen ismeretlen függvény különböző rendű deriváltjai szerepelnek, illetve egy- és többváltozós ismert (adott) függvények. A differenciálegyenlet rendje a benne szereplő ismeretlen függvény legmagasabb rendű deriváltjának a rendje. A differenciálegyenlet megoldásához kezdeti feltételekre van szükség, illetve másod- vagy magasabb rendű differenciálegyenleteknél peremfeltételeket is megadhatunk a kezdeti feltételek helyett. A differenciálegyenletek vagy differenciálegyenlet-rendszerek numerikus megoldását az a puszta tény motiválja, hogy a természetben előforduló valós problémákat leíró differenciálegyenletek (egyenletrendszerek) túlnyomó többsége analitikus formában nem megoldható, nincs a megoldásnak ismert zárt alakja. (Példának okáért gondolhatunk kaotikus rendszerekre.) A továbbiakban a differenciálegyenletek numerikus megoldásának néhány közkedvelt módját ismertetem. 1. Euler-módszer Az Euler-módszer a legegyszerűbb módszer differenciálegyenlet-rendszerek numerikus megoldására. A következő kezdeti feltételekkel adott differenciálegyenletet szeretnénk megoldani: dy(t) dt = f(t, y(t)), (1) y(t0) = y0. (2) (Azaz kíváncsiak vagyunk y(t ) értékére minden számunkra érdekes T időpillanatban úgy, hogy közben y(t ) kielégítse y(t = t0) = y0, azaz a (2) feltételt.) Megoldás: (1) mindkét oldalát integráljuk: T majd a Newton-Leibniz szabályt alkalmazzuk: ami átrendezés és (2) felhasználása után: t0 dy(t) T dt = f(t, y(t))dt, (3) dt t0 y(t ) y(t0) = y(t ) = y0 + T T t0 t0 f(t, y(t))dt, (4) f(t, y(t))dt. (5) Diszkretizáljuk az utolsó kifejezés jobb oldalán álló integrált (bontsuk véges t összegekre a t0-tól T -ig terjedő intevallumot)! T y(t ) = y0 + f(t, y(t)) t. (6) t=t0 1

2 Ne felejtsük el, hogy ez csak t 0 határesetben megy át (5) be. Elsőrendű Euler-módszer: Használjuk (6) kifejezést véges t értékek mellett. Mit is jelent ez a gyakorlatban? y(t) ismeretlen függvény kezdeti értékét ismerjük (2), (1) kifejezésbe írva a kezdeti értéket megkapjuk az ismeretlen függvény deriváltját ebben a kezdeti időpillanatban. A jobb oldali szumma tartalmaz ismeretlen tagokat is (hiszen függ y(t) olyan értékeitől amiket még nem ismerünk), de a szumma legelső tagja kiszámolható, ami a következő kifejezéshez vezet: y(t0 + t) = y0 + f(t0, y(t0)) t. (7) (Ha egy pillanatra visszaírjuk f(t, y(t)) helyére y(t) deriváltját (1)-ből, akkor a következőt kapjuk: y(t0 + t) = y0 + dy(t) dt t. (8) t=t0 Vegyük észre, hogy ez nem más mint egy Taylor-sorfejtés az első tagig! Ennek később még hasznát fogjuk venni.) Térjünk vissza (7) kifejezéshez. Ez a kifejezés már csupa ismert dolgot tartalmaz, tehát építőkőként használhatjuk és iteratív módon algoritmust írhatunk belőle, mely megoldja a kívánt feladatot! Minden egyes iterácíós lépésben pusztán az aktuális időpillanatban ismert függvény és derivált értéket kell felhasználnunk (az ilyen módszereket nevezzük egylépésesnek). Tehát az Euler-módszer egy tetszőleges lépése így írható: y(t + t) = y(t) + f(t, y(t)) t. (9) Az algoritmizálásban kevésbé jártasak kedvéért álljon itt egy lehetséges pszeudo-kód, mely megvalósítja az elsőrendű Euler-módszert. Ismert paraméterek: delta_t: egy időlépés hossza f(t,y): y(t) ismeretlen függvény deriváltja t időpillanatban t0: kezdeti időpillanat (gyakorlatban célszerű 0-át választani) y0: kezdeti érték a kezdeti időpillanatban T: végső időpillanat Inicializálás: y := y0 t := t0 Eljárás: Ciklus amíg t < T y := y + f(t,y) * delta_t t := t + delta_t 2

3 2. Newton-féle mozgásegyenlet megoldása Feladat: adott a következő Newton-féle mozgásegyenlet ẍ(t) = 1 F (x, ẋ, t) m (10) x(t0) = x0 (11) ẋ(t0) = v0, (12) ahol a " " (pont) a fizikusok között elterjedt jelölés az idő szerinti deriválás rövid jelzésére. Oldjuk meg a feladatot elsőrendű Euler-módszer segítségével! Megoldás: Vegyük észre, hogy a Newton-féle mozgásegyenlet másodrendű. Az Euler-módszer mégis alkalmazható rá. Vezessünk be egy új változót (a sebességet) és bontsuk szét a differenciálegyenletet két elsőrendű csatolt differenciálegyenletre! v(t) = ẋ(t) (13) v(t) = 1 F (x, v, t) m (14) x(t0) = x0 (15) v(t0) = v0. (16) Majd a (9) kifejezés alapján lépésenként iteráljuk az egyenleteket, tehát x(t + t) = x(t) + v(t) t (17) v(t + t) = v(t) + 1 F (x, v, t) t, m (18) (19) természetesen az iteráció első lépéseben a (15) és (16) kezdeti feltételeket kell felhasználni. 3

4 Pszeudo-kód a Newton-féle mozgásegyenlet megoldásához elsőrendű Euler-módszerrel: Ismert paraméterek: delta_t: egy időlépés hossza F(x,v,t): erőtörvény m: tömeg t0: kezdeti időpillanat (gyakorlatban célszerű 0-át választani) x0: kezdeti hely v0: kezdeti sebesség T: végső időpillanat Inicializálás: x := x0 v := v0 t := t0 Eljárás: Ciklus amíg t < T x_uj := x + v * delta_t v_uj := v + (1/m) * F(x,v,t) * delta_t v := v_uj x := x_uj t := t + delta_t Figyeljük meg, hogy a változók csak akkor kapják meg új értéküket, mikor már minden derivált kiértékelése megtörtént az előző időpillanatban érvényes értékekkel! Ez az Euler-módszer levezetéséből következő szabály, ha nem így csinálnánk az algoritmust, akkor az helytelen eredményt adna, illetve instabil lenne. 4

5 3. Peremérték feladatok megoldása A Newton-féle mozgásegyenlet megoldása már valós probléma, ráadásul másodrendű, tehát a kezdeti felételek helyett peremfeltételek is megadhatóak. E feladatok igen fontosak reális rendszereknél, rengeteg valós kérdést fel lehet tenni. (Pl.: Merre célozzunk egy ágyúval, hogy eltaláljuk vele az ellenség lőporraktárát.) Ezek a feladatok általában sokkal nehezebben oldhatóak meg és sokkal számításigényesebbek, mint a kezdetiérték feladatok. Egyáltalán azt is meg kell vizsgálni, hogy a feladatnak egyáltalán van-e megoldása adott peremfeltételek mellett. (Ha az ágyúnk 100 km-re van a céltól és csak pár grammnyi lőporunk van, akkor bajos megtalálni a megoldást - eltalálni a célt.) Nézzük meg a konkrét ágyús példánkant! Adott: ẍ(t) = 0 (20) ÿ(t) = g m (21) x(0) = 0 (22) y(0) = 0 (23) (ẋ(t0)) 2 + (ẏ(t0)) 2 = v0 (24) x(t) = c (25) y(t) = 0, (26) azaz a (0; 0) pontban állunk, az ágyúgolyó kezdősebessége v0, és a célpont a (c; 0) pontban tartózkodik, közegellenállas nincs, csak a gravitáció hat a golyóra. (Az egyszerűség kedvéért feltesszük hogy c pozitív.) Az előbbieket követve könnyen felírhatjuk az Euler-módszerrel való iteráció menetét, a kezdősebesség irányát azonban nem tudjuk - hiszen ennek a meghatározása lenne a feladatunk. Tudjuk, hogy az ágyúgolyónk legmesszebbre akkor repül, ha 45 fokban lőjük ki (a cél felé). Tehát indítsuk el az algoritmust a 45 foknak megfelelő kezdősebességből. Ha a golyónk nem éri el a célt - annál hamarabb leesik, akkor tudjuk, hogy a feladatnak nincs megoldása, az adott kezdősebesség mellett a golyót nem lehet eljuttatni a célig. Ha pont eltalálja (itt tegyük fel, hogy az eltalálás azt jelenti, hogy adott hibahatárnál - a cél méreténél - közelebb esik le), akkor szerencsénk van, végeztünk. Viszont valószínűbb, hogy messze túllőttünk a célon. Ilyenkor indul az igazi megoldás, keressük felező kereséssel meg az ideális szöget! Vegyünk fel két intervallum határt, kezdetben ez 0 és 45. Lőjük ki a golyót a két határ között középen elhelyezkedő számnak megfelelő szöggel (22,5 fok). Ha túllöttünk a célon, akkor a felső határt csökkentsük le az előző lövés szintjére, ha túl közel lövünk, akkor viszont az alsó határt emeljük az előző lövés szintjére. Majd újra a két határ közt félúton (átlag) lévő szöggel próbálkozzunk. Ismételjük ezt az eljárást addig, amíg hibahatáron belül el nem találjuk a célt! (Itt vegyük észre, hogy ennek az ágyúgolyós feladatnak két megoldása is lehet, tehát ha 45 foknál nagyobb szögek között keresünk, akkor is találhatunk olyan irányt, amikor a golyó eltalálja a célt - ez esetben egy nagyobb íven repülve.) 5

6 Az algoritmus pszeudo-kódja a következő: Ismert paraméterek: delta_t: egy időlépés hossza g: gravitációs állandó m: tömeg c: célpont helye v0: kezdeti sebesség err: célpont helyének hibája Eljárás: vx := cos(45) * v0; vy := sin(45) * v0; x := 0 y := 0 t := 0 Ciklus amíg y >= 0 x_uj := x + vx * delta_t y_uj := y + vy * delta_t vx_uj := vx vy_uj := vy - (g/m) * delta_t x := x_uj y := y_uj vx := vx_uj vy := vy_uj t := t + delta_t Ha x-c < err akkor kiírat(45 fok), algoritmus vége Ha x < c akkor kiírat(a cél túl messze van), algoritmus vége fok_also := 0 fok_felso := 45 Ciklus amíg x-c > err vx := cos((fok_also + fok_felso) / 2) * v0; vy := sin((fok_also + fok_felso) / 2) * v0; x := 0 y := 0 t := 0 Ciklus amíg y >= 0 x_uj := x + vx * delta_t y_uj := y + vy * delta_t vx_uj := vx vy_uj := vy - (g/m) * delta_t x := x_uj y := y_uj vx := vx_uj vy := vy_uj 6

7 t := t + delta_t Ha x-c > err akkor Ha x > c akkor fok_felso := (fok_also + fok_felso) / 2 Ha c > x akkor fok_also := (fok_also + fok_felso) / 2 kiírat((fok_also + fok_felso) / 2 fok) Tudni kell azonban, hogy nem minden peremérték feladatot ilyen egyszerű megoldani. Kaotikus rendszereknél ez a módszer nem működik, ott általában nincs más megoldás, mint puszta erővel (brute force) a lehető legtöbb kezdőállapotot végignézni és megtalálni azt, ami nekünk megfelő. 4. Euler-módszer hibája Fejtsük Taylor-sorba az ismeretlen y(t) függvény megváltozását kis t idő alatt: y(t + t) = y(t) + dy(t ) dt t + 1 t 2 =t d 2 y(t ) dt 2 ( t) (27) t =t Vessük ezt össze a (9) kifejezéssel, azaz az elsőrendű Euler-módszer egy időlépésével. A Taylor-sorfejtés jól viselkedő függvények esetén egzakt, tehát becsülhetjük vele az Euler-módszer hibáját. Ha a két kifejezés különbségét vesszük, akkor minden kiesik, kivéve a másod- és magasabb rendű tagokat, tehát ebből láthatjuk, hogy az elsőrendű Euler-módszer lépésenként egy másodrendű hibát ejt! Az összlépésszám hibája tehát e másodrendű hibák összegével arányos, ami kellően nagyra tud nőni akár egyszerű rendszerek esetén is - a függvények tipikusan "felrobbannak" a rendszer összenergiája exponenciálisan elszáll tehát a gyakorlatban az elsőrendű Euler-módszert állatorvosi ló szerepén kívül másra nem használják. A továbbiakban az elsőrendű Euler-módszernél hatékonyabb módszereket mutatok be, melyek többnyire mentesek az ilyen veszélyektől, komolyabb számításokhoz is használhatóak. 5. Magasabb rendű Euler-módszerek Mint korábban láttuk, az elsőrendű Euler-módszer felfogható úgy, hogy egy ismeretlen y(t) függvény kis megváltozását a Taylor-sorfejtés első rendjéig közelítjük. Ha azonban több tagot is felhasználunk, akkor pontosabb lesz a közelítés, így jutunk el a magasabb rendű Euler-módszerekig. Ezek alapján könnyű belátni, hogy egy másodrendű Euler-módszer egy lépése így néz ki a harmadrendűé pedig y(t + t) = y(t) + f(t, y(t)) t + d f(t, y(t)) ( t) 2, (28) dt 2! y(t + t) = y(t) + f(t, y(t)) t + d f(t, y(t)) ( t) 2 + d2 f(t, y(t)) ( t) 3, (29) dt 2! dt 2 3! és így tovább. Felmerülhet a kérdés, hogy ha ez ilyen egyszerű, akkor miért nem állunk meg itt és használunk sokadrendű Euler-módszereket? A válasz abban rejlik, hogy f(t, y(t)) (azaz y(t) időderiváltjának) a deriváltjait is ki kell számítani, ezek a deriváltak pedig nagyon bonyolultak lehetnek (vagy nem is 7

8 tudjuk az erőtörvényt deriválni, mert nem ismerjük a zárt alakját - pl. csak mérési adataink vannak). A behelyettesítés rengeteg gépidőt elvehet, illetve a bonyolult kifejezések kiértékelése során rengeteg numerikus (kerekítési) hibát ejthetünk. Extrém esetben a Taylor-sorfejtés nem konvergál megfelelően, épp hogy romlik tőle a közelítés. A másik lehetőségünk hogy t-t minden határon túl csökkentjük. Ez egyrészt szélsőséges módon megnöveli a számításigényt, másrészt ha túl picire választjuk meg, akkor kerekítési gondok is felléphetnek: a számítógép véges pontossággal számol, ha egy túl nagy számhoz adunk egy túl picit (a változás egy pici t szorzó!) akkor értékes tizedesjegyeket veszthetünk, pont az áhított pontosságot rontva. Tehát láthatjuk, hogy más módszert kell találnunk, ha a pontosságot szeretnénk a sebességgel és a könnyű kiszámíthatósággal ötvözni. 6. Középpontos módszer (Midpoint method) A középpontos módszer a nevét onnan kapta, hogy egy adott időpillanatban nem az ott érvényes deriválttal lépünk, hanem a kívánt lépésköz felénél érvényes deriválttal: a keresett görbe meredekségét a lépés két végpontja között félútról válasszuk. Tehát: y(t + t) = y(t) + f(t + t t, y(t + )) t. (30) 2 2 A gond csupán az, hogy nem ismerjük f függvény értékét t + t/2 időpillanatban, csak t időpillanatban. Viszont közelíthetjük az értéket az elsőrendű Euler-módszerrel! Így a végeredmény: y(t + t) = y(t) + f(t + t 2 Hibaszámítás: Az előző kifejezést írjuk át Taylor-sorhoz hasonlító egyeszerűbb alakba Fejtsük sorba első rendig y(t + t 2 ) -t majd bontsuk ki a kifejezést t d y(t + y(t + t) = y(t) + dt y(t + t) = y(t) + d dt (, y(t) + f(t, y(t)) t) t. (31) 2 2 ) y(t) + d y(t) dt t. (32) ) t t, (33) 2 y(t + t) = y(t) + d y(t) t + d2 y(t) ( t) 2. (34) dt dt 2 2 Összevetve a kifejezést az ismeretlen függvény Taylor sorfejtésével láthatjuk, hogy másodrendig egzakt a középpontos módszer, a hibája harmadrendű. A középpontos módszer előnyei: több számítással jár mint az elsőrendű Euler, viszont másodrendű. A másodrendű Eulerhez képest azt nyerjük, hogy nem kell az ismeretlen függvény második deriváltját kiszámítani, elég az első deriváltat használni, így összességében elmondhatjuk hogy általában kevesebb számítást igényel. A módszer gyakorlatban már használható, ám komoly számításhoz még nem elegendő, viszont ahol a pontosság nem fontos, ott többnyire elfogadható stabilitással működik. 8

9 Pszeudo-kód a középpontos módszerhez: Ismert paraméterek: delta_t: egy időlépés hossza f(t,y): y(t) ismeretlen függvény deriváltja t időpillanatban t0: kezdeti időpillanat (gyakorlatban célszerű 0-át választani) y0: kezdeti érték a kezdeti időpillanatban T: végső időpillanat Inicializálás: y := y0 t := t0 Eljárás: Ciklus amíg t < T k := y + f(t,y) * delta_t / 2 y := y + f(t + delta_t / 2, k) * delta_t t := t + delta_t 7. Runge-Kutta módszer A középpontos módszernél láthattuk az alapötletet: számoljunk kicsit többet, de csak az első deriváltat felhasználva, és ha a részeredményeket megfelelően súlyozva felhasznájuk, akkor ezzel kisebb hibát véthetünk, kevesebbet számolva. (Hivalatosan a középpontos módszer is a Runge-Kutta módszerek közé tartozik.) A legelterjedtebb és igen gyakran használt a negyedrendű Runge-Kutta módszer. Az alábbi segédderiváltakat kell hozzá kiszámolni (ebben a sorrendben): Ezekből számoljuk azt a meredekséget, mellyel végül lépünk: k 1 = f(t, y(t)) (35) k 2 = f(t + t t, y(t) k 1) (36) k 3 = f(t + t t, y(t) k 2) (37) k 4 = f(t + t, y(t) + tk 3 ). (38) y(t + t) = y(t) (k 1 + 2k 2 + 2k 3 + k 4 ) t. (39) A módszer (mint ahogy a neve is mutatja) negyedrendig egzakt, tehát lépésenként csak egy ötödrendű hibát ejt. (A hibaszámítást a vállakozó kedvű olvasókra bízom.) Gyakorlatban ez a módszer stabil, megfelelően használva komoly, tudományosan elvárt pontosságú számítások is végezhetőek vele. Ennél magasabb rendű módszereket csak különösen fontos vagy szélsőségesen magas pontosságot igénylő helyeken használnak (űrkutatás, nemzetvédelem). 9

10 Pszeudo-kód a negyedrendű Runge-Kutta módszerhez Ismert paraméterek: delta_t: egy időlépés hossza f(t,y): y(t) ismeretlen függvény deriváltja t időpillanatban t0: kezdeti időpillanat (gyakorlatban célszerű 0-át választani) y0: kezdeti érték a kezdeti időpillanatban T: végső időpillanat Inicializálás: y := y0 t := t0 Eljárás: Ciklus amíg t < T k1 := f(t,y) k2 := f(t + delta_t / 2, y(t) + delta_t / 2 * k1) k3 := f(t + delta_t / 2, y(t) + delta_t / 2 * k2) k4 := f(t + delta_t, y(t) + delta_t * k3) y := y + (k1 + 2 * k2 + 2 * k3 + k4) * delta_t / 6 t := t + delta_t 8. Adaptív lépéshosszváltoztatás Az Euler-módszer bevezetésénél egy integrált (5) diszkretizáltunk (6), de nem tettünk kikötést t lehetséges értékeire, pusztán feltettük, hogy kicsi. A pszeudo-kódokban is látható, hogy a legegyszerűbb megoldás az, ha apró, egyforma t intervallumokra bontjuk az integrálási időt. Ez egy természetes, intuitív feltevés, de kis gondolkodás után finomíthatjuk. A hibászámításoknál látható, hogy a hiba másodrendű, de t-ben és az ismeretlen függvény deriváltjában is másodrendű - a kettő szorzata adja a hiba nagy részét. Ha picit tovább gondolkodunk, ráérezhetünk hogy ez azt jelenti, hogy iteráció közben - tehát az algoritmus futása alatt - új t-ket választhatunk, feltéve hogy az ismeretlen függvény deriváltja (f(t, y(t))) kellően lassan változik! Példa: harmonikus rezgőmozgásnál a nyugalmi helyzete közelében a derivált keveset változik, hiszen a szinuszfüggvény lineárisan indul - a nyugalmi hely környezetében nagy t időkkel léphetünk. Ellenben a maximális amplitúdó közelében (a szinusz csúcsánál) a derivált gyorsan változik, itt apró t időket választhatunk - megtartva a kívánt pontosságot! Összességében elmondható, hogy az adaptív lépéshosszváltoztatás rengeteget gyorsíthat a numerikus rutinokon, miközben egy előre megadott pontossághatárt megtarthatunk. Hogy válasszuk ki az optimális új t lépéshosszt? Használjunk egyszerre egy alacsonyabb és egy magasabb rendű módszert! (Vagy ugyanazt a módszert két különböző t lépésközzel.) A hibát a kettő módszer eredményének különbségéből máris megkaphatjuk. Hasonlítsuk össze ezt a kívánt hibával, ha túl nagy a hibánk, akkor rövidítsük a lépésközt és kezdjük előlről a lépés számítását (azaz ne tegyük még meg a lépést). Ha túl kicsi a hibánk, akkor lépjünk a pontosabb módszerrel, de növeljük meg a lépésközt, ezzel feltéve (és bízva abban), hogy a derivált nem változik a következő lépésig túl sokat, tehát az új, nagyobb lépésköz a következő lépésben az elvárt hibán belül lesz! 10

11 Felhasznált irodalom Bronstejn, Musiol, Mühlig, Szemengyajev, Matematikai Kézikönyv, 8. kiadás (2004) Saját egyetemi jegyzet 11

Numerikus módszerek. 9. előadás

Numerikus módszerek. 9. előadás Numerikus módszerek 9. előadás Differenciálegyenletek integrálási módszerei x k dx k dt = f x,t; k k ' k, k '=1,2,... M FELADAT: meghatározni x k t n x k, n egyenletes időlépés??? t n =t 0 n JELÖLÉS: f

Részletesebben

valós számot tartalmaz, mert az ilyen részhalmazon nem azonosság.

valós számot tartalmaz, mert az ilyen részhalmazon nem azonosság. 2. Közönséges differenciálegyenlet megoldása, megoldhatósága Definíció: Az y függvényt a valós számok H halmazán a közönséges differenciálegyenlet megoldásának nevezzük, ha az y = y(x) helyettesítést elvégezve

Részletesebben

Közönséges differenciálegyenletek megoldása Mapleben

Közönséges differenciálegyenletek megoldása Mapleben Közönséges differenciálegyenletek megoldása Mapleben Differenciálegyenlet alatt egy olyan egyenletet értünk, amelyben a meghatározandó ismeretlen egy függvény, és az egyenlet tartalmazza az ismeretlen

Részletesebben

KOVÁCS BÉLA, MATEMATIKA II.

KOVÁCS BÉLA, MATEMATIKA II. KOVÁCS BÉLA MATEmATIkA II 9 IX Magasabbrendű DIFFERENCIÁLEGYENLETEk 1 Alapvető ÖSSZEFÜGGÉSEk n-ed rendű differenciálegyenletek Az alakú ahol n-edrendű differenciálegyenlet általános megoldása tetszőleges

Részletesebben

Taylor-polinomok. 1. Alapfeladatok. 2015. április 11. 1. Feladat: Írjuk fel az f(x) = e 2x függvény másodfokú Maclaurinpolinomját!

Taylor-polinomok. 1. Alapfeladatok. 2015. április 11. 1. Feladat: Írjuk fel az f(x) = e 2x függvény másodfokú Maclaurinpolinomját! Taylor-polinomok 205. április.. Alapfeladatok. Feladat: Írjuk fel az fx) = e 2x függvény másodfokú Maclaurinpolinomját! Megoldás: A feladatot kétféle úton is megoldjuk. Az els megoldásban induljunk el

Részletesebben

Matematikai háttér. 3. Fejezet. A matematika hozzászoktatja a szemünket ahhoz, hogy tisztán és világosan lássa az igazságot.

Matematikai háttér. 3. Fejezet. A matematika hozzászoktatja a szemünket ahhoz, hogy tisztán és világosan lássa az igazságot. 3. Fejezet Matematikai háttér A matematika hozzászoktatja a szemünket ahhoz, hogy tisztán és világosan lássa az igazságot René Descartes Számtalan kiváló szakirodalom foglalkozik a különféle differenciálegyenletek

Részletesebben

KOVÁCS BÉLA, MATEMATIKA II.

KOVÁCS BÉLA, MATEMATIKA II. KOVÁCS BÉLA MATEmATIkA II 8 VIII Elsőrendű DIFFERENCIÁLEGYENLETEk 1 Alapvető ÖSSZEFÜGGÉSEk Elsőrendű differenciálegyenlet általános és partikuláris megoldása Az vagy (1) elsőrendű differenciálegyenlet

Részletesebben

KOVÁCS BÉLA, MATEMATIKA II.

KOVÁCS BÉLA, MATEMATIKA II. KOVÁCS BÉLA, MATEmATIkA II 3 III NUmERIkUS SOROk 1 Alapvető DEFInÍCIÓ ÉS TÉTELEk Végtelen sor Az (1) kifejezést végtelen sornak nevezzük Az számok a végtelen sor tagjai Az, sorozat az (1) végtelen sor

Részletesebben

x 2 e x dx c) (3x 2 2x)e 2x dx x sin x dx f) x cosxdx (1 x 2 )(sin 2x 2 cos 3x) dx e 2x cos x dx k) e x sin x cosxdx x ln x dx n) (2x + 1) ln 2 x dx

x 2 e x dx c) (3x 2 2x)e 2x dx x sin x dx f) x cosxdx (1 x 2 )(sin 2x 2 cos 3x) dx e 2x cos x dx k) e x sin x cosxdx x ln x dx n) (2x + 1) ln 2 x dx Integrálszámítás II. Parciális integrálás. g) i) l) o) e ( + )(e e ) cos h) e sin j) (sin 3 cos) m) arctg p) arcsin e (3 )e sin f) cos ( )(sin cos 3) e cos k) e sin cos ln n) ( + ) ln. e 3 e cos 3 3 cos

Részletesebben

Differenciálegyenletek

Differenciálegyenletek DE 1 Ebben a részben I legyen mindig pozitív hosszúságú intervallum DE Definíció: differenciálegyenlet Ha D n+1 nyílt halmaz, f:d folytonos függvény, akkor az y (n) (x) f ( x, y(x), y'(x),..., y (n-1)

Részletesebben

DIFFERENCIÁLEGYENLETEK. BSc. Matematika II. BGRMA2HNND, BGRMA2HNNC

DIFFERENCIÁLEGYENLETEK. BSc. Matematika II. BGRMA2HNND, BGRMA2HNNC BSC MATEMATIKA II. MÁSODRENDŰ LINEÁRIS DIFFERENCIÁLEGYENLETEK BSc. Matematika II. BGRMAHNND, BGRMAHNNC MÁSODRENDŰ DIFFERENCIÁLEGYENLETEK Egy explicit közönséges másodrendű differenciálegyenlet általános

Részletesebben

Matematika III. harmadik előadás

Matematika III. harmadik előadás Matematika III. harmadik előadás Kézi Csaba Debreceni Egyetem, Műszaki Kar Debrecen, 2013/14 tanév, I. félév Kézi Csaba (DE) Matematika III. harmadik előadás 2013/14 tanév, I. félév 1 / 13 tétel Az y (x)

Részletesebben

Differenciálegyenletek megoldása próbafüggvény-módszerrel

Differenciálegyenletek megoldása próbafüggvény-módszerrel Differenciálegyenletek megoldása próbafüggvény-módszerrel Ez még nem a végleges változat, utoljára módosítva: 2012. április 9.19:38. Elsőrendű egyenletek Legyen adott egy elsőrendű lineáris állandó együtthatós

Részletesebben

Folytonos rendszeregyenletek megoldása. 1. Folytonos idejű (FI) rendszeregyenlet általános alakja

Folytonos rendszeregyenletek megoldása. 1. Folytonos idejű (FI) rendszeregyenlet általános alakja Folytonos rendszeregyenletek megoldása 1. Folytonos idejű (FI) rendszeregyenlet általános alakja A folytonos rendszeregyenletek megoldásakor olyan rendszerekkel foglalkozunk, amelyeknek egyetlen u = u(t)

Részletesebben

Maple: Deriváltak és a függvény nevezetes pontjai

Maple: Deriváltak és a függvény nevezetes pontjai Maple: Deriváltak és a függvény nevezetes pontjai Bevezető Tudjuk, hogy a Maple könnyűszerrel képes végrehajtani a szimbólikus matematikai számításokat, ezért a Maple egy ideális program differenciál-

Részletesebben

L'Hospital-szabály. 2015. március 15. ln(x 2) x 2. ln(x 2) = ln(3 2) = ln 1 = 0. A nevez határértéke: lim. (x 2 9) = 3 2 9 = 0.

L'Hospital-szabály. 2015. március 15. ln(x 2) x 2. ln(x 2) = ln(3 2) = ln 1 = 0. A nevez határértéke: lim. (x 2 9) = 3 2 9 = 0. L'Hospital-szabály 25. március 5.. Alapfeladatok ln 2. Feladat: Határozzuk meg a határértéket! 3 2 9 Megoldás: Amint a korábbi határértékes feladatokban, els ként most is a határérték típusát kell megvizsgálnunk.

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 10 X. SZIMULÁCIÓ 1. VÉLETLEN számok A véletlen számok fontos szerepet játszanak a véletlen helyzetek generálásában (pénzérme, dobókocka,

Részletesebben

Differenciálegyenletek a mindennapokban

Differenciálegyenletek a mindennapokban Differenciálegyenletek a mindennapokban Csizmadia László Bolyai Intézet, Szegedi Tudományegyetem Kutatók éjszakája Szeged, SZTE L. Csizmadia (Szeged) Kutatók éjszakája 2011. 2011.09.23. 1 / 15 Pénz, pénz,

Részletesebben

Lagrange egyenletek. Úgy a virtuális munka mint a D Alembert-elv gyakorlati alkalmazását

Lagrange egyenletek. Úgy a virtuális munka mint a D Alembert-elv gyakorlati alkalmazását Lagrange egyenletek Úgy a virtuális munka mint a D Alembert-elv gyakorlati alkalmazását megnehezíti a δr i virtuális elmozdulások egymástól való függősége. (F i ṗ i )δx i = 0, i = 1, 3N. (1) i 3N infinitezimális

Részletesebben

DIFFERENCIAEGYENLETEK, MINT A MODELLEZÉS ESZKÖZEI AZ ISKOLAI MATEMATIKÁBAN

DIFFERENCIAEGYENLETEK, MINT A MODELLEZÉS ESZKÖZEI AZ ISKOLAI MATEMATIKÁBAN DIFFERENCIAEGYENLETEK, MINT A MODELLEZÉS ESZKÖZEI AZ ISKOLAI MATEMATIKÁBAN KOVÁCS ZOLTÁN 1. Bevezetés A természeti jelenségeket sokszor differenciálegyenletekkel lehet leírni: a vizsgált mennyiség például

Részletesebben

Feladatok megoldásokkal a 9. gyakorlathoz (Newton-Leibniz formula, közelítő integrálás, az integrálszámítás alkalmazásai 1.

Feladatok megoldásokkal a 9. gyakorlathoz (Newton-Leibniz formula, közelítő integrálás, az integrálszámítás alkalmazásai 1. Feladatok megoldásokkal a 9. gyakorlathoz (Newton-Leibniz formula, közelítő integrálás, az integrálszámítás alkalmazásai.). Feladat. Határozzuk meg az alábbi integrálokat: a) x x + dx d) xe x dx b) c)

Részletesebben

cos 2 (2x) 1 dx c) sin(2x)dx c) cos(3x)dx π 4 cos(2x) dx c) 5sin 2 (x)cos(x)dx x3 5 x 4 +11dx arctg 11 (2x) 4x 2 +1 π 4

cos 2 (2x) 1 dx c) sin(2x)dx c) cos(3x)dx π 4 cos(2x) dx c) 5sin 2 (x)cos(x)dx x3 5 x 4 +11dx arctg 11 (2x) 4x 2 +1 π 4 Integrálszámítás I. Végezze el a következő integrálásokat:. α, haα sin() cos() e f) a sin h) () cos ().. 5 4 ( ) e + 4 sin h) (+) sin() sin() cos() + f) 5 i) cos ( +) 7 4. 4 (+) 6 4 cos() 5 +7 5. ( ) sin()cos

Részletesebben

A brachistochron probléma megoldása

A brachistochron probléma megoldása A brachistochron probléma megoldása Adott a függőleges síkban két nem egy függőleges egyenesen fekvő P 0 és P 1 pont, amelyek közül a P 1 fekszik alacsonyabban. Azt a kérdést fogjuk vizsgálni. hogy van-e

Részletesebben

DIFFERENCIÁLEGYENLETEK. BSc. Matematika II. BGRMA2HNND, BGRMA2HNNC

DIFFERENCIÁLEGYENLETEK. BSc. Matematika II. BGRMA2HNND, BGRMA2HNNC 016.03.1. BSC MATEMATIKA II. ELSŐ ÉS MÁSODRENDŰ LINEÁRIS DIFFERENCIÁLEGYENLETEK BSc. Matematika II. BGRMAHNND, BGRMAHNNC AZ ELSŐRENDŰ LINEÁRIS DIFFERENCIÁLEGYENLET FOGALMA Az elsőrendű közönséges differenciálegyenletet

Részletesebben

Feladatok a Diffrenciálegyenletek IV témakörhöz. 1. Határozzuk meg következő differenciálegyenletek általános megoldását a próba függvény módszerrel.

Feladatok a Diffrenciálegyenletek IV témakörhöz. 1. Határozzuk meg következő differenciálegyenletek általános megoldását a próba függvény módszerrel. Feladatok a Diffrenciálegyenletek IV témakörhöz 1 Határozzuk meg következő differenciálegyenletek általános megoldását a próba függvény módszerrel (a) y 3y 4y = 3e t (b) y 3y 4y = sin t (c) y 3y 4y = 8t

Részletesebben

3. Előadás. Megyesi László: Lineáris algebra, oldal. 3. előadás Lineáris egyenletrendszerek

3. Előadás. Megyesi László: Lineáris algebra, oldal. 3. előadás Lineáris egyenletrendszerek 3. Előadás Megyesi László: Lineáris algebra, 47. 50. oldal. Gondolkodnivalók Determinánsok 1. Gondolkodnivaló Determinánselméleti tételek segítségével határozzuk meg a következő n n-es determinánst: 1

Részletesebben

Határozott integrál és alkalmazásai

Határozott integrál és alkalmazásai Határozott integrál és alkalmazásai 5. május 5.. Alapfeladatok. Feladat: + d = Megoldás: Egy határozott integrál kiszámolása a feladat. Ilyenkor a Newton-Leibniz-tételt használhatjuk, mely azt mondja ki,

Részletesebben

6. A Lagrange-formalizmus

6. A Lagrange-formalizmus Drótos G.: Fejezetek az elméleti mechanikából 6. rész 1 6. A Lagrange-formalizmus A Lagrange-formalizmus alkalmazásával bizonyos fizikai rendszerek mozgásegyenleteit írhatjuk fel egyszerű módon. Az alapvető

Részletesebben

KOVÁCS BÉLA, MATEMATIKA II.

KOVÁCS BÉLA, MATEMATIKA II. KOVÁCS BÉLA, MATEmATIkA II 4 IV HATVÁNYSOROk 1 ELmÉLETI ALAPÖSSZEFÜGGÉSEk Az olyan végtelen sort, amelynek tagjai függvények, függvénysornak nevezzük Ha a tagok hatványfüggvények, akkor a sor neve hatványsor

Részletesebben

Egyenletek, egyenlőtlenségek VII.

Egyenletek, egyenlőtlenségek VII. Egyenletek, egyenlőtlenségek VII. Magasabbfokú egyenletek: A 3, vagy annál nagyobb fokú egyenleteket magasabb fokú egyenleteknek nevezzük. Megjegyzés: Egy n - ed fokú egyenletnek legfeljebb n darab valós

Részletesebben

Alap-ötlet: Karl Friedrich Gauss ( ) valószínűségszámítási háttér: Andrej Markov ( )

Alap-ötlet: Karl Friedrich Gauss ( ) valószínűségszámítási háttér: Andrej Markov ( ) Budapesti Műszaki és Gazdaságtudományi Egyetem Gépészmérnöki Kar Hidrodinamikai Rendszerek Tanszék, Budapest, Műegyetem rkp. 3. D ép. 334. Tel: 463-6-80 Fa: 463-30-9 http://www.vizgep.bme.hu Alap-ötlet:

Részletesebben

Gauss-Jordan módszer Legkisebb négyzetek módszere, egyenes LNM, polinom LNM, függvény. Lineáris algebra numerikus módszerei

Gauss-Jordan módszer Legkisebb négyzetek módszere, egyenes LNM, polinom LNM, függvény. Lineáris algebra numerikus módszerei A Gauss-Jordan elimináció, mátrixinvertálás Gauss-Jordan módszer Ugyanazzal a technikával, mint ahogy a k-adik oszlopban az a kk alatti elemeket kinulláztuk, a fölötte lévő elemeket is zérussá lehet tenni.

Részletesebben

Jelek és rendszerek MEMO_03. Pletl. Belépő jelek. Jelek deriváltja MEMO_03

Jelek és rendszerek MEMO_03. Pletl. Belépő jelek. Jelek deriváltja MEMO_03 Jelek és rendszerek MEMO_03 Belépő jelek Jelek deriváltja MEMO_03 1 Jelek és rendszerek MEMO_03 8.ábra. MEMO_03 2 Jelek és rendszerek MEMO_03 9.ábra. MEMO_03 3 Ha a jelet méréssel kapjuk, akkor a jel következő

Részletesebben

Matematika gyógyszerészhallgatók számára. A kollokvium főtételei tanév

Matematika gyógyszerészhallgatók számára. A kollokvium főtételei tanév Matematika gyógyszerészhallgatók számára A kollokvium főtételei 2015-2016 tanév A1. Függvénytani alapfogalmak. Kölcsönösen egyértelmű függvények és inverzei. Alkalmazások. Alapfogalmak: függvény, kölcsönösen

Részletesebben

JPTE PMMFK Levelező-távoktatás, villamosmérnök szak

JPTE PMMFK Levelező-távoktatás, villamosmérnök szak JPTE PMMFK Levelező-távoktatás, villamosmérnök szak MATEMATIKA (A tantárgy tartalma és a tananyag elsajátításának időterve.) (Összeállította: Kis Miklós) Tankönyvek Megegyeznek az 1. félévben használtakkal.

Részletesebben

1. Bevezetés Differenciálegyenletek és azok megoldásai

1. Bevezetés Differenciálegyenletek és azok megoldásai . Bevezetés.. Differenciálegyenletek és azok megoldásai Differenciálegyenlet alatt olyan függvény egyenleteket értünk, melyekben független változók, függvények és azok deriváltjai szerepelnek. Legegyszerűbb

Részletesebben

Ipari matematika 2. gyakorlófeladatok

Ipari matematika 2. gyakorlófeladatok Ipari matematika. gyakorlófeladatok. december 5. A feladatok megoldása általában többféle úton is kiszámítató. Interpoláció a. Polinom-interpoláció segítségével adjunk közelítést sin π értékére a sin =,

Részletesebben

Feladatok megoldásokkal a harmadik gyakorlathoz (érintési paraméterek, L Hospital szabály, elaszticitás) y = 1 + 2(x 1). y = 2x 1.

Feladatok megoldásokkal a harmadik gyakorlathoz (érintési paraméterek, L Hospital szabály, elaszticitás) y = 1 + 2(x 1). y = 2x 1. Feladatok megoldásokkal a harmadik gyakorlathoz (érintési paraméterek, L Hospital szabály, elaszticitás). Feladat. Írjuk fel az f() = függvény 0 = pontbeli érintőjének egyenletét! Az érintő egyenlete y

Részletesebben

Parciális differenciálegyenletek numerikus módszerei számítógépes alkalmazásokkal Karátson, János Horváth, Róbert Izsák, Ferenc

Parciális differenciálegyenletek numerikus módszerei számítógépes alkalmazásokkal Karátson, János Horváth, Róbert Izsák, Ferenc Karátson, János Horváth, Róbert Izsák, Ferenc numerikus módszerei számítógépes írta Karátson, János, Horváth, Róbert, és Izsák, Ferenc Publication date 2013 Szerzői jog 2013 Karátson János, Horváth Róbert,

Részletesebben

Határozatlan integrál (2) First Prev Next Last Go Back Full Screen Close Quit

Határozatlan integrál (2) First Prev Next Last Go Back Full Screen Close Quit Határozatlan integrál () First Prev Next Last Go Back Full Screen Close Quit 1. Az összetett függvények integrálására szolgáló egyik módszer a helyettesítéssel való integrálás. Az idevonatkozó tétel pontos

Részletesebben

Megoldott feladatok november 30. n+3 szigorúan monoton csökken, 5. n+3. lim a n = lim. n+3 = 2n+3 n+4 2n+1

Megoldott feladatok november 30. n+3 szigorúan monoton csökken, 5. n+3. lim a n = lim. n+3 = 2n+3 n+4 2n+1 Megoldott feladatok 00. november 0.. Feladat: Vizsgáljuk az a n = n+ n+ sorozat monotonitását, korlátosságát és konvergenciáját. Konvergencia esetén számítsuk ki a határértéket! : a n = n+ n+ = n+ n+ =

Részletesebben

Determinisztikus folyamatok. Kun Ferenc

Determinisztikus folyamatok. Kun Ferenc Determinisztikus folyamatok számítógépes modellezése kézirat Kun Ferenc Debreceni Egyetem Elméleti Fizikai Tanszék Debrecen 2001 2 Determinisztikus folyamatok Tartalomjegyzék 1. Determinisztikus folyamatok

Részletesebben

Tananyag. Amikor ez nem sikerül (vagy nem érdemes előállítani a megoldás képletét, mert pl. nagyon

Tananyag. Amikor ez nem sikerül (vagy nem érdemes előállítani a megoldás képletét, mert pl. nagyon 5. lecke. A megoldás előállíthatóságának problémája. Egy közelítő módszer, hibabecsléssel Tananyag Láttuk az előzőekben, hogy az y = f(x, y) differenciálegyenlet jobb oldalának, az f = f(x, y) kétváltozós

Részletesebben

A mechanika alapjai. A pontszerű testek dinamikája

A mechanika alapjai. A pontszerű testek dinamikája A mechanika alapjai A pontszerű testek dinamikája Horváth András SZE, Fizika Tsz. v 0.6 1 / 26 alapi Bevezetés Newton I. Newton II. Newton III. Newton IV. alapi 2 / 26 Bevezetés alapi Bevezetés Newton

Részletesebben

Megoldás: Mindkét állítás hamis! Indoklás: a) Azonos alapú hatványokat úgy szorzunk, hogy a kitevőket összeadjuk. Tehát: a 3 * a 4 = a 3+4 = a 7

Megoldás: Mindkét állítás hamis! Indoklás: a) Azonos alapú hatványokat úgy szorzunk, hogy a kitevőket összeadjuk. Tehát: a 3 * a 4 = a 3+4 = a 7 A = {1; 3; 5; 7; 9} A B = {3; 5; 7} A/B = {1; 9} Mindkét állítás hamis! Indoklás: a) Azonos alapú hatványokat úgy szorzunk, hogy a kitevőket összeadjuk. Tehát: a 3 * a 4 = a 3+4 = a 7 Azonos alapú hatványokat

Részletesebben

Feladatok Differenciálegyenletek II. témakörhöz. 1. Határozzuk meg a következő elsőrendű lineáris differenciálegyenletek általános megoldását!

Feladatok Differenciálegyenletek II. témakörhöz. 1. Határozzuk meg a következő elsőrendű lineáris differenciálegyenletek általános megoldását! Feladatok Differenciálegyenletek II. témakörhöz 1. Határozzuk meg a következő elsőrendű lineáris differenciálegyenletek általános megoldását! (a) (b) 2. Tekintsük az differenciálegyenletet. y y = e x.

Részletesebben

Néhány közelítő megoldás geometriai szemléltetése

Néhány közelítő megoldás geometriai szemléltetése 5. Fejezet Néány közelítő megoldás geometriai szemléltetése 5.. Iránymező Látattuk, ogy az explicit differenciálegyenletek rendelkeznek azzal az érdekes és kivételes tulajdonsággal, ogy bár esetenként

Részletesebben

Fajhő mérése. Mérést végezte: Horváth Bendegúz Mérőtárs neve: Olar Alex Mérés ideje: Jegyzőkönyv leadásának ideje:

Fajhő mérése. Mérést végezte: Horváth Bendegúz Mérőtárs neve: Olar Alex Mérés ideje: Jegyzőkönyv leadásának ideje: Fajhő mérése Mérést végezte: Horváth Bendegúz Mérőtárs neve: Olar Alex Mérés ideje: 206. 0. 20. egyzőkönyv leadásának ideje: 206.. 0. Bevezetés Mérésem során az -es számú minta fajhőjét kellett megmérnem.

Részletesebben

6. Differenciálegyenletek

6. Differenciálegyenletek 312 6. Differenciálegyenletek 6.1. A differenciálegyenlet fogalma Meghatározni az f függvény F primitív függvényét annyit jelent, mint találni egy olyan F függvényt, amely differenciálható az adott intervallumon

Részletesebben

y + a y + b y = r(x),

y + a y + b y = r(x), Definíció 1 A másodrendű, állandó együtthatós, lineáris differenciálegyenletek általános alakja y + a y + b y = r(x), ( ) ahol a és b valós számok, r(x) pedig adott függvény. Ha az r(x) függvény az azonosan

Részletesebben

A szimplex tábla. p. 1

A szimplex tábla. p. 1 A szimplex tábla Végződtetés: optimalitás és nem korlátos megoldások A szimplex algoritmus lépései A degeneráció fogalma Komplexitás (elméleti és gyakorlati) A szimplex tábla Példák megoldása a szimplex

Részletesebben

Differenciálegyenletek gyakorlat december 5.

Differenciálegyenletek gyakorlat december 5. Differenciálegyenletek gyakorlat Kocsis Albert Tihamér Németh Adrián 05 december 5 Ismétlés Integrálás Newton Leibniz-formula Integrálás és alapműveletek wwwwolframalphacom Alapintegrálok sin x dx = cos

Részletesebben

PRÓBAÉRETTSÉGI MATEMATIKA. 2003. május-június KÖZÉPSZINT JAVÍTÁSI ÚTMUTATÓ. Vizsgafejlesztő Központ

PRÓBAÉRETTSÉGI MATEMATIKA. 2003. május-június KÖZÉPSZINT JAVÍTÁSI ÚTMUTATÓ. Vizsgafejlesztő Központ PRÓBAÉRETTSÉGI 00. május-június MATEMATIKA KÖZÉPSZINT JAVÍTÁSI ÚTMUTATÓ Vizsgafejlesztő Központ Kedves Kolléga! Kérjük, hogy a dolgozatok javítását a javítási útmutató alapján végezze, a következők figyelembevételével.

Részletesebben

Fourier-sorok. Lengyelné Dr. Szilágyi Szilvia. 2010. április 7.

Fourier-sorok. Lengyelné Dr. Szilágyi Szilvia. 2010. április 7. ME, Anaĺızis Tanszék 21. április 7. A Taylor-polinom ill. Taylor-sor hátránya, hogy az adott függvényt csak a sorfejtés helyén ill. annak környezetében közeĺıti jól. A sorfejtés helyétől távolodva a közeĺıtés

Részletesebben

A mechanika alapjai. A pontszerű testek kinematikája. Horváth András SZE, Fizika és Kémia Tsz szeptember 29.

A mechanika alapjai. A pontszerű testek kinematikája. Horváth András SZE, Fizika és Kémia Tsz szeptember 29. A mechanika alapjai A pontszerű testek kinematikája Horváth András SZE, Fizika és Kémia Tsz. 2006. szeptember 29. 2 / 35 Több alapfogalom ismerős lehet a középiskolából. Miért tanulunk erről mégis? 3 /

Részletesebben

Matematika A3 1. ZH+megoldás

Matematika A3 1. ZH+megoldás Matematika A3 1. ZH+megoldás 2008. október 17. 1. Feladat Egy 10 literes kezdetben tiszta vizet tartalmazó tartályba 2 l/min sebesséeggel 0.3 kg/l sótartalmú víz Áramlik be, amely elkeveredik a benne lévő

Részletesebben

Megerősítéses tanulás 7. előadás

Megerősítéses tanulás 7. előadás Megerősítéses tanulás 7. előadás 1 Ismétlés: TD becslés s t -ben stratégia szerint lépek! a t, r t, s t+1 TD becslés: tulajdonképpen ezt mintavételezzük: 2 Akcióértékelő függvény számolása TD-vel még mindig

Részletesebben

Az inga mozgásának matematikai modellezése

Az inga mozgásának matematikai modellezése Az inga mozgásának matematikai modellezése Csizmadia László Bolyai Intézet, Szegedi Tudományegyetem Természet és Matematika Szeged, SZTE L. Csizmadia (Szeged) Őszi Kulturális Fesztivál, 2011. 2011.10.08.

Részletesebben

Egyenletek, egyenlőtlenségek X.

Egyenletek, egyenlőtlenségek X. Egyenletek, egyenlőtlenségek X. DEFINÍCIÓ: (Logaritmus) Ha egy pozitív valós számot adott, 1 - től különböző pozitív alapú hatvány alakban írunk fel, akkor ennek a hatványnak a kitevőjét logaritmusnak

Részletesebben

Szélsőérték feladatok megoldása

Szélsőérték feladatok megoldása Szélsőérték feladatok megoldása A z = f (x,y) függvény lokális szélsőértékének meghatározása: A. Szükséges feltétel: f x (x,y) = 0 f y (x,y) = 0 egyenletrendszer megoldása, amire a továbbiakban az x =

Részletesebben

8. Egyenletek, egyenlőtlenségek, egyenletrendszerek II.

8. Egyenletek, egyenlőtlenségek, egyenletrendszerek II. 8 Egyenletek, egyenlőtlenségek, egyenletrendszerek II Elméleti összefoglaló Az a + b+ c, a egyenletet másodfokú egyenletnek nevezzük A D b ac kifejezést az egyenlet diszkriminánsának nevezzük Ha D >, az

Részletesebben

10. Előadás. 1. Feltétel nélküli optimalizálás: Az eljárás alapjai

10. Előadás. 1. Feltétel nélküli optimalizálás: Az eljárás alapjai Optimalizálási eljárások MSc hallgatók számára 10. Előadás Előadó: Hajnal Péter Jegyzetelő: T. Szabó Tamás 2011. április 20. 1. Feltétel nélküli optimalizálás: Az eljárás alapjai A feltétel nélküli optimalizálásnál

Részletesebben

2014/2015. tavaszi félév

2014/2015. tavaszi félév Hajder L. és Valasek G. hajder.levente@sztaki.mta.hu Eötvös Loránd Tudományegyetem Informatikai Kar 2014/2015. tavaszi félév Tartalom Geometria modellezés 1 Geometria modellezés 2 Geometria modellezés

Részletesebben

First Prev Next Last Go Back Full Screen Close Quit. (Derivált)

First Prev Next Last Go Back Full Screen Close Quit. (Derivált) Valós függvények (3) (Derivált) . Legyen a belső pontja D f -nek. Ha létezik és véges a f(x) f(a) x a x a = f (a) () határérték, akkor f differenciálható a-ban. Az f (a) szám az f a-beli differenciálhányadosa.

Részletesebben

1. Olvassuk be két pont koordinátáit: (x1, y1) és (x2, y2). Határozzuk meg a két pont távolságát és nyomtassuk ki.

1. Olvassuk be két pont koordinátáit: (x1, y1) és (x2, y2). Határozzuk meg a két pont távolságát és nyomtassuk ki. Számítás:. Olvassuk be két pont koordinátáit: (, y) és (2, y2). Határozzuk meg a két pont távolságát és nyomtassuk ki. 2. Olvassuk be két darab két dimenziós vektor komponenseit: (a, ay) és (b, by). Határozzuk

Részletesebben

Algoritmusok Tervezése. 6. Előadás Algoritmusok 101 Dr. Bécsi Tamás

Algoritmusok Tervezése. 6. Előadás Algoritmusok 101 Dr. Bécsi Tamás Algoritmusok Tervezése 6. Előadás Algoritmusok 101 Dr. Bécsi Tamás Mi az algoritmus? Lépések sorozata egy feladat elvégzéséhez (legáltalánosabban) Informálisan algoritmusnak nevezünk bármilyen jól definiált

Részletesebben

Az egyenlőtlenség mindkét oldalát szorozzuk meg 4 16-al:

Az egyenlőtlenség mindkét oldalát szorozzuk meg 4 16-al: Bevezető matematika kémikusoknak., 04. ősz. feladatlap. Ábrázoljuk számegyenesen a következő egyenlőtlenségek megoldáshalmazát! (a) x 5 < 3 5 x < 3 x 5 < (d) 5 x

Részletesebben

MATLAB. 6. gyakorlat. Integrálás folytatás, gyakorlás

MATLAB. 6. gyakorlat. Integrálás folytatás, gyakorlás MATLAB 6. gyakorlat Integrálás folytatás, gyakorlás Menetrend Kis ZH Példák integrálásra Kérdések, gyakorlás pdf Kis ZH Numerikus integrálás (ismétlés) A deriváláshoz hasonlóan lehet vektorértékek és megadott

Részletesebben

A fluxióelmélet. Az eredeti összefüggés y=5x 2

A fluxióelmélet. Az eredeti összefüggés y=5x 2 A fluxióelmélet Nézzük miről is szól valójában ez a fluxióelmélet. Newton elméletének első zseniális meglátása az, hogy vegyük alapul az időt, mint változót és minden mást ennek függvényében írjunk le.

Részletesebben

NUMERIKUS MÓDSZEREK FARAGÓ ISTVÁN HORVÁTH RÓBERT. Ismertet Tartalomjegyzék Pályázati támogatás Gondozó

NUMERIKUS MÓDSZEREK FARAGÓ ISTVÁN HORVÁTH RÓBERT. Ismertet Tartalomjegyzék Pályázati támogatás Gondozó FARAGÓ ISTVÁN HORVÁTH RÓBERT NUMERIKUS MÓDSZEREK 2013 Ismertet Tartalomjegyzék Pályázati támogatás Gondozó Szakmai vezet Lektor Technikai szerkeszt Copyright Az Olvasó most egy egyetemi jegyzetet tart

Részletesebben

1. Gauss-eloszlás, természetes szórás

1. Gauss-eloszlás, természetes szórás 1. Gauss-eloszlás, természetes szórás A Gauss-eloszlásnak megfelelő függvény: amely egy σ szélességű, µ középpontú, 1-re normált (azaz a teljes görbe alatti terület 1) görbét ír le. A természetben a centrális

Részletesebben

egyenlőtlenségnek kell teljesülnie.

egyenlőtlenségnek kell teljesülnie. MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Abszolútértékes és gyökös kifejezések A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval

Részletesebben

Többváltozós, valós értékű függvények

Többváltozós, valós értékű függvények Többváltozós függvények Többváltozós, valós értékű függvények Többváltozós függvények Definíció: többváltozós függvények Azokat a függvényeket, melyeknek az értelmezési tartománya R n egy részhalmaza,

Részletesebben

1. előadás. Lineáris algebra numerikus módszerei. Hibaszámítás Számábrázolás Kerekítés, levágás Klasszikus hibaanalízis Abszolút hiba Relatív hiba

1. előadás. Lineáris algebra numerikus módszerei. Hibaszámítás Számábrázolás Kerekítés, levágás Klasszikus hibaanalízis Abszolút hiba Relatív hiba Hibaforrások Hiba A feladatok megoldása során különféle hibaforrásokkal találkozunk: Modellhiba, amikor a valóságnak egy közelítését használjuk a feladat matematikai alakjának felírásához. (Pl. egy fizikai

Részletesebben

Görbe- és felületmodellezés. Szplájnok Felületmodellezés

Görbe- és felületmodellezés. Szplájnok Felületmodellezés Görbe- és felületmodellezés Szplájnok Felületmodellezés Spline (szplájn) Spline: Szakaszosan, parametrikus polinomokkal leírt görbe A spline nevét arról a rugalmasan hajlítható vonalzóról kapta, melyet

Részletesebben

PTE PMMFK Levelező-távoktatás, villamosmérnök szak

PTE PMMFK Levelező-távoktatás, villamosmérnök szak PTE PMMFK Levelező-távoktatás, villamosmérnök szak MATEMATIKA (A tantárgy tartalma és a tananyag elsajátításának időterve.) Összeállította: Kis Miklós adjunktus Tankönyvek Megegyeznek az 1. és 2. félévben

Részletesebben

Matematikai geodéziai számítások 5.

Matematikai geodéziai számítások 5. Matematikai geodéziai számítások 5 Hibaterjedési feladatok Dr Bácsatyai László Matematikai geodéziai számítások 5: Hibaterjedési feladatok Dr Bácsatyai László Lektor: Dr Benedek Judit Ez a modul a TÁMOP

Részletesebben

Hódmezővásárhelyi Városi Matematikaverseny április 14. A osztályosok feladatainak javítókulcsa

Hódmezővásárhelyi Városi Matematikaverseny április 14. A osztályosok feladatainak javítókulcsa Hódmezővásárhelyi Városi Matematikaverseny 2003. április 14. A 11-12. osztályosok feladatainak javítókulcsa 1. feladat Egy számtani sorozatot az első eleme és különbsége egyértelműen meghatározza, azt

Részletesebben

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ A MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI 1. FELADATSORHOZ

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ A MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI 1. FELADATSORHOZ JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ A MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI 1. FELADATSORHOZ Formai előírások: A dolgozatot a vizsgázó által használt színűtől eltérő színű tollal kell javítani, és a tanári gyakorlatnak

Részletesebben

Programozási segédlet

Programozási segédlet Programozási segédlet Programozási tételek Az alábbiakban leírtam néhány alap algoritmust, amit ismernie kell annak, aki programozásra adja a fejét. A lista korántsem teljes, ám ennyi elég kell legyen

Részletesebben

Hangfrekvenciás mechanikai rezgések vizsgálata

Hangfrekvenciás mechanikai rezgések vizsgálata Hangfrekvenciás mechanikai rezgések vizsgálata (Mérési jegyzőkönyv) Hagymási Imre 2007. május 7. (hétfő délelőtti csoport) 1. Bevezetés Ebben a mérésben a szilárdtestek rugalmas tulajdonságait vizsgáljuk

Részletesebben

Eötvös Loránd Tudományegyetem Természettudományi Kar

Eötvös Loránd Tudományegyetem Természettudományi Kar Eötvös Loránd Tudományegyetem Természettudományi Kar Közönséges differenciálegyenletek numerikus megoldása Szakdolgozat Soós Ivett Matematika B.Sc., Matematikai elemz szakirány Témavezet : Mincsovics Miklós

Részletesebben

PTE PMMFK Levelező-távoktatás, villamosmérnök szak

PTE PMMFK Levelező-távoktatás, villamosmérnök szak PTE PMMFK Levelező-távoktatás, villamosmérnök szak MATEMATIKA (A tantárgy tartalma és a tananyag elsajátításának időterve.) Összeállította: Kis Miklós adjunktus Tankönyvek (mindhárom félévre): 1. Scharnitzky

Részletesebben

First Prev Next Last Go Back Full Screen Close Quit. Matematika I

First Prev Next Last Go Back Full Screen Close Quit. Matematika I Matematika I (Analízis) Készítette: Horváth Gábor Kötelező irodalom: Ács László, Gáspár Csaba: Analízis 1 Oktatási segédanyagok és a tantárgyi követelményrendszer megtalálható a http://rs1.szif.hu/ horvathg/horvathg.html

Részletesebben

Lendület. Lendület (impulzus): A test tömegének és sebességének szorzata. vektormennyiség: iránya a sebesség vektor iránya.

Lendület. Lendület (impulzus): A test tömegének és sebességének szorzata. vektormennyiség: iránya a sebesség vektor iránya. Lendület Lendület (impulzus): A test tömegének és sebességének szorzata. vektormennyiség: iránya a sebesség vektor iránya. Lendülettétel: Az lendület erő hatására változik meg. Az eredő erő határozza meg

Részletesebben

Érettségi feladatok: Egyenletek, egyenlőtlenségek 1 / 6. 2005. május 29. 13. a) Melyik (x; y) valós számpár megoldása az alábbi egyenletrendszernek?

Érettségi feladatok: Egyenletek, egyenlőtlenségek 1 / 6. 2005. május 29. 13. a) Melyik (x; y) valós számpár megoldása az alábbi egyenletrendszernek? Érettségi feladatok: Egyenletek, egyenlőtlenségek 1 / 6 Elsőfokú 2005. május 28. 1. Mely x valós számokra igaz, hogy x 7? 13. a) Oldja meg az alábbi egyenletet a valós számok halmazán! x 1 2x 4 2 5 2005.

Részletesebben

Gauss elimináció, LU felbontás

Gauss elimináció, LU felbontás Közelítő és szimbolikus számítások 3. gyakorlat Gauss elimináció, LU felbontás Készítette: Gelle Kitti Csendes Tibor Somogyi Viktor London András Deák Gábor jegyzetei alapján 1 EGYENLETRENDSZEREK 1. Egyenletrendszerek

Részletesebben

26. MINIMÁLIS KÖLTSÉGŰ UTAK MINDEN CSÚCSPÁRRA

26. MINIMÁLIS KÖLTSÉGŰ UTAK MINDEN CSÚCSPÁRRA 26. MINIMÁLIS KÖLTSÉGŰ UTAK MINDEN CSÚCSPÁRRA Az előző két fejezetben tárgyalt feladat általánosításaként a gráfban található összes csúcspárra szeretnénk meghatározni a legkisebb költségű utat. A probléma

Részletesebben

TOL A MEGYEI SZILÁRD LEÓ FIZIKAVERSE Y Szekszárd, március óra 11. osztály

TOL A MEGYEI SZILÁRD LEÓ FIZIKAVERSE Y Szekszárd, március óra 11. osztály TOL A MEGYEI SZILÁRD LEÓ FIZIKAVERSE Y Szekszárd, 2002 március 13 9-12 óra 11 osztály 1 Egyatomos ideális gáz az ábrán látható folyamatot végzi A folyamat elsõ szakasza izobár folyamat, a második szakasz

Részletesebben

Chomsky-féle hierarchia

Chomsky-féle hierarchia http://www.ms.sapientia.ro/ kasa/formalis.htm Chomsky-féle hierarchia G = (N, T, P, S) nyelvtan: 0-s típusú (általános vagy mondatszerkezetű), ha semmilyen megkötést nem teszünk a helyettesítési szabályaira.

Részletesebben

Szennyezőanyagok terjedésének numerikus szimulációja, MISKAM célszoftver

Szennyezőanyagok terjedésének numerikus szimulációja, MISKAM célszoftver Szennyezőanyagok terjedésének numerikus szimulációja, MISKAM célszoftver 1. A numerikus szimulációról általában A szennyeződés-terjedési modellek numerikus megoldása A szennyeződés-terjedési modellek transzportegyenletei

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Trigonometria

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Trigonometria MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Trigonometria A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett

Részletesebben

Márkus Zsolt Tulajdonságok, jelleggörbék, stb BMF -

Márkus Zsolt Tulajdonságok, jelleggörbék, stb BMF - Márkus Zsolt markus.zsolt@qos.hu Tulajdonságok, jelleggörbék, stb. 1 A hatáslánc részegységekből épül fel, melyek megvalósítják a jelátvitelt. A jelátviteli sajátosságok jellemzésére (leírására) létrehozott

Részletesebben

A mérési eredmény megadása

A mérési eredmény megadása A mérési eredmény megadása A mérés során kapott értékek eltérnek a mérendő fizikai mennyiség valódi értékétől. Alapvetően kétféle mérési hibát különböztetünk meg: a determinisztikus és a véletlenszerű

Részletesebben

Fázisátalakulások vizsgálata

Fázisátalakulások vizsgálata Klasszikus Fizika Laboratórium VI.mérés Fázisátalakulások vizsgálata Mérést végezte: Vanó Lilla VALTAAT.ELTE Mérés időpontja: 2012.10.18.. 1. Mérés leírása A mérés során egy adott minta viselkedését vizsgáljuk

Részletesebben

DINAMIKAI VIZSGÁLAT ÁLLAPOTTÉRBEN. 2003.11.06. Dr. Aradi Petra, Dr. Niedermayer Péter: Rendszertechnika segédlet 1

DINAMIKAI VIZSGÁLAT ÁLLAPOTTÉRBEN. 2003.11.06. Dr. Aradi Petra, Dr. Niedermayer Péter: Rendszertechnika segédlet 1 DINAMIKAI VIZSGÁLAT ÁLLAPOTTÉRBEN 2003..06. Dr. Aradi Petra, Dr. Niedermayer Péter: Rendszertechnika segédlet Egy bemenetű, egy kimenetű rendszer u(t) diff. egyenlet v(t) zárt alakban n-edrendű diff. egyenlet

Részletesebben

1. feladatsor, megoldások. y y = 0. y h = C e x

1. feladatsor, megoldások. y y = 0. y h = C e x 1. feladatsor, megoldások 1. Ez egy elsőrendű diffegyenlet, először a homogén egyenlet megoldását keressük meg, majd partikuláris megoldást keresünk: y y = 0 Ez pl. egy szétválasztható egyenlet, melynek

Részletesebben

Forogj! Az [ 1 ] munkában találtunk egy feladatot, ami beindította a HD - készítési folyamatokat. Eredményei alább olvashatók. 1.

Forogj! Az [ 1 ] munkában találtunk egy feladatot, ami beindította a HD - készítési folyamatokat. Eredményei alább olvashatók. 1. 1 Forogj! Az [ 1 ] munkában találtunk egy feladatot, ami beindította a HD - készítési folyamatokat. Eredményei alább olvashatók. 1. Feladat Egy G gépkocsi állandó v 0 nagyságú sebességgel egyenes úton

Részletesebben

Definíció Függvényegyenletnek nevezzük az olyan egyenletet, amelyben a kiszámítandó ismeretlen egy függvény.

Definíció Függvényegyenletnek nevezzük az olyan egyenletet, amelyben a kiszámítandó ismeretlen egy függvény. 8. Differenciálegyenletek 8.1. Alapfogalmak Korábbi tanulmányaink során sokszor találkoztunk egyenletekkel. A feladatunk általában az volt, hogy határozzuk meg az egyenlet megoldását (megoldásait). Az

Részletesebben

Differenciál egyenletek

Differenciál egyenletek Galik Zsófia menedzser hallgató Differenciál egyenletek osztályzása Differenciál egyenletek A differenciálegyenletek olyan egyenletek a matematikában (közelebbről a matematikai analízisben), melyekben

Részletesebben