Az új tudás alapja A középfokú matematikaoktatás felelőssége a felsőoktatás alapozó

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Az új tudás alapja A középfokú matematikaoktatás felelőssége a felsőoktatás alapozó"

Átírás

1 Az új tudás alapja A középfokú matematikaoktatás felelőssége a felsőoktatás alapozó tárgyainak tanításában Kozákné Székely Ildikó József Attila Gimnázium és Közgazdasági Szakközépiskola Monor, 2010

2 1. Problémafölvetés - a téma vizsgálatának szükségessége 2. Az új tudás alapja az előzetes tudás 3. A középfokú matematikaoktatás felelőssége 4. A problémamegoldó képesség fejlesztése fejlesztő tanítási kísérlet 5. Középiskolai matematikafeladatok, melyek alapjai lehetnek a felsőoktatás alapozó tantárgyainak 6. Tapasztalatok, vélemények a felsőoktatásban tanuló volt diákjainktól 7. Összegzés 8. Felhasznált irodalom Kozákné Székely Ildikó 2

3 1. Bevezetés - Problémafölvetés A téma vizsgálatának szükségességéről - NAT Az iskola alapfeladata a tanulók valamennyi értelmi képességének, az egész személyiségének fejlesztése, a konstruktív gondolkodás, az analógiák használatának megtanítása. Általános fejlesztési követelmény a jártasság, logikus gondolkodás, gyakorlottság a matematikai problémamegoldásban, a matematikai bizonyításigény kialakítása. [18] - tankönyvek, feladatgyűjtemények - tehetséggondozás, átlagtanulók - tudásukat új helyzetben (felméréskor, felsőoktatásban) alkalmazni Kozákné Székely Ildikó 3

4 PISA-vizsgálat - nemzetközi tanulói tudásszintmérő program [19] ban a matematikát állították a középpontban. A mért matematikateljesítmény alapján hazánk a 25-dik helyen áll a mért 40 országból. Matematikából a magyar diákok teljesítménye a nemzetközi átlag alatti. Elgondolkodtató az a tény is, hogy nincs pozitív elmozdulás a 2000-es adatokhoz képest, a teljesítményskálán szereplő országokban tapasztalt fejlődés tovább növelte a különbségeket az OECD felmérést jól és rosszul teljesítő országok között ban a természettudományok kaptak kiemelt figyelmet. Az eredmény: szövegértésnél és matematikánál szignifikánsan gyengébb az OECD országok átlagánál, a természettudományoknál statisztikailag egyenértékű az OECD országok átlagával. Kozákné Székely Ildikó 4

5 2. Az új tudás alapja az előzetes tudás Az előzetes tudás hiánya kudarcra ítéli a következő tanulási folyamatot, legyen az: a középszintű oktatás bármilyen formája felsőoktatás felnőttoktatás szakképzés új képzettség megszerzése Kozákné Székely Ildikó 5

6 A tanulók egy része hiányos tudással fejezi be az oktatás egyik periódusát, nem rendelkezik alapfogalmakkal, olyan általános képességekkel, mint az analógiás és induktív gondolkodás, amelyek előfeltételei az új készségek kialakulásának. Például: - Ha nem elég fejlettek az elemi számolási készségei, nem tud szöveges feladatot megoldani - Ha nem tud százalékot számítani, akkor komoly nehézségei lesznek kémiában az oldatok keverésével kapcsolatos számításoknál - Ha nem tud határértéket számolni, akkor a függvényábrázolásnál lesznek problémái Kozákné Székely Ildikó 6

7 Az előzetes tudás felmérésére szükség van az oktatás bármely területén. Amit a tanuló nem tud, de a továbbhaladáshoz szükséges, azt meg kell tanítani. A tanulóknak is motiváltnak kell lenniük. Metakogníció javíthatja a tanulási technikák és módszerek alkalmazását. Tudástöbblet feltárása is fontos lenne. Kozákné Székely Ildikó 7

8 3. A középfokú matematikaoktatás felelőssége Tudástranszfer: az ismeretanyagot és a hozzá kapcsolódó készségeket alkalmazni tudja új, különböző helyzetekben.[6] A tudás transzferálását is tanítani, illetve tanulni kell. Kozákné Székely Ildikó 8

9 A középfokú oktatásban meg kell(ene) tanítani a megszerzett tudás alkalmazását. Néhány objektív tényező, ami akadályozza ezt: - tömeges oktatás, - nagy, fős létszámú osztályok, - kevés (3-4, csak emelt szinten 5) heti óraszám, - csak az alapkövetelmények teljesítéséhez elegendő a 45 perces óra, - a számonkérés egyre inkább elterjedő feleletválasztós formája, - igénytelen középszintű érettségi feladatsorok, stb. Kozákné Székely Ildikó 9

10 4. A problémamegoldó képesség fejlesztése fejlesztő tanítási kísérlet 4.1. A kísérlet fő kérdése A problémamegoldó stratégiák explicit tanítása mennyibe járul hozzá a tanulók problémamegoldó képességének fejlesztéséhez Hipotézis A problémamegoldó stratégiák taníthatóak, és ezek explicit tanítása jelentősen fokozza a tanulók problémamegoldó képességeit. Kozákné Székely Ildikó 10

11 A probléma fogalma a matematikában Problémamegoldás a matematikaoktatásban (célratörő gondolkodást jelent; eszközök keresése valamely kitűzött cél eléréséhez; a problémamegoldó folyamat kulcskérdése egy megfelelő megoldási ötlet megtalálása; egy szubjektív kategória) Problémamegoldási stratégiák a középiskolai matematikaoktatásban: - célirányos gondolkodás - fordított irányú gondolkodás - szisztematikus próbálkozás Kozákné Székely Ildikó 11

12 4.3. A kísérletről röviden Alkalmazott kutatási módszerek: - tanulók megfigyelése, - fejlesztő oktatási kísérlet, - előteszt - utóteszt, - tanulói dokumentumok elemzése, - tanulókkal való beszélgetés, - kérdőíves tanulói vizsgálat, - tanulói feladatmegoldások ismertetése, megvitatása. A kísérlet menete: - előteszt megírása - fejlesztő tanítási kísérlet - utóteszt megírása - eredmények feldolgozása és értékelése - egy kérdőíves tanulói vizsgálat Kozákné Székely Ildikó 12

13 A fejlesztő kísérlet résztvevői Kozákné Székely Ildikó 13

14 Előteszt feladatai 1. Egy ékszerész hétfőn eladta a készlet felét és még 4 darabot, kedden a maradék készlet felét és még 2 darabot, szerdán 5 darab ékszert adott el, és így elfogyott az összes ékszere. Hány ékszer volt az üzletben hétfőn reggel? 2. Három játékos sakkozik. A játék feltételei a következők: a) mindegyik játszmában ketten nyernek, egy veszít; b) a vesztes köteles a nyerők meglévő pénzét megkétszerezni. Mennyi pénzzel kezdtek hozzá a játékhoz, ha három játszma után, amiből mindegyik játékos egyet vesztett, egyformán Ft-juk volt? 3. Bizonyítsa be,hogy ha a és b nemnegatív számok, akkor a + 2 b a b! 4. Bizonyítsa be, hogy ha PT a kör érintője, PB a kör szelője, az A pont a szelőnek a körrel a másik metszéspontja, akkor PA PB = PT 2! Kozákné Székely Ildikó 14

15 Tanulói munkák Kozákné Székely Ildikó 15

16 Tanulói munkák Kozákné Székely Ildikó 16

17 Utóteszt feladatai 1. Egy anya három gyermekének úgy oszt el bizonyos számú almát, hogy Péter kapja az almák felét és még két almát, Pista a megmaradt almák felét és még kettőt, Mari kapja az ezután megmaradt almák felét és még kettőt. Egy alma még maradt. Hány alma volt és mennyit kapott egy-egy gyerek? 2. Egy derékszögű háromszög befogóinak hossza a és b. A derékszög csúcsát az átfogó egy pontjával összekötő d hosszúságú szakasz az a 1 cosδ sin δ = + d a b befogóval δ szöget zár be. Igazoljuk, hogy! 3. Bizonyítsuk be, hogy ha a, b, c valós számok, akkor érvényes az 1 a 2 + b 2 + c 2 (a + b + c) 3 2 összefüggés! Mikor van egyenlőség? 4. Az ABC háromszög köré írt körét az A-ból induló szögfelező D-ben, a háromszög BC oldalát E-ben metszi. Bizonyítsuk be, hogy BD = AD ED Kozákné Székely Ildikó 17

18 Tanulói munkák Kozákné Székely Ildikó 18

19 Kozákné Székely Ildikó 19

20 Kozákné Székely Ildikó 20

21 Nem jeleníthető meg a kép. Lehet, hogy nincs elegendő memória a megnyitásához, de az sem kizárt, hogy sérült a kép. Indítsa újra a számítógépet, és nyissa meg újból a fájlt. Ha továbbra is a piros x ikon jelenik meg, törölje a képet, és szúrja be ismét. Kozákné Székely Ildikó 21

22 Kozákné Székely Ildikó 22

23 Eredmények Elő- és utóteszt eredményei Elért eredmények pontokban Sikeres megoldások száma Célirányos (1) - Fordított irányú gondolkodás (2) Előteszt Utóteszt Elért eredmények pontokban feladat 2. feladat 3. feladat 4. feladat Előteszt Utóteszt Kozákné Székely Ildikó 23

24 Kozákné Székely Ildikó 24

25 5. Középiskolai matematikafeladatok, melyek alapjai lehetnek a felsőoktatás alapozó tantárgyainak A tantervek szerint: - a gimnáziumi osztályok középszintű képzésénél heti 3 vagy 4 óra, - szakközépiskolai osztályoknál heti 3 óra, - emelt szintű fakultációs csoportoknál plusz heti 2 óra áll rendelkezésünkre. Kozákné Székely Ildikó 25

26 Szélsőérték-feladatok Tizedik osztályban, ahol több mint heti 4 órában tanulják a matematikát, emelt szintű tananyag. [12]( o.) Egy 10 cm nagyságú szakaszt két részre osztunk, és a részek fölé négyzeteket rajzolunk. Mikor lesz a két négyzet területének összege a legkisebb? t (x)=x 2 +(10-x) 2 =...=2(x-5) x=5 Kozákné Székely Ildikó 26

27 Két egymásra merőleges úton a kereszteződés felé egyenletes sebességgel halad két kerékpáros. Egyszerre indultak, az egyik 30 km/h sebességgel 20 km távolságból, a másik 40 km/h sebességgel 10 km távolságból. Mikor és hol lesznek egymáshoz a legközelebb? d(x)= 2 ( 20 30x) + (10 40x d 2 (x)=(20-30x) 2 +(10-40x) 2 = = 2 5 =2500(x- ) x= -nél lesz a minimuma Minimális távolság 100=10 km ) 2 A drágakövek ára egyenesen arányos a tömegük négyzetével. Egy 1 gramm tömegű követ, melynek az ára 100 euró, kettévágunk. Mennyire csökkenhet le így a drágakő értéke? Kozákné Székely Ildikó 27

28 Másodfokúra visszavezethető magasabb fokszámú egyenletek Az alapszinten tanulóknak is tudni kell megoldani [12](73.o.): x 4-5x 2 +4=0 8(x-1) 6-215(x-1) 3-27=0 (x 2 +x+3)(x 2 +x+1)-15=0 Az x 4 +x 3-7x 2 -x+6=0 és a 2x 4-3x 3 -x 2-3x+2=0 egyenletek valós megoldásainak megkeresése már emelt szintű feladat. A paraméteres másodfokú egyenletek tanítása szintén emelt szintű tananyag. Kozákné Székely Ildikó 28

29 Trigonometrikus függvények ábrázolása és tanulmányozása Alapszinten olyan tulajdonságokat is megtanítunk, mint például a következő dián is látható. Ennek igazolása már emelt szintű igény. [12](201.o.) Kozákné Székely Ildikó 29

30 Kozákné Székely Ildikó 30

31 Az addíciós tételek és más, ezekből is következő azonosságok felhasználásával összetettebb függvényeket is tudni kell ábrázolni és jellemezni a 11. osztályban [13]( o.): Kozákné Székely Ildikó 31

32 Kozákné Székely Ildikó 32

33 Kozákné Székely Ildikó 33

34 Kozákné Székely Ildikó 34

35 A koordináta-geometria gyakorlati alkalmazását láthatjuk a következő dián: [13](258.o.) Kozákné Székely Ildikó 35

36 Kozákné Székely Ildikó 36

37 Kozákné Székely Ildikó 37

38 Kombinatorika Kiegészítő anyagként néhány összeszámlálási feladat a 11. osztályban: [13](34-36.o.) Hányféleképpen lehet egy bástyával a sakktábla bal alsó sarkából a jobb felső sarokba jutni, minden lépéssel a célhoz közeledve: a) 14 lépéssel; b) 13 lépéssel; c) 12 lépéssel? Egy 52 lapos francia kártyacsomagban 4-féle színű (kör, káró, pikk, treff), és 13-féle figurájú (2,3,4,5,6,7,8,9,10,J,Q,K,A) lap van. Hányféleképpen lehet kiválasztani 5 lapot úgy, hogy a sorrend nem számít és a) nincs két egyforma figura; b) pontosan két egyforma figura van c) pontosan 2-2 egyforma figura van; d) egy figurából három, egy másikból két darab van; e) a figurák sorban egymásmellettiek, de a színük nem számít? Kozákné Székely Ildikó 38

39 A gráfokról alapfogalmakat kell tudni. Igényesebb feladatok kiegészítő anyagként szerepelnek a tankönyvben. Bizonyítási módszerek közül alapkövetelmény a teljes indukció módszerének tanítása. [14](28-34.o.) A számsorozatok fejezetben a számtani és mértani sorozatokat és ezek közvetlen alkalmazását tanítjuk, például kamatszámításnál vagy törlesztőrészletek kiszámításánál. [14](61-64.o.) Kozákné Székely Ildikó 39

40 András 2005 elején Ft-ot tesz be a bankba 10%-os kamatra, és 2010 végén veszi csak ki a teljes összeget. Béla 2005 elején először, azután minden év elején egészen 2010-ig b Ft-ot tesz be a bankba ugyancsak 10%-os kamatra végén ő is kiveszi teljes betétjét, ami ugyanannyi lett, mint András betétje. Számítsuk ki b értékét (ezer Ft-ra kerekítve)! A Futó család új lakást akar vásárolni. Ehhez kölcsönt vesznek fel, méghozzá 10 millió Ft-ot 20 évre, évi 6%-os kedvezményes kamatra. Minden év végén törlesztik a kölcsönt és a kamatait, méghozzá 20 éven át minden évben ugyanakkora összeget akarnak befizetni. Mekkora lesz az összeg? Valaki 40 éves korában életbiztosítást köt a következő feltételekkel: minden év elején azonos összeget fizet be a biztosító társasághoz, és 70 éves korában (ha akkor még él) 5 millió forintot kap. A befizetett pénz 8%-kal kamatozik. Mekkora összeget kell befizetnie minden év elején? Kozákné Székely Ildikó 40

41 Emelt szinten, fakultációs csoportoknál: Komplex számok Határérték-számítás Deriválás, integrálás Függvényábrázolás Integrálás alkalmazása Kozákné Székely Ildikó 41

42 6. Tapasztalatok, vélemények a felsőoktatásban tanuló volt diákjainktól Megkérdeztem a Budapesti Műszaki és Gazdaságtudományi Egyetem (10), a gödöllői Szent István Egyetem (10), a Szolnoki Főiskola (5), az ELTE Tanító- és Óvóképző Főiskolai Karának (5) hallgatóit: - Milyen problémával néznek szembe első évben? - Előzetes középiskolai matematikatudásuk mennyiben segítette őket az új tudás megszerzésében? Kozákné Székely Ildikó 42

43 Vélemények és tapasztalatok: Problémamentes az egyetemen és főiskolán az első félév, ha - emelt szinten érettségiztek matematikából és/vagy fizikából, - emelt szintű fakultáción tanultak a 11. és 12. osztályban, - az alapfogalmak, definíciók, tételek, bizonyítási stratégiák birtokában vannak ( nem függvénytábla-függőek ). A kezdeti kudarc egyik okát az előbbiek hiányának tulajdonítják. Az előzetes ismeretek hiányának pótlása jelentős többlet erőfeszítéssel jár, így kisebb az esélyük az alapozó tantárgyak megértésénél. Egy másik ok a tanulási szándék hiánya. Önmagukat okolják a kezdeti kudarcért, mert ellazsálták az első heteket az egyetemen. Kozákné Székely Ildikó 43

44 7. Összegzés A problémamegoldó képesség fejlesztéséhez az iskolai oktatás a legmegfelelőbb keret. Fontos szerepe van a motivációnak: - a tanuló akar-e tanulni, - érez-e indíttatást valaminek az elsajátításához, - érzi-e szükségét, hogy tanuljon. Nagy felelősség hárul a középiskolákra a tanulással kapcsolatos pozitív hozzáállásnál, illetve a természettudományok megkedveltetésénél. Kozákné Székely Ildikó 44

45 A középszintű érettségi alacsony színvonala, a kimeneti vizsga követelménye visszahat a tanításra. Következésképpen a bemutatott problémák alátámasztják azt a véleményt, hogy a felsőfokú oktatás alapozó tárgyai eredményes tanításának egyik útja az emelt szintű érettségi megkövetelése matematikából azon tanulóktól, akik műszaki vagy közgazdasági vagy természettudományos vonalon tanulnak tovább. Kozákné Székely Ildikó 45

46 8. Felhasznált irodalom [1] Dr. Ambrus András, Dr. David Gunter (Friedrich Schiller Egyetem, Jéna)(1984): Bizonyítási stratégiák az iskolai matematikaoktatásban (A Matematika Tanítása, 1984, V.) [2] Ambrus András (1995): Bevezetés a matematikadidaktikába, Egyetemi jegyzet, ELTE Eötvös Kiadó, [3] Ambrus András: A konkrét és vizuális reprezentációk szükségessége az iskolai matematikaoktatásban, [4] Ambrus András: A problémamegoldás (feladatmegoldás) tanításának elméleti alapjai, [5] B. Németh Mária (2002): Iskolai és hasznosítható tudás: a természettudományos ismeretek alkalmazása. In: Csapó Benő (szerk.): Az iskolai tudás, Osiris Kiadó, Budapest [6] Csapó Benő: Az iskolai tudás, Osiris Kiadó, Budapest o. [7] Csapó Benő (2006): A formális és nem-formális tanulás során szerzett tudás integrálása. Iskolakultúra, 2006/2 [8] Falus Iván Ollé János: Statisztikai módszerek pedagógusok számára, Okker Kiadó, [9] Gerőcs László-Orosz Gyula-Paróczay József-Szászné Simon Judit (2005): MATEMATIKA, Gyakorló és érettségire felkészítő feladatgyűjtemény II. Nemzeti Tankönyvkiadó, Budapest [10] Haumataki, J. és mtsai (2002): Assessing Learning to learn. A framework. Helsinki University- National Board of Education in Finnland, Helsinki. [11] Matematika - Tanári Kincsestár, Raabe Tanácsadó és Kiadó Kft., Budapest, szeptember [12] Kosztolányi József-Kovács István-Pintér Klára-Urbán János-Vincze István (2009): Sokszínű Matematika tankönyv 10, Mozaik Kiadó - Szeged, Kozákné Székely Ildikó 46

47 [13] Kosztolányi József és mtsai (2009): Sokszínű Matematika tankönyv 11, Mozaik Kiadó Szeged, [14] Kosztolányi József és mtsai (2007): Sokszínű Matematika tankönyv 12, Mozaik Kiadó Szeged, [15] Kozákné Székely Ildikó (2009): Teaching Mathematics and Computer Science, 7/ by University of Debrecen, Hungary, [16] Magyar Nagylexikon: Tizenharmadik kötet, Magyar Nagylexikon Kiadó, Budapest, 2001, (38. o.) [17] Molnár Gyöngyvér (2001): A tudás alkalmazása új helyzetben, Iskolakultúra, 2001/10, (15-25.o.) [18] Oktatási Minisztérium: Nemzeti Alaptanterv 2003, e-print Magyarország Rt., Budapest, o. [19] PISA-Vizsgálat [20] Pólya György (1970): A problémamegoldás iskolája, I. kötet, Tankönyvkiadó, Budapest,1970 [21] Révai KIS LEXIKONA, Révai Budapest, 1936 kiadás után, HASONMÁS KIADÁS, ÉSZ_ÉRV BT, ) PISA-vizsgálat nemzetközi tanulói tudásszintmérő program (Programme for International Student Assessment). A Gazdasági Együttműködési és Fejlesztési Szervezet (Organisation for Economic Cooperation and Development, OECD) által kezdeményezett felméréssorozat, amelynek célja a éves korosztály feltérképezése abból a szempontból, hogy mennyire képesek tudásukat hasznosítani, új ismereteket befogadni és alkalmazni. A vizsgálatot háromévenként ismétlik meg ben 32 ország részvételével az olvasás-szövegértést, 2003-ban már 40 államban a matematikát állították a középpontba, 2006-ban pedig a természettudományok kaptak kiemelt figyelmet. 2) Metakognició emberi képesség, amelynek segítségével az egyén saját gondolati működését gondolkodásának tárgyává teszi, reflektál rá. [16] Kozákné Székely Ildikó 47

48 Köszönöm megtisztelő figyelmüket! Kozákné Székely Ildikó 48

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Sorozatok II.

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Sorozatok II. Sorozatok II. DEFINÍCIÓ: (Mértani sorozat) Az (a n ) valós számsorozatot mértani sorozatnak nevezzük, ha van olyan valós szám, amellyel a sorozat bármely tagját megszorozva a következő tagot kapjuk. Jelöléssel:

Részletesebben

MATEMATIKA PRÓBAÉRETTSÉGI 2013 I. rész

MATEMATIKA PRÓBAÉRETTSÉGI 2013 I. rész MATEMATIKA PRÓBAÉRETTSÉGI 203 I. rész. Oldja meg a következő egyenletet: x 2 25. Az egyenlet megoldása: 2. Egy vállalat 280 000 Ft-ért vásárol egy számítógépet. A számítógép évente 5%-ot veszít az értékéből.

Részletesebben

PRÓBAÉRETTSÉGI 2004.május MATEMATIKA. KÖZÉPSZINT I. 45 perc

PRÓBAÉRETTSÉGI 2004.május MATEMATIKA. KÖZÉPSZINT I. 45 perc PRÓBAÉRETTSÉGI 2004.május MATEMATIKA KÖZÉPSZINT I. 45 perc A feladatok megoldására 45 perc fordítható, az idő leteltével a munkát be kell fejeznie. A feladatok megoldási sorrendje tetszőleges. A feladatok

Részletesebben

MATEMATIKA ÉRETTSÉGI május 29. KÖZÉPSZINT

MATEMATIKA ÉRETTSÉGI május 29. KÖZÉPSZINT MATEMATIKA ÉRETTSÉGI 005. május 9. KÖZÉPSZINT 1) Mely x valós számokra igaz, hogy x I. 9? x 1 3. x 3. Összesen: pont ) Egy háromszög egyik oldalának hossza 10 cm, a hozzá tartozó magasság hossza 6 cm.

Részletesebben

FELVÉTELI TÁJÉKOZTATÓ

FELVÉTELI TÁJÉKOZTATÓ ABONY Kinizsi Pál Gimnázium és Szakközépiskola 2740 Abony, Kossuth tér 18. Tel.: 06 53/360-071 e-mail: kinizsi@kinizsi-abony.sulinet.hu http://www.kinizsi-abony.hu OM azonosító: 032618 FELVÉTELI TÁJÉKOZTATÓ

Részletesebben

Érettségi előkészítő emelt szint 11-12. évf. Matematika. 11. évfolyam. Tematikai egység/fejlesztési cél

Érettségi előkészítő emelt szint 11-12. évf. Matematika. 11. évfolyam. Tematikai egység/fejlesztési cél Emelt szintű matematika érettségi előkészítő 11. évfolyam Tematikai egység/fejlesztési cél Órakeret 72 óra Kötelező Szabad Összesen 1. Gondolkodási módszerek Halmazok, matematikai logika, kombinatorika,

Részletesebben

Osztályozóvizsga és javítóvizsga témakörei Matematika 9. évfolyam

Osztályozóvizsga és javítóvizsga témakörei Matematika 9. évfolyam Osztályozóvizsga és javítóvizsga témakörei Matematika 9. évfolyam 1. félév Gondolkozás, számolás - halmazok, műveletek halmazokkal, intervallumok - racionális számok, műveletek racionális számokkal, zárójel

Részletesebben

1. tétel. 1. Egy derékszögű háromszög egyik szöge 50, a szög melletti befogója 7 cm. Mekkora a háromszög átfogója? (4 pont)

1. tétel. 1. Egy derékszögű háromszög egyik szöge 50, a szög melletti befogója 7 cm. Mekkora a háromszög átfogója? (4 pont) 1. tétel 1. Egy derékszögű háromszög egyik szöge 50, a szög melletti befogója cm. Mekkora a háromszög átfogója? (4 pont). Adott az ábrán két vektor. Rajzolja meg a b, a b és az a b vektorokat! (6 pont)

Részletesebben

Képzési rend 2016-2017. tanév. Iskolánk képzési rendje és pontszámítás az egyes képzési formákban

Képzési rend 2016-2017. tanév. Iskolánk képzési rendje és pontszámítás az egyes képzési formákban Képzési rend 2016-2017. tanév Iskolánk képzési rendje és pontszámítás az egyes képzési formákban 9. A humán tantervű osztály magyar nyelv és irodalom csoport (17 fő) Tagozatkód: 001 1. : angol nyelv, német

Részletesebben

1. Analízis gépi kollokviumi tételsor BCO-2 oktatógépre I. OOK. Nyíregyháza, 1979.

1. Analízis gépi kollokviumi tételsor BCO-2 oktatógépre I. OOK. Nyíregyháza, 1979. Dr. Czeglédy István PhD publikációs jegyzéke 1. Analízis gépi kollokviumi tételsor BCO-2 oktatógépre I. OOK. Nyíregyháza, 1979. 2. Analízis gépi kollokviumi tételsor BCO-2 oktatógépre II. OOK. Nyíregyháza,

Részletesebben

Minimum követelmények matematika tantárgyból 11. évfolyamon

Minimum követelmények matematika tantárgyból 11. évfolyamon Minimum követelmények matematika tantárgyból. évfolyamon A hatványozás általánosítása pozitív alap esetén racionális kitevőre. Műveletek hatványokkal. A, a 0 függvény. Az eponenciális függvény. Vizsgálata

Részletesebben

8. feladatsor. Kisérettségi feladatsorok matematikából. 8. feladatsor. I. rész

8. feladatsor. Kisérettségi feladatsorok matematikából. 8. feladatsor. I. rész Kisérettségi feladatsorok matematikából I. rész. Egy deltoid két szomszédos szöge 7 és 0. Mekkora lehet a hiányzó két szög? pont. Hozza egyszerűbb alakra a kifejezést, majd számolja ki az értékét, ha a=

Részletesebben

Érettségi feladatok: Koordináta-geometria 1/5

Érettségi feladatok: Koordináta-geometria 1/5 Érettségi feladatok: Koordináta-geometria 1/5 2003. Próba/ 13. Adott egy háromszög három csúcspontja a koordinátáival: A( 4; 4), B(4; 4) és C( 4; 8). Számítsa ki a C csúcsból induló súlyvonal és az A csúcsból

Részletesebben

A PEDAGÓGIAI PROGRAM MÓDOSÍTÁSA

A PEDAGÓGIAI PROGRAM MÓDOSÍTÁSA A PEDAGÓGIAI PROGRAM MÓDOSÍTÁSA ELTE Gyakorló Általános Iskola és Középiskola gimnáziumi részére érvényes óraterv, valamint a szakközépiskolai részére érvényes helyi tanterv és óraterv SASHEGYI ARANY JÁNOS

Részletesebben

MATEMATIKA KISÉRETTSÉGI Ponthatárok: (5) (4) (3) (2) (1) Pontszám. I. rész - A rendelkezésre álló idő: 45 perc

MATEMATIKA KISÉRETTSÉGI Ponthatárok: (5) (4) (3) (2) (1) Pontszám. I. rész - A rendelkezésre álló idő: 45 perc MATEMATIKA KISÉRETTSÉGI 2014. Ponthatárok: (5) 83-100 (4) 65-82 (3) 47-64 (2) 30-46 (1) 0-29 Név, osztály Pontszám I. rész - A rendelkezésre álló idő: 45 perc I. rész 30 pont Érdemjegy II. rész 70 pont

Részletesebben

MATEMATIKA C 12. évfolyam 4. modul Még egyszer!

MATEMATIKA C 12. évfolyam 4. modul Még egyszer! MATEMATIKA C 1. évfolyam 4. modul Még egyszer! Készítette: Kovács Károlyné Matematika C 1. évfolyam 4. modul: Még eygszer! Tanári útmutató A modul célja Időkeret Ajánlott korosztály Modulkapcsolódási pontok

Részletesebben

ELTE Gyakorló Általános Iskola és Középiskola szakközépiskolai részére érvényes helyi tanterv és óraterv

ELTE Gyakorló Általános Iskola és Középiskola szakközépiskolai részére érvényes helyi tanterv és óraterv PEDAGÓGIAI PROGRAM ELTE Gyakorló Általános Iskola és Középiskola szakközépiskolai részére érvényes helyi tanterv és óraterv SASHEGYI ARANY JÁNOS ÁLTALÁNOS ISKOLA ÉS GIMNÁZIUM OM: 035289 Sashegyi Arany

Részletesebben

NT Matematika 11. (Heuréka) Tanmenetjavaslat

NT Matematika 11. (Heuréka) Tanmenetjavaslat NT-17302 Matematika 11. (Heuréka) Tanmenetjavaslat A Dr. Gerőcs László Számadó László Matematika 11. tankönyv a Heuréka-sorozat harmadik tagja. Ebben a segédanyagban ehhez a könyvhöz a tizenegyedikes tananyag

Részletesebben

9-10. évfolyam felnőttképzés Heti óraszám: 3 óra

9-10. évfolyam felnőttképzés Heti óraszám: 3 óra 9-10. évfolyam felnőttképzés Heti óraszám: 3 óra Fejlesztési cél/ kompetencia lehetőségei: Gondolkodási képességek: rendszerezés, kombinativitás, deduktív következtetés, valószínűségi Tudásszerző képességek:

Részletesebben

Kedves Tanuló! A 2015/2016-os tanévre meghirdetett osztályok OM azonosító: 029280

Kedves Tanuló! A 2015/2016-os tanévre meghirdetett osztályok OM azonosító: 029280 Kedves Tanuló! Bizonyára nehéz feladat előtt állsz, hiszen döntened kell arról, hogy milyen iskolában akarsz tanulni az elkövetkezendő néhány évben. Tájékoztatónkkal szeretnénk számodra segítséget nyújtani,

Részletesebben

Azonosító jel: MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA május 8. 8:00. Az írásbeli vizsga időtartama: 240 perc

Azonosító jel: MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA május 8. 8:00. Az írásbeli vizsga időtartama: 240 perc ÉRETTSÉGI VIZSGA 2007. május 8. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA 2007. május 8. 8:00 Az írásbeli vizsga időtartama: 240 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM

Részletesebben

az Energetikai Szakközépiskola és Kollégium kisérettségiző diákjai számára ; halmaz összes részhalmazát!

az Energetikai Szakközépiskola és Kollégium kisérettségiző diákjai számára ; halmaz összes részhalmazát! 1. témakör: HALMAZELMÉLET A feladatok megoldásához használjuk a Négyjegyű függvénytáblázatot! Halmazok: 8-9. oldal 1. Sorold fel az a b x y halmaz összes részhalmazát!. AdottU alaphalmaz, és annak két

Részletesebben

Az Országos Középiskolai Tanulmányi Verseny 2006-2007. tanévi első fordulójának feladatmegoldásai

Az Országos Középiskolai Tanulmányi Verseny 2006-2007. tanévi első fordulójának feladatmegoldásai Az Országos Középiskolai Tanulmányi Verseny 006-007. tanévi első fordulójának feladatmegoldásai matematikából, a II. kategória számára 1. Melyek azok a pozitív egészek, amelyeknek pontosan négy pozitív

Részletesebben

A Tatabányai Árpád Gimnázium beiskolázási tájékoztatója a 2014/15-ös tanévre

A Tatabányai Árpád Gimnázium beiskolázási tájékoztatója a 2014/15-ös tanévre A Tatabányai Árpád Gimnázium beiskolázási tájékoztatója a 2014/15-ös tanévre OM azonosító: 031936 Székhely/telephely kódja: 001 Igazgató: Kovács Miklós Pályaválasztási felelős: Polyóka Tamás igazgatóhelyettes

Részletesebben

Kedves Tanuló! A 2017/2018-as tanévre meghirdetett osztályok OM azonosító:

Kedves Tanuló! A 2017/2018-as tanévre meghirdetett osztályok OM azonosító: Kedves Tanuló! Bizonyára nehéz feladat előtt állsz, hiszen döntened kell arról, hogy milyen iskolában akarsz tanulni az elkövetkezendő néhány évben. Tájékoztatónkkal szeretnénk számodra segítséget nyújtani,

Részletesebben

A TANTÁRGY ADATLAPJA

A TANTÁRGY ADATLAPJA A TANTÁRGY ADATLAPJA 1. A képzési program adatai 1.1 Felsőoktatási intézmény Babes-Bolyai Tudományegyetem 1.2 Kar Pszichológia és Neveléstudományok Kar 1.3 Intézet Pedagógia és Alkalmazott Didaktika Intézet

Részletesebben

Feladatok MATEMATIKÁBÓL II.

Feladatok MATEMATIKÁBÓL II. Feladatok MATEMATIKÁBÓL a 12. évfolyam számára II. 1. Alakítsuk át a következő kifejezéseket úgy, hogy teljes négyzetek jelenjenek meg: a) x 2 2x + b) x 2 6x + 10 c) x 2 + x + 1 d) x 2 12x + 11 e) 2x 2

Részletesebben

PRÓBAÉRETTSÉGI 2004.május MATEMATIKA. KÖZÉPSZINT II. 135 perc

PRÓBAÉRETTSÉGI 2004.május MATEMATIKA. KÖZÉPSZINT II. 135 perc PRÓBAÉRETTSÉGI 2004.május MATEMATIKA KÖZÉPSZINT II. 135 perc A feladatok megoldására 135 perc fordítható, az idő leteltével a munkát be kell fejeznie. A feladatok megoldási sorrendje tetszőleges. A II/B

Részletesebben

11. Sorozatok. I. Nulladik ZH-ban láttuk:

11. Sorozatok. I. Nulladik ZH-ban láttuk: 11. Sorozatok I. Nulladik ZH-ban láttuk: 1. Egy számtani sorozat harmadik eleme 15, a nyolcadik eleme 30. Mely n természetes számra igaz, hogy a sorozat első n elemének összege 6? A szokásos jelöléseket

Részletesebben

Tanmenet a Matematika 10. tankönyvhöz

Tanmenet a Matematika 10. tankönyvhöz Tanmenet a Matematika 10. tankönyvhöz (111 óra, 148 óra, 185 óra) A tanmenetben olyan órafelosztást adunk, amely alkalmazható mind a középszintû képzés (heti 3 vagy heti 4 óra), mind az emelt szintû képzés

Részletesebben

AVASI GIMNÁZIUM FELVÉTELI TÁJÉKOZTATÓ 2014/2015-ÖS TANÉV. Általános kerettantervű képzés, emelt szintű nyelvoktatással (Tagozatkód: 13)

AVASI GIMNÁZIUM FELVÉTELI TÁJÉKOZTATÓ 2014/2015-ÖS TANÉV. Általános kerettantervű képzés, emelt szintű nyelvoktatással (Tagozatkód: 13) AVASI GIMNÁZIUM FELVÉTELI TÁJÉKOZTATÓ 2014/2015-ÖS TANÉV Cím: 3524 Miskolc, Klapka Gy. u. 2. OM kód: 029264 Telefon: 46/562-289; 46/366-620 E-mail: titkarsag@avasi.hu Honlap: www.avasi.hu I. A 2014/2015.

Részletesebben

Emelt szintű érettségi feladatsorok és megoldásaik Összeállította: Pataki János; dátum: november. I. rész

Emelt szintű érettségi feladatsorok és megoldásaik Összeállította: Pataki János; dátum: november. I. rész Pataki János, november Emelt szintű érettségi feladatsorok és megoldásaik Összeállította: Pataki János; dátum: november I rész feladat Oldja meg az alábbi egyenleteket: a) log 7 log log log 7 ; b) ( )

Részletesebben

Érettségi feladatok Koordinátageometria_rendszerezve / 5

Érettségi feladatok Koordinátageometria_rendszerezve / 5 Érettségi feladatok Koordinátageometria_rendszerezve 2005-2013 1/ 5 Vektorok 2005. május 28./12. Adottak az a (4; 3) és b ( 2; 1) vektorok. a) Adja meg az a hosszát! b) Számítsa ki az a + b koordinátáit!

Részletesebben

11. modul: LINEÁRIS FÜGGVÉNYEK

11. modul: LINEÁRIS FÜGGVÉNYEK MATEMATIK A 9. évfolyam 11. modul: LINEÁRIS FÜGGVÉNYEK KÉSZÍTETTE: CSÁKVÁRI ÁGNES Matematika A 9. évfolyam. 11. modul: LINEÁRIS FÜGGVÉNYEK Tanári útmutató 2 A modul célja Időkeret Ajánlott korosztály Modulkapcsolódási

Részletesebben

OKM ISKOLAI EREDMÉNYEK

OKM ISKOLAI EREDMÉNYEK OKM ISKOLAI EREDMÉNYEK Statisztikai alapfogalmak Item Statisztikai alapfogalmak Átlag Leggyakrabban: számtani átlag Egyetlen számadat jól jellemzi az eredményeket Óvatosan: elfed Statisztikai alapfogalmak

Részletesebben

Síkbeli egyenesek. 2. Egy egyenes az x = 1 4t, y = 2 + t parméteres egyenletekkel adott. Határozzuk meg

Síkbeli egyenesek. 2. Egy egyenes az x = 1 4t, y = 2 + t parméteres egyenletekkel adott. Határozzuk meg Analitikus mértan 3. FELADATLAP Síkbeli egyenesek 1. Írjuk fel annak az egyenesnek a paraméteres egyenleteit, amely (i) áthalad az M 0 (1, 2) ponton és párhuzamos a a(3, 1) vektorral; (ii) áthalad az origón

Részletesebben

Matematika tanmenet 10. osztály (heti 3 óra) A gyökvonás 14 óra

Matematika tanmenet 10. osztály (heti 3 óra) A gyökvonás 14 óra Matematika tanmenet 10. osztály (heti 3 óra) Tankönyv: Ábrahám Gábor Dr. Kosztolányiné Nagy Erzsébet Tóth Julianna: Matematika 10. Példatárak: Fuksz Éva Riener Ferenc: É rettségi feladatgyűjtemény matematikából

Részletesebben

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Sorozatok II.

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Sorozatok II. Sorozatok II. DEFINÍCIÓ: (Mértani sorozat) Az (a n ) valós számsorozatot mértani sorozatnak nevezzük, ha van olyan valós szám, amellyel a sorozat bármely tagját megszorozva a következő tagot kapjuk. Jelöléssel:

Részletesebben

Hatvány, gyök, normálalak

Hatvány, gyök, normálalak Hatvány, gyök, normálalak 1. Számítsd ki a következő hatványok pontos értékét! 3 5 3 3 1 4 3 3 4 1 7 3 3 75 100 3 0,8 ( ) 6 3 1 3 5 3 1 3 0 999. 3. Számológép használata nélkül számítsd ki a következő

Részletesebben

Gyökvonás. Másodfokú egyenlet. 3. Az egyenlet megoldása nélkül határozd meg, hogy a következő egyenleteknek mennyi gyöke van!

Gyökvonás. Másodfokú egyenlet. 3. Az egyenlet megoldása nélkül határozd meg, hogy a következő egyenleteknek mennyi gyöke van! 1. Melyik a nagyobb? a) 6 5 vagy 5 7 b) vagy 11 10 vagy Gyökvonás 5 11 vagy 6 8 55 e) 7 vagy 60 16 1. Hozd egyszerűbb alakra a következő kifejezéseket! a) 7 18 b) 1 5 75 8 160 810 650 8a 5 a 7a e) 15a

Részletesebben

Megnevezés (tanult idegen nyelv) Létszám (fő) Tagozatkód

Megnevezés (tanult idegen nyelv) Létszám (fő) Tagozatkód KRÚDY GYULA GIMNÁZIUM, KÉT TANÍTÁSI NYELVŰ KÖZÉPISKOLA, IDEGENFORGALMI ÉS VENDÉGLÁTÓIPARI SZAKKÉPZŐ ISKOLA 9024 Győr, Örkény I. u. út 8 10. Tel.: 96/510-670 E-mail: titkar@krudy.gyor.hu OM azonosító: 030716

Részletesebben

NT-17202 Matematika 10. (Heuréka) Tanmenetjavaslat

NT-17202 Matematika 10. (Heuréka) Tanmenetjavaslat NT-17202 Matematika 10. (Heuréka) Tanmenetjavaslat A Dr. Gerőcs László Számadó László Matematika 10. tankönyv A Heuréka-sorozat tagja, így folytatása a Matematika 9. tankönyvnek. Ez a kötet is elsősorban

Részletesebben

A Tatabányai Árpád Gimnázium beiskolázási tájékoztatója a 2015/16-os tanévre

A Tatabányai Árpád Gimnázium beiskolázási tájékoztatója a 2015/16-os tanévre A Tatabányai Árpád Gimnázium beiskolázási tájékoztatója a 2015/16-os tanévre OM azonosító: 031936 Székhely/telephely kódja: 001 Igazgató: Kovács Miklós Pályaválasztási felelős: Polyóka Tamás igazgatóhelyettes

Részletesebben

AZ ISKOLA ADATAI NYÍLT FÓRUMAINK. FONTOS DÁTUMOK Jelentkezés az iskolánkban a felvételi eljárást megelőző írásbeli

AZ ISKOLA ADATAI NYÍLT FÓRUMAINK. FONTOS DÁTUMOK Jelentkezés az iskolánkban a felvételi eljárást megelőző írásbeli AZ ISKOLA ADATAI Postacímünk: Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma és Általános Iskolája, 4029 Debrecen, Csengő u. 4. E-mail: titkarsag@kossuth-gimn.unideb.hu Web-oldal: www.kossuth-gimn.unideb.hu

Részletesebben

5. modul: ARÁNYOSSÁG, SZÁZALÉKSZÁMÍTÁS

5. modul: ARÁNYOSSÁG, SZÁZALÉKSZÁMÍTÁS MATEMATIK A 9. évfolyam 5. modul: ARÁNYOSSÁG, SZÁZALÉKSZÁMÍTÁS KÉSZÍTETTE: VIDRA GÁBOR Matematika A 9. évfolyam. 5. modul: ARÁNYOSSÁG, SZÁZALÉKSZÁMÍTÁS Tanári útmutató 2 A modul célja Időkeret Ajánlott

Részletesebben

2700 Cegléd, Rákóczi út 46. tel: (53)-310-934, (53)-500-525 fax:(53)-500-625 E-mail: cklg@cklg.hu www.cklg.hu

2700 Cegléd, Rákóczi út 46. tel: (53)-310-934, (53)-500-525 fax:(53)-500-625 E-mail: cklg@cklg.hu www.cklg.hu Beiskolázási tájékoztató a 2016/2017-es tanévre Ceglédi Kossuth Lajos Gimnázium OM azonosító: 032549 Telephely kódja: 001 2700 Cegléd, Rákóczi út 46. tel: (53)-310-934, (53)-500-525 fax:(53)-500-625 E-mail:

Részletesebben

MATEMATIKA ÉRETTSÉGI május 10. KÖZÉP SZINT I.

MATEMATIKA ÉRETTSÉGI május 10. KÖZÉP SZINT I. 1) Adott két pont: A ; 1 felezőpontjának koordinátáit! AB felezőpontja legyen F. MATEMATIKA ÉRETTSÉGI 005. május 10. KÖZÉP SZINT I. és B 1; Írja fel az AB szakasz 1 1 F ; F ;1 ) Az ábrán egy ; intervallumon

Részletesebben

NULLADIK MATEMATIKA ZÁRTHELYI

NULLADIK MATEMATIKA ZÁRTHELYI A NULLADIK MATEMATIKA ZÁRTHELYI 20-09-2 Terem: Munkaidő: 0 perc. A dolgozat megírásához íróeszközön kívül semmilyen segédeszköz nem használható! Csak és kizárólag tollal tölthető ki a feladatlap, a ceruzával

Részletesebben

Országos Középiskolai Tanulmányi Verseny 2011/2012 Matematika I. kategória (SZAKKÖZÉPISKOLA) 2. forduló - megoldások. 1 pont Ekkor

Országos Középiskolai Tanulmányi Verseny 2011/2012 Matematika I. kategória (SZAKKÖZÉPISKOLA) 2. forduló - megoldások. 1 pont Ekkor Okta tási Hivatal Országos Középiskolai Tanulmányi Verseny 0/0 Matematika I. kategória (SZAKKÖZÉPISKOLA). forduló - megoldások. Az valós számra teljesül a 3 sin sin cos sin egyenlőség. Milyen értékeket

Részletesebben

Megoldás A számtani sorozat első három eleme kifejezhető a második elemmel és a differenciával. Összegük így a 2. d =33, azaz 3a 2. a 2.

Megoldás A számtani sorozat első három eleme kifejezhető a második elemmel és a differenciával. Összegük így a 2. d =33, azaz 3a 2. a 2. 1. Egy 33-as létszámú zenetagozatos osztályban hegedülni és zongorázni tanulnak a diákok. Minden diák játszik legalább egy hangszeren. Azok száma, akik mindkét hangszeren játszanak, akik csak hegedülnek,

Részletesebben

Érettségi feladatok: Síkgeometria 1/6

Érettségi feladatok: Síkgeometria 1/6 Érettségi feladatok: Síkgeometria 1/6 2005. május 10. 4. Döntse el, hogy a következő állítások közül melyik igaz és melyik hamis! A: A háromszög köré írható kör középpontja mindig valamelyik súlyvonalra

Részletesebben

PARADIGMAVÁLTÁS A KÖZOKTATÁSBAN MOST VAGY SOHA?!

PARADIGMAVÁLTÁS A KÖZOKTATÁSBAN MOST VAGY SOHA?! PARADIGMAVÁLTÁS A KÖZOKTATÁSBAN MOST VAGY SOHA?! ÁDÁM PÉTER NEMZETI PEDAGÓGUS KAR TANÉVNYITÓ SZAKMAI NAP 2016. AUGUSZTUS 29. Előzmények 1868 Eötvös József kötelező népoktatás (66 %) 1928 Klebelsberg K.

Részletesebben

Az Országos Középiskolai Tanulmányi Verseny tanévi második fordulójának feladatmegoldásai. x 2 sin x cos (2x) < 1 x.

Az Országos Középiskolai Tanulmányi Verseny tanévi második fordulójának feladatmegoldásai. x 2 sin x cos (2x) < 1 x. Az Országos Középiskolai Tanulmányi Verseny 2005-2006. tanévi második fordulójának feladatmegoldásai matematikából, a II. kategória számára 1. Oldja meg a következő egyenlőtlenséget, ha x > 0: x 2 sin

Részletesebben

Matematika. 9.osztály: Ajánlott tankönyv és feladatgyűjtemény: Matematika I-II. kötet (Apáczai Kiadó; AP-090803 és AP-090804)

Matematika. 9.osztály: Ajánlott tankönyv és feladatgyűjtemény: Matematika I-II. kötet (Apáczai Kiadó; AP-090803 és AP-090804) Matematika A definíciókat és tételeket (bizonyítás nélkül) ki kell mondani, a tananyagrészekhez tartozó alap- és közepes nehézségű feladatokat kell tudni megoldani A javítóvizsga 60 -es írásbeliből áll.

Részletesebben

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika középszint 05 ÉRETTSÉGI VIZSGA 007. május 8. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM Fontos tudnivalók Formai előírások:.

Részletesebben

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika középszint 0513 ÉRETTSÉGI VIZSGA 005. május 8. MATEMATIKA KÖZÉPSZINTŰ ÉRETTSÉGI VIZSGA Az írásbeli vizsga időtartama: 180 perc JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI MINISZTÉRIUM Fontos tudnivalók

Részletesebben

Interaktív geometriai rendszerek használata középiskolában -Pont körre vonatkozó hatványa, hatványvonal-

Interaktív geometriai rendszerek használata középiskolában -Pont körre vonatkozó hatványa, hatványvonal- Fazekas Gabriella IV. matematika-informatika Interaktív geometriai rendszerek használata középiskolában -Pont körre vonatkozó hatványa, hatványvonal- Jelen tanulmány a fent megjelölt fogalmak egy lehetséges

Részletesebben

PRÓBAÉRETTSÉGI MEGOLDÁSA: MATEMATIKA, KÖZÉP SZINT. 3, ahonnan 2 x = 3, tehát. x =. 2

PRÓBAÉRETTSÉGI MEGOLDÁSA: MATEMATIKA, KÖZÉP SZINT. 3, ahonnan 2 x = 3, tehát. x =. 2 FELADATSOR MEGOLDÁSA I. rész 1.1.) a) igaz b) hamis. 1..) A helyes megoldás: b) R = r 1..) x = 7 = ahonnan x = tehát x =. 1.4.) Az oszlopdiagramból kiolvasható hogy a két üzem termelése között a legnagyobb

Részletesebben

A Neumann János Középiskola és Kollégium a 2014/2015. tanévet is sikerrel zárta

A Neumann János Középiskola és Kollégium a 2014/2015. tanévet is sikerrel zárta A János Középiskola és Kollégium a 2014/2015. tanévet is sikerrel zárta A fenntartói értékelés témái: Tanulmányi eredmények Érettségi vizsgákról János Középiskola és Kollégium nyelvvizsga eredményei Továbbtanulás

Részletesebben

A Tatabányai Árpád Gimnázium beiskolázási tájékoztatója a 2017/18-as tanévre

A Tatabányai Árpád Gimnázium beiskolázási tájékoztatója a 2017/18-as tanévre A Tatabányai Árpád Gimnázium beiskolázási tájékoztatója a 2017/18-as tanévre OM azonosító: 031936 Székhely/telephely kódja: 001 Igazgató: Kovács Miklós Pályaválasztási felelős: Polyóka Tamás igazgatóhelyettes

Részletesebben

Matematika kisérettségi I. rész 45 perc NÉV:...

Matematika kisérettségi I. rész 45 perc NÉV:... Matematika kisérettségi I. rész 45 perc NÉV:... 1. Az A halmaz elemei a háromnál nagyobb egyjegyű számok, a B halmaz elemei pedig a húsznál kisebb pozitív páratlan számok. Sorolja fel az halmaz elemeit!

Részletesebben

Egy általános iskolai feladat egyetemi megvilágításban

Egy általános iskolai feladat egyetemi megvilágításban Egy általános iskolai feladat egyetemi megvilágításban avagy mit kell(ene) tudnia egy 8.-osnak a matematika versenyeken Kunos Ádám Középiskolás pályázat díjkiosztó SZTE Bolyai Intézet 2011. november 12.

Részletesebben

MATEMATIKA EMELT SZINTŰ SZÓBELI VIZSGA TÉMAKÖREI (TÉTELEK) 2005

MATEMATIKA EMELT SZINTŰ SZÓBELI VIZSGA TÉMAKÖREI (TÉTELEK) 2005 2005 1. * Halmazok, halmazműveletek, nevezetes ponthalmazok 2. Számhalmazok, halmazok számossága 3. Hatványozás, hatványfüggvény 4. Gyökvonás, gyökfüggvény 5. A logaritmus. Az exponenciális és a logaritmus

Részletesebben

Osztályszám Tagozatkód (tanult idegen nyelv) Humán gimnázium (angol német) 4 év 32 fő 1 01 Humán gimnázium (német angol)

Osztályszám Tagozatkód (tanult idegen nyelv) Humán gimnázium (angol német) 4 év 32 fő 1 01 Humán gimnázium (német angol) KRÚDY GYULA GIMNÁZIUM, KÉT TANÍTÁSI NYELVŰ KÖZÉPISKOLA, IDEGENFORGALMI ÉS VENDÉGLÁTÓIPARI SZAKKÉPZŐ ISKOLA 9024 Győr, Örkény I. u. út 8 10. Tel.: 96/510-670 E-mail: titkar@krudy.gyor.hu, honlap: www.krudy.gyor.hu

Részletesebben

3 függvény. Számítsd ki az f 4 f 3 f 3 f 4. egyenlet valós megoldásait! 3 1, 3 és 5 3 1

3 függvény. Számítsd ki az f 4 f 3 f 3 f 4. egyenlet valós megoldásait! 3 1, 3 és 5 3 1 Érettségi, M, I-es feladatsor, természettudomány.. Számítsd ki a C! összeget! log 4. Határozd meg a. Számítsd ki az egyenlet valós megoldásait! összeg értékét, ha és az 4. Adott az f : 0,, f. Adottak az

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK EMELT SZINT Koordinátageometria

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK EMELT SZINT Koordinátageometria 1) MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK EMELT SZINT Koordinátageometria A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek

Részletesebben

TANTÁRGYI PROGRAM Matematikai alapok I. útmutató

TANTÁRGYI PROGRAM Matematikai alapok I. útmutató BGF PÉNZÜGYI ÉS SZÁMVITELI KAR Módszertani Intézeti Tanszéki Osztály TANTÁRGYI PROGRAM Matematikai alapok I. útmutató 2014/2015. tanév I. félév Tantárgyi program Tantárgy megnevezése Matematikai alapok

Részletesebben

A Veres Péter Gimnázium felvételt hirdet 4 és 8 osztályos gimnáziumi osztályaiba a 2012/2013-as tanévre az alábbiak szerint

A Veres Péter Gimnázium felvételt hirdet 4 és 8 osztályos gimnáziumi osztályaiba a 2012/2013-as tanévre az alábbiak szerint A Veres Péter Gimnázium felvételt hirdet 4 és 8 osztályos gimnáziumi osztályaiba a 2012/2013-as tanévre az alábbiak szerint 1.) Négyosztályos gimnázium (általános tantervő) Kód: 01 a) Oktatott idegen nyelvek:

Részletesebben

MATEMATIK A 9. évfolyam. 1. modul: HALMAZOK KÉSZÍTETTE: LÖVEY ÉVA

MATEMATIK A 9. évfolyam. 1. modul: HALMAZOK KÉSZÍTETTE: LÖVEY ÉVA MATEMATIK A 9. évfolyam 1. modul: HALMAZOK KÉSZÍTETTE: LÖVEY ÉVA Matematika A 9. évfolyam. 1. modul: HALMAZOK Tanári útmutató 2 A modul célja Időkeret Ajánlott korosztály Modulkapcsolódási pontok Halmazokkal

Részletesebben

13. modul: MÁSODFOKÚ FÜGGVÉNYEK

13. modul: MÁSODFOKÚ FÜGGVÉNYEK MATEMATIK A 9. évfolyam 13. modul: MÁSODFOKÚ FÜGGVÉNYEK KÉSZÍTETTE: CSÁKVÁRI ÁGNES Matematika A 9. évfolyam. 13. modul: MÁSODFOKÚ FÜGGVÉNYEK Tanári útmutató 2 A modul célja Időkeret Ajánlott korosztály

Részletesebben

Kinizsi Pál Gimnázium és Szakközépiskola FELVÉTELI TÁJÉKOZTATÓ. a 2010/11-es tanévre

Kinizsi Pál Gimnázium és Szakközépiskola FELVÉTELI TÁJÉKOZTATÓ. a 2010/11-es tanévre Kinizsi Pál Gimnázium és Szakközépiskola FELVÉTELI TÁJÉKOZTATÓ a 2010/11-es tanévre Iskolánk bejárata Karácsonyi hangverseny Szüreti nap, gólyaavató Görögországi kirándulás A felvételi eljárás Az iskolánkba

Részletesebben

Osztályozó és Javító vizsga témakörei matematikából 9. osztály

Osztályozó és Javító vizsga témakörei matematikából 9. osztály Osztályozó és Javító vizsga témakörei matematikából 9. osztály 1. félév 1. Kombinatorika, halmazok Számoljuk össze! Összeszámlálási feladatok Matematikai logika Halmazok Halmazműveletek Halmazok elemszáma,

Részletesebben

I. RÉSZ. 1. Írja fel annak az egyenesnek az egyenletét, amelyik áthalad az A(5;-3) és B(7;4) pontokon!

I. RÉSZ. 1. Írja fel annak az egyenesnek az egyenletét, amelyik áthalad az A(5;-3) és B(7;4) pontokon! Név: Osztály: Próba érettségi feladatsor 2013 április 16 I RÉSZ Figyelem! A dolgozatot tollal írja; az ábrákat ceruzával is rajzolhatja A megoldást minden esetben a feladat szövege melletti fehér hátterű

Részletesebben

1. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI FELADATSOR

1. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI FELADATSOR 1. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI FELADATSOR A feladatok megoldására 240 perc fordítható, az idő leteltével a munkát be kell fejeznie. A feladatok megoldási sorrendje tetszőleges. A II. részben kitűzött

Részletesebben

Hasonlóság. kísérleti feladatgyűjtemény POKG 2015. 10. osztályos matematika

Hasonlóság. kísérleti feladatgyűjtemény POKG 2015. 10. osztályos matematika Hasonlóság kísérleti feladatgyűjtemény 10. osztályos matematika POKG 2015. Hasonló háromszögek oldalaránya 0. Keressük meg az alábbi háromszögek összetartozó oldalpárjait és arányossággal számítsuk ki

Részletesebben

12. modul: ABSZOLÚTÉRTÉK-FÜGGVÉNY

12. modul: ABSZOLÚTÉRTÉK-FÜGGVÉNY MATEMATIK A 9. évfolyam 12. modul: ABSZOLÚTÉRTÉK-FÜGGVÉNY KÉSZÍTETTE: CSÁKVÁRI ÁGNES Matematika A 9. évfolyam. 12. modul: ABSZOLÚTÉRTÉK-FÜGGVÉNY Tanári útmutató 2 A modul célja Időkeret Ajánlott korosztály

Részletesebben

9. Trigonometria. I. Nulladik ZH-ban láttuk: 1. Tegye nagyság szerint növekvő sorrendbe az alábbi értékeket! Megoldás:

9. Trigonometria. I. Nulladik ZH-ban láttuk: 1. Tegye nagyság szerint növekvő sorrendbe az alábbi értékeket! Megoldás: 9. Trigonometria I. Nulladik ZH-ban láttuk: 1. Tegye nagyság szerint növekvő sorrendbe az alábbi értékeket! x = cos 150 ; y = sin 5 ; z = tg ( 60 ) (A) z < x < y (B) x < y < z (C) y < x < z (D) z < y

Részletesebben

EGYBEVÁGÓSÁGI TRANSZFORMÁCIÓK TENGELYES TÜKRÖZÉS

EGYBEVÁGÓSÁGI TRANSZFORMÁCIÓK TENGELYES TÜKRÖZÉS GEOMETRIA 1. Az A, B, C egy egyenes pontjai (ebben a sorrendben), AB szakasz 5 cm, BC szakasz 17 cm. F 1 az AB szakasz, F 2 a BC szakasz felezőpontja. Mekkora az F 1 F 2 szakasz? 2. Az AB és CD szakaszok

Részletesebben

Feladatok a májusi emelt szintű matematika érettségi példáihoz Hraskó András

Feladatok a májusi emelt szintű matematika érettségi példáihoz Hraskó András Feladatok a 2010. májusi emelt szintű matematika érettségi példáihoz Hraskó András 1. Halmazok, halmazműveletek, halmazok számossága, halmazműveletek és logikai műveletek kapcsolata. HA.1.1. Adott a síkon

Részletesebben

Arany Dániel Matematikai Tanulóverseny 2012/2013-as tanév első (iskolai) forduló haladók II. kategória

Arany Dániel Matematikai Tanulóverseny 2012/2013-as tanév első (iskolai) forduló haladók II. kategória Bolyai János Matematikai Társulat Arany Dániel Matematikai Tanulóverseny 2012/2013-as tanév első (iskolai) forduló haladók II. kategória Megoldások és javítási útmutató 1. A 23-as szám című misztikus filmben

Részletesebben

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika középszint 0801 ÉRETTSÉGI VIZSGA 2008. május 6. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM Fontos tudnivalók Formai előírások:

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT. Koordináta-geometria

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT. Koordináta-geometria MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT 1) Adott két pont: A 4; 1 felezőpontjának koordinátáit! AB felezőpontja legyen F. Koordináta-geometria és B 3 1; Írja fel az AB szakasz 1 3 4

Részletesebben

Próba érettségi feladatsor április I. RÉSZ

Próba érettségi feladatsor április I. RÉSZ Név: osztály: Próba érettségi feladatsor 2007 április 17-18 I RÉSZ Figyelem! A dolgozatot tollal írja; az ábrákat ceruzával is rajzolhatja A megoldást minden esetben a feladat szövege melletti keretbe

Részletesebben

M/D/13. Szorozzuk meg az egyenlet mindkét oldalát a közös nevezővel, 12-vel; így a következő egyenlethez jutunk: = 24

M/D/13. Szorozzuk meg az egyenlet mindkét oldalát a közös nevezővel, 12-vel; így a következő egyenlethez jutunk: = 24 OKTATÁSI MINISZTÉRIUM M/D/13 Dolgozók gimnáziuma Dolgozók szakközépiskolája Szakmunkások szakközépiskolája intenzív tagozat) 003. május ) Határozza meg a következő egyenlet racionális gyökét! 1 3 4 + 5

Részletesebben

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ A MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI 2. FELADATSORHOZ

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ A MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI 2. FELADATSORHOZ JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ A MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI. FELADATSORHOZ Formai előírások: A dolgozatot a vizsgázó által használt színűtől eltérő színű tollal kell javítani, és a tanári gyakorlatnak

Részletesebben

CSAHÓCZI ERZSÉBET CSATÁR KATALIN KOVÁCS CSONGORNÉ MORVAI ÉVA SZÉPLAKI GYÖRGYNÉ SZEREDI ÉVA: MATEMATIKA 7.

CSAHÓCZI ERZSÉBET CSATÁR KATALIN KOVÁCS CSONGORNÉ MORVAI ÉVA SZÉPLAKI GYÖRGYNÉ SZEREDI ÉVA: MATEMATIKA 7. Pedagógusképzés támogatása TÁMOP-3.1.5/12-2012-0001 CSAHÓCZI ERZSÉBET CSATÁR KATALIN KOVÁCS CSONGORNÉ MORVAI ÉVA SZÉPLAKI GYÖRGYNÉ SZEREDI ÉVA: MATEMATIKA 7. TANKÖNYVISMERTETŐ TÓTFALUSI MIKLÓS Csahóczi

Részletesebben

Matematikai alapok 1 Tantárgyi útmutató

Matematikai alapok 1 Tantárgyi útmutató Módszertani Intézeti Tanszék Gazdaságinformatikus szak nappali tagozat Matematikai alapok 1 Tantárgyi útmutató 2015/16 tanév II. félév 1/5 Tantárgy megnevezése Matematikai alapok 1 Tantárgy jellege/típusa:

Részletesebben

Érettségi feladatok: Egyenletek, egyenlőtlenségek 1 / 6. 2005. május 29. 13. a) Melyik (x; y) valós számpár megoldása az alábbi egyenletrendszernek?

Érettségi feladatok: Egyenletek, egyenlőtlenségek 1 / 6. 2005. május 29. 13. a) Melyik (x; y) valós számpár megoldása az alábbi egyenletrendszernek? Érettségi feladatok: Egyenletek, egyenlőtlenségek 1 / 6 Elsőfokú 2005. május 28. 1. Mely x valós számokra igaz, hogy x 7? 13. a) Oldja meg az alábbi egyenletet a valós számok halmazán! x 1 2x 4 2 5 2005.

Részletesebben

P R Ó B A É R E T T S É G I 2 0 0 4. m á j u s KÖZÉPSZINT JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

P R Ó B A É R E T T S É G I 2 0 0 4. m á j u s KÖZÉPSZINT JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ P R Ó B A É R E T T S É G I 0 0 4. m á j u s MATEMATIKA KÖZÉPSZINT JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Formai előírások: A dolgozatot a vizsgázó által használt színűtől eltérő színű tollal kell javítani, és a

Részletesebben

Az Országos Középiskolai Tanulmányi Verseny 2005-2006. tanévi első fordulójának feladatmegoldásai. 81f 2 + 90l 2 f 2 + l 2

Az Országos Középiskolai Tanulmányi Verseny 2005-2006. tanévi első fordulójának feladatmegoldásai. 81f 2 + 90l 2 f 2 + l 2 Az Országos Középiskolai Tanulmányi Verseny 2005-2006. tanévi első fordulójának feladatmegoldásai matematikából, a II. kategória számára 1. Két iskola tanulói műveltségi vetélkedőn vettek részt. A 100

Részletesebben

A Szent Gellért Katolikus Általános Iskola, Gimnázium és Kollégium felvételi tájékoztatója

A Szent Gellért Katolikus Általános Iskola, Gimnázium és Kollégium felvételi tájékoztatója A Szent Gellért Katolikus Általános Iskola, Gimnázium és Kollégium felvételi tájékoztatója Az iskola neve: Szent Gellért Katolikus Általános Iskola, Gimnázium és Kollégium Az iskola OM-azonosítója: 028300

Részletesebben

2700 Cegléd, Rákóczi út 46. tel: (53) , (53) fax:(53)

2700 Cegléd, Rákóczi út 46. tel: (53) , (53) fax:(53) Beiskolázási tájékoztató a 2017/2018-as tanévre Ceglédi Kossuth Lajos Gimnázium OM azonosító: 032549 Telephely kódja: 001 2700 Cegléd, Rákóczi út 46. tel: (53)-310-934, (53)-500-525 fax:(53)-500-625 e-mail:

Részletesebben

MATEMATIKA KISÉRETTSÉGI Ponthatárok: (5) (4) (3) (2) (1) Pontszám. I. rész - A rendelkezésre álló idő: 45 perc

MATEMATIKA KISÉRETTSÉGI Ponthatárok: (5) (4) (3) (2) (1) Pontszám. I. rész - A rendelkezésre álló idő: 45 perc MATEMATIKA KISÉRETTSÉGI 2015. Ponthatárok: (5) 83-100 (4) 65-82 (3) 47-64 (2) 30-46 (1) 0-29 Név, osztály Pontszám I. rész - A rendelkezésre álló idő: 45 perc I. rész 30 pont Érdemjegy II. rész 70 pont

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Függvények

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Függvények MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek

Részletesebben

1. FELADAT: SZÁMÍTSD KI A KÖVETKEZŐ SZÁMKIFEJEZÉSEK ÉRTÉKEIT:

1. FELADAT: SZÁMÍTSD KI A KÖVETKEZŐ SZÁMKIFEJEZÉSEK ÉRTÉKEIT: 1. FELADAT: SZÁMÍTSD KI A KÖVETKEZŐ SZÁMKIFEJEZÉSEK ÉRTÉKEIT: a) ( 7) + ( 12) = 19 b) ( 24) + (+15) = 9 c) ( 5) + ( 27) = 32 d) (+19) + (+11) = +30 e) ( 7) ( 25) = +175 f) ( 5) (+14) = 70 g) ( 36) (+6)

Részletesebben

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika emelt szint 0801 ÉRETTSÉGI VIZSGA 009. május 5. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM Formai előírások: Fontos tudnivalók

Részletesebben

Huzella Tivadar Általános Iskola. {mgmediabot2}path=images/video/idegennyelv.wmv width=352 height=288{/mgmediabot2}

Huzella Tivadar Általános Iskola. {mgmediabot2}path=images/video/idegennyelv.wmv width=352 height=288{/mgmediabot2} Idegen nyelvi A munkaközösség-vezetõ rövid, videón való bemutatkozását követõen kérjük, olvassa el a munkaközösség munkájáról szóló tájékoztatót is. (Ha felnagyítva kívánja megtekinteni a felvételt, kattintson

Részletesebben

1. A tanulók április 13-ig adhatják le a tantárgy és a felkészülési szint megválasztásával kapcsolatos döntésüket.

1. A tanulók április 13-ig adhatják le a tantárgy és a felkészülési szint megválasztásával kapcsolatos döntésüket. AZ EMELT ÉS KÖZÉPSZINTŰ ÉRETTSÉGIRE FELKÉSZÍTŐ FAKULTÁCIÓKKAL KAPCSOLATOS FONTOSABB TUDNIVALÓK A 2015/2016. TANÉVBEN a 11. A, a 11.B, a 11.C és a 11.D OSZTÁLYBA LÉPŐKNEK 1. A tanulók április 13-ig adhatják

Részletesebben

A Soproni Széchenyi István Gimnázium felvételi tájékoztatója. I. Hat évfolyamos képzés

A Soproni Széchenyi István Gimnázium felvételi tájékoztatója. I. Hat évfolyamos képzés A Soproni Széchenyi István Gimnázium felvételi tájékoztatója Az iskola OM azonosítója: 030694 Cím: 9400 Sopron, Templom utca 26. Tel: 99/505-390 E-mail cím: iroda@szig.sopron.hu Honlapunk címe: http://szig.sopron.hu

Részletesebben