KÜL- ÉS BELTENYÉSZTETT, TRANSZGENIKUS, GÉNKIÜTÖTT ÉS GÉNBEÜTÖTT ÁLLATOK. KLÓNOZÁS. Dr. Jánossy Tamás SZTE, ÁOK, Sebészeti Műtéttani Intézet

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "KÜL- ÉS BELTENYÉSZTETT, TRANSZGENIKUS, GÉNKIÜTÖTT ÉS GÉNBEÜTÖTT ÁLLATOK. KLÓNOZÁS. Dr. Jánossy Tamás SZTE, ÁOK, Sebészeti Műtéttani Intézet"

Átírás

1 KÜL- ÉS BELTENYÉSZTETT, TRANSZGENIKUS, GÉNKIÜTÖTT ÉS GÉNBEÜTÖTT ÁLLATOK. KLÓNOZÁS Dr. Jánossy Tamás SZTE, ÁOK, Sebészeti Műtéttani Intézet

2 Modellválasztás az orvostudományi és a biológiai kutatásokban 1. A megfelelő állatfaj kiválasztása: Leggyakrabban használt állatfajok: Háziállatok: szarvasmarha, sertés, baromfi, kutya, macska Nem ember főemlősök: majom, csimpánz, cerkófmajom, selyemmajmok Kis laboratóriumi emlősök: egér, patkány, tengerimalac, hörcsög, nyúl Ezek a leggyakoribbak: kis helyigény, szaporaság, rövid tenyészidő 2. A megfelelő genetikai tényezők, tulajdonságok kiválasztása: pl. változatos v. azonos állatok

3 Kültenyésztés: a rokontenyésztés elkerülése genetikailag változatos állomány <100 tenyészpár: a rokontenyésztés maximális elkerülése >100 tenyészpár: rotációs v. találomra történő (random tenyésztés) A beltenyésztési együttható (F) (a homozigóta génhelyek gyakoriságának) növekedése: <1% A kültenyésztett (outbred) állomány egyedei heterozigóták: az apai (A) és az anyai gének (B) alléljei a génhelyek túlnyomó részében különbözőek (AB). A populáció anizogén: egyedei genetikailag különböznek (változatos genotípusúak).

4 Zárt kültenyészetben is megfigyelhető a növekvő homozigótaság. Egyensúlyban lévő zárt tenyészetben az egyedek fele heterozigóta (AB), másik fele homozigóta (25% AA, ill. 25% BB) Rokontenyésztés: 4 nemzedéken belüli közös ős a családfában Beltenyésztés: szigorú rokontenyésztés: sorozatos testvér-testvér, gyermek-szülő pároztatás növekvő homozigótaság (genetikai sodródás) (AB helyett AA v. BB) Beltenyésztett törzsek létrehozása: >20 nemzedéken át végzett testvér-testvér (szülő-utód) pároztatás az összes génlokusz 98,4%-a homozigóta (F=98,4%) A beltenyésztett (inbred) törzs egyedei homozigóták és izogének (azonos genotípusúak).

5 A törzs bármely tagja elfogadja a bármelyik másik azonos nemű tagjából átültetett szöveteket (graft) az izogenitás ellenőrzése bőrtranszplantációval (Silvers-féle körtranszplantáció) A törzs fenntartása: a ritka mutációk miatt testvér-testvér pároztatással.

6 A beltenyésztett rágcsálótörzsek története: Jensen, Loeb, Ehrlich, Tyzzer: spontán egértumorok sorozatos transzplantációval történő fenntartása többnyire sikertelen (nem eredt meg v. visszafejlődött) Jensen (1903), Loeb (1908): sikeres sorozatos tumorátoltások viszonylagosan beltenyésztett egerekben a tumorokkal szembeni fogékonyság örökletes Little (1914): a tumorrejekció, ill. a fogékonyság több dominánsan öröklődő génen alapul a hisztokompatibilitási gének, a celluláris immunválasz tanulmányozása Rommel, Wright (1906): beltenyésztett tengerimalacok (2-es és 13-as törzs)

7 King (1909): beltenyésztett patkányok (PA, WKA törzsek) Little (1909): beltenyésztett egerek (DBA/1, DBA/2 törzsek) Bagg (1913): BALB/c egértörzs Strong (1920): A, C3H, CBA egértörzsek Little (1921): C57 egértörzsek családja : a leggyakrabban használt egér- és patkánytörzsek kifejlesztése 1929: A Jackson Laboratórium megalapítása (Little)

8 Beltenyésztési depresszió (leromlás): a szaporodási képesség, életképesség, egészség stb. csökkenése Csak az első néhány generációban fordul elő. Oka: a káros recesszív gének homozigótasága A kialakult törzsben már nem fordul elő. F 1 hibridek: két genetikailag különböző beltenyésztett törzs keresztezéséből származó első generáció Minden egyed izogén és heterozigóta mindazon génlokuszokra, amelyekben a két szülői törzs különbözik (= a gének kodomináns öröklődése és kifejeződése).

9 Ha két transzplantációs antigénekben (H Ag) eltérő törzset keresztezünk, az F 1 -ek mindkét szülő H Ag-jeit kifejezik ezért az egyik szülői törzstől származó bőrgraftot sem lökik ki, a szülői törzsek viszont kilökik az F 1 graftokat.

10 Hibrid életerő vagy heterózis: a beltenyésztési depresszió ellentéte a káros recesszív gének elfedése a kialakuló heterozigótaság miatt. Nevezéktan: Nómenklatúra Bizottság (1952) Törzsnév: 1-4 nagybetű Egér: A, AKR, CBA, DBA stb. Patkány: LEW, WAG, BN, PVG stb. Számok csak a korábban elterjedt törzsek esetén engedélyezettek (pl. egér: C3H, C57BL; patkány: F344, AS2, M520)

11 Altörzs: - a törzs két v. több ágra oszlik a testvérpároztatás között - ugyanabban a tenyészetben két párhuzamos vonal genetikailag eltér. Példák: C57BL/6, C57BL/10; CBA/J, CBA/Ca; A/He, A/J stb. Alvonal: - egy másik laboratóriumban történő hosszú tenyésztés - a törzs bármilyen manipulációja Altörzs, alvonal neve: törzsnév/altörzs, alvonal szimbólum(ok) történeti sorrendben (a tenyésztő v. a laboratórium nevének rövidítése, ritkán szám: pl. C57BL/10ScSn: Sc=Scott, Sn=Snell

12 Manipulációk: f: dajkaság (foster nursing) egy másik törzsnél: pl. C57BL/10ScSnfC3H. Pl. specifikált patogénmentes (SPF) törzsek létrehozása a magzatok méhhel együtt történő eltávolítása és dajkaságban történő felnevelése révén e: embriótranszfer egy másik törzsbe h: mesterséges táplálás (hand rearing) o: ovárium-transzplantáció p: petesejttárolás (preservation) cseppfolyós nitrogénben Rövidített törzsnevek: AKR=AK, BALB/c=C, C3H=C3, C57BL=B, C57BL/6=B6, C57BL/10=B10 F1 hibridek elnevezése: (nőstény szülői törzs x hím szülói törzs)f 1 pl. (BALB/c x C57BL/6)F 1 =CB6F1

13 Koizogén törzsek: Mutáció egy jelentős génlokuszon egy beltenyésztett törzsben egy új beltenyésztett törzs kialakítása a mutációt hordozó állatokból Az új törzs csak egyetlen génlokuszban (a mutált génben) különbözik az eredetitől a génmutáció fenotipikus hatása tanulmányozható. A mutáció betegség alapját képezheti: Egér: Anémia: sla gén Diabétesz és elhízás (obesity): db, ob gének Anyagcsere-betegségek: his (hisztidinémia), pro (prolinémia) Vesebetegség: kd gén Izomsorvadás (dystrophia): dy, dy2j gén

14 Kongenikus, ill. kongenikus rezisztens törzsek: -A kívánt gén (D) bejuttatása egy beltenyésztett donor törzsből (2.) egy másik, (d génallélű) recipiens törzsbe (1.) keresztezéssel F 1 hibridek létrehozása; - az F 1 -ek visszakeresztezése az 1. (recipiens) törzsű egerekkel; - a D gént hordozó utódok (Dd) szelekciója és visszakeresztezése 1. egerekkel. Farok (tail) fejlődési rendellenességek: t-allél Szőrtelen (nude) és tímuszhiányos: nu Patkány: Diabetes insipidus: di gene Szőrtelen (nude) és tímuszhiányos: rnu gén Bilirubinémia: j gene Nevezéktan: törzsnév/altörzsnév-mutáns gén neve: BALB/c/Rij-nu, C57BL/6J-ob

15 Legalább visszakeresztezés szükséges majd egy Dd heterozigóta hím és nőstény pároztatása ezután egy DD homozigóta hím és nőstény beltenyésztése: az új, kongenikus törzs hordozza a donor D gént, míg az összes egyéb génjei (háttérgének) azonosak a recipiens (1.) törzsével.

16 Kongenikus rezisztens törzsek: a bőr-, ill. tumorgraftok rejekcióját kiváltó antigének génjeinek (MHC) bejuttatása a recipiens törzsbe Nevezéktan: recipiens törzs.donor törzs (gyakran rövid nevekkel): pl. B10.D2 génrecipiens: C57BL/10 (B10) (MHC=H-2 b ), géndonor: DBA/2 (D2) (MHC=H-2 d ) kongenikus rezisztens törzs = B10.D2 (másik elnevezés: C57BL/10ScSn-H-2 d ) A B10.D2 (H-2 d ) törzs kongenikus a B10 (H-2 b ) törzzsel: csak a H-2 lokuszban térnek el, háttérgénjeik azonosak. A H-2 felfedezése = az egér fő hisztokompatibilitási komplexe [major histompatibility complex (MHC)] H-2 kongenikus törzsek közötti transzplantáció: az MHC felelős a graftrejekcióért.

17 Rekombináns törzsek: két nem rokon beltenyésztett törzs keresztezésével létrehozott F 2 generációból származnak, >20 generáción át végzett testvértestvér pároztatással állítják elő őket. Elnevezés: BALB/c (C) x C57BL/6 (B6) CXB vonalak Mindkét ős génjeit hordozzák random eloszlásban. Poligénes tulajdonságok tanulmányozására alkamasak: pl. élettartam, morfológiai és fiziológiai jellemzők, betegségek, viselkedés, gyógyszerhatások stb.

18 Transzgenikus állatok: - idegen DNS-szekvenciák = transzgének bejuttatása megtermékenyített petesejtek pronukleuszaiba mikroinjekcióval (v. embrionális őssejtekbe transzfekcióval, v. vírusvektorral) - a petesejt bejuttatása álterhes nőstények petevezetékébe - a transzgént kifejező transzgenikus állatok kiválasztása és homozigóta vonal kitenyésztése. A transzgéneket ki lehet fejeztetni: - meghatározott szövetekben a megfelelő regulátoros szekvenciákhoz való kapcsolás révén (pl. antigénreceptor-gének lymphocytákban) - gyógyszerekre v. hormonokra (pl. tetraciklin, ösztrogén) válaszoló promoterekhez kapcsolva

19 A transzgenikus állatokat lehet használni: -a transzgén élettani, patológiai hatásainak vizsgálatára; - betegségmodellként; - transzgenikus fehérjék/peptidek (gyógyszerek, hormonok stb.) nagy mennyiségben történő előállítására. Génkiütött (knockout, KO) állatok: Gének célzott mutációja v. szétrombolása homológ rekombináció révén: a kiütésre használt működésképtelen exogén génkonstrukció az endogén génnel homológ szekvenciákat tartalmaz rekombináció a kódoló szekvenciák diszrupciója a génexpresszió és/vagy -funkció megszűnése, deléciója A génfunkció in vivo tanulmányozása

20

21 Génbeütött (knock-in) állatok: Egy normál génszekvencia bejuttatása a genom meghatározott helyére homológ rekombinációval (pl. endogén promoter v. enhancer régiók mellé) Génkonstrukció: vektor + bejuttatandó gén + a genomban a beépítés helyén lévő endogén génnel homológ szekvenciák Klónozott állatok: Klón: az utód genomja teljesen azonos a kiinduló egyedével. Sejtosztódások (pl. megtermékenyített petesejtek és testi sejtek osztódása a kiinduló sejt klónjai)

22 Többsejtű élőlények klónozása: I. Embrióosztási technika: Rutin módszer a jó tulajdonságokkal rendelkező háziállatok klónozására (pl. szarvasmarha). Mesterségesen egypetéjű ikreket állítanak elő. Lépések: 1. Egy petesejtet mesterségesen megtermékenyítenek spermiummmal. 2. A zigótát hagyják osztódni 8-sejtes embrióvá. 3. Az embriót 2 x 4-sejtes v. leggyakrabban 4 x 2- sejtes darabokra osztják. A sejtek még nem differenciálódnak a 8-sejtes embrióban a szétválasztott embriók genetikailag azonosak, mint az egypetéjű ikrek: ikerkészítés embrióból.

23 4. A szétválasztott embriókat hagyják fejlődni in vitro. 5. Azután beültetik őket egy álterhes nőstény méhébe. II. Testi sejtmag átvitele [somatic cell nuclear transfer (SCNT)] Ian Wilmut és Keith Campbell, Roslin Intézet, Skócia, 1997: a Dolly bárány létrehozása Az SCNT-hez két sejt szükséges: a magdonor testi sejt + egy megtermékenyítetlen petesejt mint recipiens sejt: - A petesejt megfelelőbb recipiens sejt, mint a testi sejtek: könnyebb osztódásra késztetni. - megtermékenyítetlen petesejt könnyebben befogadja a sejtmagot, mint a megtermékenyített.

24 Az SCNT lépései (the Roslin-technika): 1. A donorsejtet (a Dolly esetében emlőmirigysejt) fötális borjúsavót tartalmazó tápfolyadékban tenyésztik, és hagyják osztódni in vitro. 2. Ezután a sejteket FCS-mentes tápfolyadékba helyezik az osztódás leáll, és a sejtek G 0 v. nyugalmi állapotba kerülnek. Ez szükséges, hogy a recipens sejt befogadja a donormagot. 3. A sejtmagot eltávolítják a petesejtből. 4. A donorsejtet a mag nélküli recipens sejt közelébe helyezik órával a mageltávolítás után elektromos inger: - donorsejt (v. izolált mag) fúziója a mag nélküli petesejttel; -a sejtosztódás aktivációja és az embrió fejlődése

25 A differenciált donorsejt genetikai programja lenullázódik a petesejtben differenciálatlan, pluripotens sejt 6. Az embriót birka-petevezetékbe helyezik 5-6 napra (itt az embriók túlélése jobb, mint szövettenyészetben). 7. Amikor az embrió eléri a blasztoméra állapotot (kb. 100 sejt), az embriót beültetik egy dajka anya méhébe. 8. Az anya kihordja a terhességet. Az utódok a donor genetikailag pontos másolatai reproduktív klónozás A blasztomérákat őssejtforrásként is lehet használni.

26 Honolulu-technika: egerek sikeres klónozása A klónozott állatok képesek voltak normálisan szaporodni, fenntartani a klónt szexuális reprodukció révén. Kromatintranszfer: A klónozandó sejtek kezelése eltávolítja a sejtdifferenciálódással kapcsolatos molekulákat, mielőtt a magot eltávolítják a genetikai program lenullázódása könnyebben megy végbe.

Állatkísérletek Elmélete és Gyakorlata- B szint

Állatkísérletek Elmélete és Gyakorlata- B szint Szegedi Tudományegyetem ÁOK Állatkísérletek Elmélete és Gyakorlata- B szint Sebészeti Műtéttani Intézet 2017. december 06-december 15. Referencia szám: AA1.0/2015; AB1.0/2015 Core modul 3.1/6 Kültenyésztett,

Részletesebben

Beltenyésztett állattörzsek, transzgenikus és génkiütött állatok, klónozás (Dr. Jánossy Tamás)

Beltenyésztett állattörzsek, transzgenikus és génkiütött állatok, klónozás (Dr. Jánossy Tamás) Beltenyésztett állattörzsek, transzgenikus és génkiütött állatok, klónozás (Dr. Jánossy Tamás) 1. Bevezetés Az állatkísérleteken alapuló biológiai és orvostudományi kutatásokban rendkívül fontos, hogy

Részletesebben

Transzgénikus állatok előállítása

Transzgénikus állatok előállítása Transzgénikus állatok előállítása A biotechnológia alapjai Pomázi Andrea Mezőgazdasági biotechnológia A gazdasági állatok és növények nemesítése új biotechnológiai eljárások felhasználásával. Cél: jobb

Részletesebben

Az orvosi biotechnológiai mesterképzés megfeleltetése az Európai Unió új társadalmi kihívásainak a Pécsi Tudományegyetemen és a Debreceni Egyetemen

Az orvosi biotechnológiai mesterképzés megfeleltetése az Európai Unió új társadalmi kihívásainak a Pécsi Tudományegyetemen és a Debreceni Egyetemen Az orvosi biotechnológiai mesterképzés megfeleltetése az Európai Unió új társadalmi kihívásainak a Pécsi Tudományegyetemen és a Debreceni Egyetemen Azonosító szám: TÁMOP-4.1.2-08/1/A-2009-0011 Az orvosi

Részletesebben

A T sejtes immunválasz egy evolúciós szempontból váratlan helyzetben: Szervtranszplantáció

A T sejtes immunválasz egy evolúciós szempontból váratlan helyzetben: Szervtranszplantáció A T sejtes immunválasz egy evolúciós szempontból váratlan helyzetben: Szervtranszplantáció Autotranszplantáció: saját szövet átültetése, pl. autológ bőrtranszplantáció, autológ őssejt-transzplantáció.

Részletesebben

ÁLLATTENYÉSZTÉSI GENETIKA

ÁLLATTENYÉSZTÉSI GENETIKA TÁMOP-4.1.2-08/1/A-2009-0010 project ÁLLATTENYÉSZTÉSI GENETIKA University of Debrecen University of West Hungary University of Pannonia The project is supported by the European Union and co-financed by

Részletesebben

Az evolúció folyamatos változások olyan sorozata, melynek során bizonyos populációk öröklődő jellegei nemzedékről nemzedékre változnak.

Az evolúció folyamatos változások olyan sorozata, melynek során bizonyos populációk öröklődő jellegei nemzedékről nemzedékre változnak. Evolúció Az evolúció folyamatos változások olyan sorozata, melynek során bizonyos populációk öröklődő jellegei nemzedékről nemzedékre változnak. Latin eredetű szó, jelentése: kibontakozás Időben egymást

Részletesebben

BIOLÓGIA HÁZIVERSENY 1. FORDULÓ BIOKÉMIA, GENETIKA BIOKÉMIA, GENETIKA

BIOLÓGIA HÁZIVERSENY 1. FORDULÓ BIOKÉMIA, GENETIKA BIOKÉMIA, GENETIKA BIOKÉMIA, GENETIKA 1. Nukleinsavak keresztrejtvény (12+1 p) 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 1. A nukleinsavak a.-ok összekapcsolódásával kialakuló polimerek. 2. Purinvázas szerves bázis, amely az

Részletesebben

Hátterükben egyetlen gén áll, melynek általában számottevő a viselkedésre gyakorolt hatása, öröklési mintázata jellegzetes.

Hátterükben egyetlen gén áll, melynek általában számottevő a viselkedésre gyakorolt hatása, öröklési mintázata jellegzetes. Múlt órán: Lehetséges tesztfeladatok: Kitől származik a variáció-szelekció paradigma, mely szerint az egyéni, javarészt öröklött különbségek között a társadalmi harc válogat? Fromm-Reichmann Mill Gallton

Részletesebben

Transzgénikus. nikus állatok. Transzgénikus nikus minden olyan állat, melynek genomja emberi közremk bejuttatott DNS-t t tartalmaz.

Transzgénikus. nikus állatok. Transzgénikus nikus minden olyan állat, melynek genomja emberi közremk bejuttatott DNS-t t tartalmaz. Transzgénikus nikus állatok Transzgénikus nikus minden olyan állat, melynek genomja emberi közremk zremüködéssel bejuttatott DNS-t t tartalmaz. I. A KONKRÉT T GÉNSEBG NSEBÉSZETI SZETI TECHNIKA A beavatkozást

Részletesebben

Általános állattenyésztés

Általános állattenyésztés Általános állattenyésztés 10. Előadás Tenyésztési (párosítási) eljárások 1. Előadás-vázlat Fajtatiszta tenyésztés Kombinációs párosítás Vérfrissítés Rokontenyésztés, beltenyésztés Vérvonaltenyésztés Szintetikus

Részletesebben

Mik a klónok? Genetikailag azonos élılények, identikus ikrek

Mik a klónok? Genetikailag azonos élılények, identikus ikrek Klónozási technikák Mik a klónok? Genetikailag azonos élılények, identikus ikrek Mik a klónok? Genetikailag azonos élılények, identikus ikrek: létrejöhetnek természetes úton, Identikus ikrek keletkezése

Részletesebben

A KÍSÉRLETI ÁLLATOK TARTÁSA ÉS GONDOZÁSA II A RÁGCSÁLÓK SZÜKSÉGLETEI, GONDOZÁSA. AZ ÁLLATHÁZ HIGIÉNIÁJA, FELÉPÍTÉSE, MUNKAFOLYAMATAI

A KÍSÉRLETI ÁLLATOK TARTÁSA ÉS GONDOZÁSA II A RÁGCSÁLÓK SZÜKSÉGLETEI, GONDOZÁSA. AZ ÁLLATHÁZ HIGIÉNIÁJA, FELÉPÍTÉSE, MUNKAFOLYAMATAI A KÍSÉRLETI ÁLLATOK TARTÁSA ÉS GONDOZÁSA II A RÁGCSÁLÓK SZÜKSÉGLETEI, GONDOZÁSA. AZ ÁLLATHÁZ HIGIÉNIÁJA, FELÉPÍTÉSE, MUNKAFOLYAMATAI. FERTŐTLENÍTÉS, KARANTÉNEZÉS. TENYÉSZTÉS, REGISZTRÁCIÓ, JELÖLÉS Dr.

Részletesebben

A Hardy-Weinberg egyensúly. 2. gyakorlat

A Hardy-Weinberg egyensúly. 2. gyakorlat A Hardy-Weinberg egyensúly 2. gyakorlat A Hardy-Weinberg egyensúly feltételei: nincs szelekció nincs migráció nagy populációméret (nincs sodródás) nincs mutáció pánmixis van allélgyakoriság azonos hímekben

Részletesebben

Domináns-recesszív öröklődésmenet

Domináns-recesszív öröklődésmenet Domináns-recesszív öröklődésmenet Domináns recesszív öröklődés esetén tehát a homozigóta domináns és a heterozigóta egyedek fenotípusa megegyezik, így a három lehetséges genotípushoz (példánkban AA, Aa,

Részletesebben

Szelekció. Szelekció. A szelekció típusai. Az allélgyakoriságok változása 3/4/2013

Szelekció. Szelekció. A szelekció típusai. Az allélgyakoriságok változása 3/4/2013 Szelekció Ok: több egyed születik, mint amennyi túlél és szaporodni képes a sikeresség mérése: fitnesz Szelekció Ok: több egyed születik, mint amennyi túlél és szaporodni képes a sikeresség mérése: fitnesz

Részletesebben

Az omnipotens kutatónak, Dr. Apáti Ágotának ajánlva, egy hálás ex-őssejtje

Az omnipotens kutatónak, Dr. Apáti Ágotának ajánlva, egy hálás ex-őssejtje 1 Az omnipotens kutatónak, Dr. Apáti Ágotának ajánlva, egy hálás ex-őssejtje Írta és rajzolta: Hargitai Zsófia Ágota Munkában részt vett: Dr. Sarkadi Balázs, Dr. Apáti Ágota A szerkesztésben való segítségért

Részletesebben

Mint emlős, az ember genetikai modelljeként is szolgál. Genomja, génjeinek elrendeződése, szabályozása sok hasonlóságot mutat az emberével.

Mint emlős, az ember genetikai modelljeként is szolgál. Genomja, génjeinek elrendeződése, szabályozása sok hasonlóságot mutat az emberével. A HÁZIEGÉR (Mus musculus) Mendel és újra felfedezői (Correns, Tschermak, de Vries) mind növényeken kísérleteztek. Sokan megkérdőjelezték, hogy az állatoknál és az embernél is hasonló öröklődési szabályok

Részletesebben

BIOLÓGIA 11. ÉVFOLYAM I. beszámoló. A genetika alaptörvényei

BIOLÓGIA 11. ÉVFOLYAM I. beszámoló. A genetika alaptörvényei BIOLÓGIA 11. ÉVFOLYAM 2015-2016. I. beszámoló A genetika alaptörvényei Ismétlés: a fehérjék fölépítése Új fogalom: gének: a DNS molekula egységei, melyek meghatározzák egy-egy tulajdonság természetét.

Részletesebben

Populációgenetikai. alapok

Populációgenetikai. alapok Populációgenetikai alapok Populáció = egyedek egy adott csoportja Az egyedek eltérnek egymástól morfológiailag, de viselkedésüket tekintve is = genetikai különbségek Fenotípus = külső jellegek morfológia,

Részletesebben

Klónozás: tökéletesen egyforma szervezetek csoportjának előállítása, vagyis több genetikailag azonos egyed létrehozása.

Klónozás: tökéletesen egyforma szervezetek csoportjának előállítása, vagyis több genetikailag azonos egyed létrehozása. Növények klónozása Klónozás Klónozás: tökéletesen egyforma szervezetek csoportjának előállítása, vagyis több genetikailag azonos egyed létrehozása. Görög szó: klon, jelentése: gally, hajtás, vessző. Ami

Részletesebben

A génterápia genetikai anyag bejuttatatása diszfunkcionálisan működő sejtekbe abból a célból, hogy a hibát kijavítsuk.

A génterápia genetikai anyag bejuttatatása diszfunkcionálisan működő sejtekbe abból a célból, hogy a hibát kijavítsuk. A génterápia genetikai anyag bejuttatatása diszfunkcionálisan működő sejtekbe abból a célból, hogy a hibát kijavítsuk. A genetikai betegségek mellett, génterápia alkalmazható szerzett betegségek, mint

Részletesebben

A kromoszómák kialakulása előtt a DNS állomány megkettőződik. A két azonos információ tartalmú DNS egymás mellé rendeződik és egy kromoszómát alkot.

A kromoszómák kialakulása előtt a DNS állomány megkettőződik. A két azonos információ tartalmú DNS egymás mellé rendeződik és egy kromoszómát alkot. Kromoszómák, Gének A kromoszóma egy hosszú DNS szakasz, amely a sejt életének bizonyos szakaszában (a sejtosztódás előkészítéseként) tömörödik, így fénymikroszkóppal láthatóvá válik. A kromoszómák két

Részletesebben

Az immunológia alapjai Az MHC-I és MHC-II szerkezete és genetikája.

Az immunológia alapjai Az MHC-I és MHC-II szerkezete és genetikája. Az immunológia alapjai Az MHC-I és MHC-II szerkezete és genetikája. Boldizsár Ferenc 02/16/2012 Antigén felismerés B sejt T sejt Receptor BcR (Ig) TcR Antigén natív denaturált (prezentált) APC nem szükséges

Részletesebben

Az adaptív immunválasz kialakulása. Erdei Anna Immunológiai Tanszék ELTE

Az adaptív immunválasz kialakulása. Erdei Anna Immunológiai Tanszék ELTE Az adaptív immunválasz kialakulása Erdei Anna Immunológiai Tanszék ELTE NK sejt T Bev. 1. ábra Immunhomeosztázis A veleszületett immunrendszer elemei nélkül nem alakulhat ki az adaptív immunválasz A veleszületett

Részletesebben

INCZÉDY GYÖRGY SZAKKÖZÉPISKOLA, SZAKISKOLA ÉS KOLLÉGIUM

INCZÉDY GYÖRGY SZAKKÖZÉPISKOLA, SZAKISKOLA ÉS KOLLÉGIUM INCZÉDY GYÖRGY SZAKKÖZÉPISKOLA, SZAKISKOLA ÉS KOLLÉGIUM Szakközépiskola Tesztlapok Biológia - egészségtan tantárgy 12. évfolyam Készítette: Perinecz Anasztázia Név: Osztály: 1. témakör: Az élet kódja.

Részletesebben

Balogh g h Z oltán TOXI-COOP Zrt 2011.

Balogh g h Z oltán TOXI-COOP Zrt 2011. Balogh Zoltán TOXI-COOP Zrt 2011. A nagy eleink Dr. Cholnoky Eszter 1928-1987. Dr. Kállai László 1927 2007. Laboratóriumi állatok történelme röviden Kr.e. 2-3000 évvel Rattus norvegicus vagy Oryzomys spp.

Részletesebben

Kvantitatív genetikai alapok április

Kvantitatív genetikai alapok április Kvantitatív genetikai alapok 2018. április A vizsgálható tulajdonságok köre: egyed - szám Egyedek morfológiai tulajdonságai: testméretek, arányok, testtömeg Egyedek fiziológiai tulajdonságai: vérnyomás,

Részletesebben

A hisztokompatibilitási rendszer sejtbiológiája és genetikája. Rajczy Katalin Klinikai Immunológia Budapest,

A hisztokompatibilitási rendszer sejtbiológiája és genetikája. Rajczy Katalin Klinikai Immunológia Budapest, A hisztokompatibilitási rendszer sejtbiológiája és genetikája Rajczy Katalin Klinikai Immunológia Budapest, 2018.03.12 A fő szöveti összeférhetőségi génkomplex (Major Histocompatibility Complex) MHC Szinte

Részletesebben

Az ember összes kromoszómája 23 párt alkot. A 23. pár határozza meg a nemünket. Ha 2 db X kromoszómánk van ezen a helyen, akkor nők, ha 1db X és 1db

Az ember összes kromoszómája 23 párt alkot. A 23. pár határozza meg a nemünket. Ha 2 db X kromoszómánk van ezen a helyen, akkor nők, ha 1db X és 1db Testünk minden sejtjében megtalálhatók a kromoszómák, melyek a tulajdonságok átörökítését végzik. A testi sejtekben 2 x 23 = 46 db kromoszóma van. Az egyik sorozat apánktól, a másik anyánktól származik.

Részletesebben

Balogh Zoltán TOXI-COOP Zrt 2013.

Balogh Zoltán TOXI-COOP Zrt 2013. Balogh Zoltán TOXI-COOP Zrt 2013. A nagy eleink Dr. Cholnoky Eszter 1928-1987. Dr. Kállai László 1927 2007. Dr. Cholnoky Eszter Dr. Kállai László Prof.Dr.Anderlik Piroska, Dr.Kállai László Laboratóriumi

Részletesebben

A PKU azért nem hal ki, mert gyógyítják, és ezzel növelik a mutáns allél gyakoriságát a Huntington kór pedig azért marad fenn, mert csak későn derül

A PKU azért nem hal ki, mert gyógyítják, és ezzel növelik a mutáns allél gyakoriságát a Huntington kór pedig azért marad fenn, mert csak későn derül 1 Múlt órán: Genetikai alapelvek, monogénes öröklődés Elgondolkodtató feladat Vajon miért nem halnak ki az olyan mendeli öröklődésű rendellenességek, mint a Phenylketonuria, vagy a Huntington kór? A PKU

Részletesebben

PISA2003. Nyilvánosságra hozott feladatok természettudományból

PISA2003. Nyilvánosságra hozott feladatok természettudományból PISA2003 Nyilvánosságra hozott feladatok természettudományból Tartalom 3 A nappalok hossza 8 Klónozás A nappalok hossza S129 A NAPPALOK HOSSZA Olvasd el a szöveget, majd válaszolj az azt követő kérdésekre!

Részletesebben

A genetikai lelet értelmezése monogénes betegségekben

A genetikai lelet értelmezése monogénes betegségekben A genetikai lelet értelmezése monogénes betegségekben Tory Kálmán Semmelweis Egyetem, I. sz. Gyermekklinika A ~20 ezer fehérje-kódoló gén a 23 pár kromoszómán A kromoszómán található bázisok száma: 250M

Részletesebben

Az ember szaporodása

Az ember szaporodása Az ember szaporodása Az ember szaporodásának általános jellemzése Ivaros szaporodás Ivarsejtekkel történik Ivarszervek (genitáliák) elsődleges nemi jellegek Belső ivarszervek Külső ivarszervek Váltivarúság

Részletesebben

TRANSZGENIKUS NYÚL ELŐÁLLITÁSA HUMÁN BETEGSÉGMODELL CÉLJÁBÓL BŐSZE ZSUZSANNA 2013

TRANSZGENIKUS NYÚL ELŐÁLLITÁSA HUMÁN BETEGSÉGMODELL CÉLJÁBÓL BŐSZE ZSUZSANNA 2013 TRANSZGENIKUS NYÚL ELŐÁLLITÁSA HUMÁN BETEGSÉGMODELL CÉLJÁBÓL BŐSZE ZSUZSANNA 2013 Transzgenikus nyúl előállítása mikroinjektálással Donorok 6x FSH vagy 1xPMSG HCG+ 2x termékenyít Recipiensek HCG vagy GnRh

Részletesebben

Genetika 3 ea. Bevezetés

Genetika 3 ea. Bevezetés Genetika 3 ea. Mendel törvényeinek a kiegészítése: Egygénes öröklődés Többtényezős öröklődés Bevezetés Mendel által vizsgált tulajdonságok: diszkrétek, két különböző fenotípus Humán tulajdonságok nagy

Részletesebben

Sodródás Evolúció neutrális elmélete

Sodródás Evolúció neutrális elmélete Sodródás Evolúció neutrális elmélete Egy kísérlet Drosophila Drosophila pseudoobscura 8 hím + 8 nőstény/tenyészet 107 darab tenyészet Minden tenyészet csak heterozigóta egyedekkel indul a neutrális szemszín

Részletesebben

Tudománytörténeti visszatekintés

Tudománytörténeti visszatekintés GENETIKA I. AZ ÖRÖKLŐDÉS TÖRVÉNYSZERŰSÉGEI Minek köszönhető a biológiai sokféleség? Hogyan történik a tulajdonságok átörökítése? Tudománytörténeti visszatekintés 1. Keveredés alapú öröklődés: (1761-1766,

Részletesebben

Génátvitel magasabb rendű állatokba elméleti megfontolások, gyakorlati eredmények és génterápiás lehetőségek

Génátvitel magasabb rendű állatokba elméleti megfontolások, gyakorlati eredmények és génterápiás lehetőségek MEZÕGAZDASÁGI BIOTECHNOLÓGIÁK Génátvitel magasabb rendű állatokba elméleti megfontolások, gyakorlati eredmények és génterápiás lehetőségek Tárgyszavak: génátvitel; transzfekció; transzgenézis; génterápia;

Részletesebben

PLASZTICITÁS. Merisztémák merisztemoidok őssejtek (stem cells) stem cell niche

PLASZTICITÁS. Merisztémák merisztemoidok őssejtek (stem cells) stem cell niche PLASZTICITÁS Definíció: A növényi sejtek átalakulhatnak egymásba. A differenciált sejtek dedifferenciálódhatnak, totipotens ősmerisztéma sejtté. Ebből új differenciálódás indulhat el (redifferenciáció).

Részletesebben

Genetikai szótár. Tájékoztató a betegek és családtagjaik számára. Fordította: Dr. Komlósi Katalin Orvosi Genetikai Intézet, Pécsi Tudományegyetem

Genetikai szótár. Tájékoztató a betegek és családtagjaik számára. Fordította: Dr. Komlósi Katalin Orvosi Genetikai Intézet, Pécsi Tudományegyetem 12 Genetikai szótár Fordította: Dr. Komlósi Katalin Orvosi Genetikai Intézet, Pécsi Tudományegyetem 2009. május 15. A London IDEAS Genetikai Tudáspark, Egyesült Királyság szótárából módosítva. A munkát

Részletesebben

HÁZI FELADAT. Milyen borjak születését várhatja, és milyen valószínûséggel az alábbi keresztezésekbõl:

HÁZI FELADAT. Milyen borjak születését várhatja, és milyen valószínûséggel az alábbi keresztezésekbõl: HÁZI FELADAT Egy allélos mendeli 1. A patkányokban a szõrzet színét autoszómás lókusz szabályozza: a fekete szín domináns, az albínó recesszív allél. Ha egy fekete heterozigótával kereszteznek egy fehér

Részletesebben

A (human)genetika alapja

A (human)genetika alapja A (human)genetika alapja Genom diagnosztika - születés elött - tünetek megjelenése elött - hordozó diagnosztika Prenatalis genetikai diagnosztika indikációi emelkedett valószinüség egy gén betegségre egyik

Részletesebben

POPULÁCIÓGENETIKA GYAKORLAT

POPULÁCIÓGENETIKA GYAKORLAT POPULÁCIÓGENETIKA GYAKORLAT Az S vércsoport esetében három genotípus figyelhető meg: - SS homozigóták (az antigént normál mennyiségben tartalmazzák) - Ss heterozigóták (plazmájuk fele mennyiségű antigént

Részletesebben

Ph.D. Tézis. Új módszerek a transzgénes egér technológiában. Dr Bélteki Gusztáv

Ph.D. Tézis. Új módszerek a transzgénes egér technológiában. Dr Bélteki Gusztáv Ph.D. Tézis Új módszerek a transzgénes egér technológiában Dr Bélteki Gusztáv Semmelweis Egyetem Doktori Iskola Tudományági Doktori Iskola: 7. Molekuláris Orvostudományok Program: 7/4. Témavezető: Prof.

Részletesebben

Biológiai feladatbank 12. évfolyam

Biológiai feladatbank 12. évfolyam Biológiai feladatbank 12. évfolyam A pedagógus neve: A pedagógus szakja: Az iskola neve: Műveltségi terület: Tantárgy: A tantárgy cél és feladatrendszere: Tantárgyi kapcsolatok: Osztály: 12. Felhasznált

Részletesebben

GM-fajta előállítása szabadalomvásárlással

GM-fajta előállítása szabadalomvásárlással BIOTECHNOLÓGIA O I ROVATVEZETŐ: Dr. Heszky László akadémikus Az előző 13. részben az eredeti (originális) fejlesztésű GM-fajta előállítását mutattuk be. A legtöbb országnak és nemesítő cégnek azonban nincsenek

Részletesebben

Kromoszómák, Gének centromer

Kromoszómák, Gének centromer Kromoszómák, Gének A kromoszóma egy hosszú DNS szakasz, amely a sejt életének bizonyos szakaszában (a sejtosztódás előkészítéseként) tömörödik, így fénymikroszkóppal láthatóvá válik. A kromoszómák két

Részletesebben

Altruizmus. Altruizmus: a viselkedés az adott egyed fitneszét csökkenti, de másik egyed(ek)ét növeli. Lehet-e önző egyedek között?

Altruizmus. Altruizmus: a viselkedés az adott egyed fitneszét csökkenti, de másik egyed(ek)ét növeli. Lehet-e önző egyedek között? Altruizmus Altruizmus: a viselkedés az adott egyed fitneszét csökkenti, de másik egyed(ek)ét növeli. Lehet-e önző egyedek között? Altruizmus rokonok között A legtöbb másolat az adott génről vagy az egyed

Részletesebben

Altruizmus. Altruizmus: a viselkedés az adott egyed fitneszét csökkenti, de másik egyed(ek)ét növeli. Lehet-e önző egyedek között?

Altruizmus. Altruizmus: a viselkedés az adott egyed fitneszét csökkenti, de másik egyed(ek)ét növeli. Lehet-e önző egyedek között? Altruizmus Altruizmus: a viselkedés az adott egyed fitneszét csökkenti, de másik egyed(ek)ét növeli. Lehet-e önző egyedek között? Altruizmus rokonok között A legtöbb másolat az adott génről vagy az egyed

Részletesebben

Tartalom. Javítóvizsga követelmények BIOLÓGIA...2 BIOLÓGIA FAKULTÁCIÓ...5 SPORTEGÉSZSÉGTAN évfolyam évfolyam évfolyam...

Tartalom. Javítóvizsga követelmények BIOLÓGIA...2 BIOLÓGIA FAKULTÁCIÓ...5 SPORTEGÉSZSÉGTAN évfolyam évfolyam évfolyam... Tartalom BIOLÓGIA...2 10. évfolyam...2 11. évfolyam...3 12. évfolyam...4 BIOLÓGIA FAKULTÁCIÓ...5 11. évfolyam...5 12. évfolyam...6 SPORTEGÉSZSÉGTAN...7 1 BIOLÓGIA 10. évfolyam Nappali tagozat Azírásbeli

Részletesebben

Molekuláris Medicina

Molekuláris Medicina Molekuláris Medicina Molekuláris Medicina Őssejt terápia Génterápia Tumor terápia Immunterápia Egyéb terápiák Vakcinák Genetikai diagnosztika Orvosi genomika Terápiák Diagnosztikák Orvostudomány: régi

Részletesebben

A genetikai sodródás

A genetikai sodródás A genetikai sodródás irányított, nem véletlenszerű Mindig a jobb nyer! természetes szelekció POPULÁCIÓ evolúció POPULÁCIÓ A kulcsszó: változékonyság a populáción belül POPULÁCIÓ nem irányított, véletlenszerű

Részletesebben

Johann Gregor Mendel Az olmüci (Olomouc) és bécsi egyetem diákja Brünni ágostonrendi apát (nem szovjet tudós) Tudatos és nagyon alapos kutat

Johann Gregor Mendel Az olmüci (Olomouc) és bécsi egyetem diákja Brünni ágostonrendi apát (nem szovjet tudós) Tudatos és nagyon alapos kutat 10.2.2010 genmisk1 1 Áttekintés Mendel és a mendeli törvények Mendel előtt és körül A genetika törvényeinek újbóli felfedezése és a kromoszómák Watson és Crick a molekuláris biológoa központi dogmája 10.2.2010

Részletesebben

Többgénes jellegek. 1. Klasszikus (poligénes) mennyiségi jellegek. 2.Szinte minden jelleg több gén irányítása alatt áll

Többgénes jellegek. 1. Klasszikus (poligénes) mennyiségi jellegek. 2.Szinte minden jelleg több gén irányítása alatt áll Többgénes jellegek Többgénes jellegek 1. 1. Klasszikus (poligénes) mennyiségi jellegek Multifaktoriális jellegek: több gén és a környezet által meghatározott jellegek 2.Szinte minden jelleg több gén irányítása

Részletesebben

Evolúcióelmélet és az evolúció mechanizmusai

Evolúcióelmélet és az evolúció mechanizmusai Evolúcióelmélet és az evolúció mechanizmusai Az élet Darwini szemlélete Melyek az evolúció bizonyítékai a világban? EVOLÚCIÓ: VÁLTOZATOSSÁG Mutáció Horizontális géntranszfer Genetikai rekombináció Rekombináció

Részletesebben

Az X kromoszóma inaktívációja. A kromatin szerkezet befolyásolja a génexpressziót

Az X kromoszóma inaktívációja. A kromatin szerkezet befolyásolja a génexpressziót Az X kromoszóma inaktívációja A kromatin szerkezet befolyásolja a génexpressziót Férfiak: XY Nők: XX X kromoszóma: nagy méretű több mint 1000 gén Y kromoszóma: kis méretű, kevesebb, mint 100 gén Kompenzációs

Részletesebben

Epigenetikai Szabályozás

Epigenetikai Szabályozás Epigenetikai Szabályozás Kromatin alapegysége a nukleoszóma 1. DNS Linker DNS Nukleoszóma mag H1 DNS 10 nm 30 nm Nukleoszóma gyöngy (4x2 hiszton molekula + 146 nukleotid pár) 10 nm-es szál 30 nm-es szál

Részletesebben

Példák a független öröklődésre

Példák a független öröklődésre GENETIKAI PROBLÉMÁK Példák a független öröklődésre Az amelogenesis imperfecta egy, a fogzománc gyengeségével és elszíneződésével járó öröklődő betegség, a 4-es kromoszómán lévő enam gén recesszív mutációja

Részletesebben

Anyai eredet kromoszómák. Zigóta

Anyai eredet kromoszómák. Zigóta 2012. február 28. Anyai eredet kromoszómák Apai eredet kromoszómák Zigóta Muslica embrió Fej Nem képz dik fej, az embrió elpusztul A muslica blasztoderma sorstérképe Genetikai boncolás + + STERIL FEJ

Részletesebben

Prenatalis diagnosztika lehetőségei mikor, hogyan, miért? Dr. Almássy Zsuzsanna Heim Pál Kórház, Budapest Toxikológia és Anyagcsere Osztály

Prenatalis diagnosztika lehetőségei mikor, hogyan, miért? Dr. Almássy Zsuzsanna Heim Pál Kórház, Budapest Toxikológia és Anyagcsere Osztály Prenatalis diagnosztika lehetőségei mikor, hogyan, miért? Dr. Almássy Zsuzsanna Heim Pál Kórház, Budapest Toxikológia és Anyagcsere Osztály Definíció A prenatális diagnosztika a klinikai genetika azon

Részletesebben

A Hardy Weinberg-modell gyakorlati alkalmazása

A Hardy Weinberg-modell gyakorlati alkalmazása 1 of 6 5/16/2009 2:59 PM A Hardy Weinberg-modell gyakorlati alkalmazása A genotípus-gyakoriság megoszlásának vizsgálata 1. ábra. A Hardy Weinberg-egyensúlyi genotípus-gyakoriságok az allélgyakoriság Számos

Részletesebben

Intelligens molekulákkal a rák ellen

Intelligens molekulákkal a rák ellen Intelligens molekulákkal a rák ellen Kotschy András Servier Kutatóintézet Rákkutatási kémiai osztály A rákos sejt Miben más Hogyan él túl Áttekintés Rákos sejtek célzott támadása sejtmérgekkel Fehérjék

Részletesebben

Sejtfeldolgozás Felhasználás

Sejtfeldolgozás Felhasználás Sejtterápia Sejtfeldolgozás Felhasználás Fagyasztva tárolás Sejtmosás Alap sejtszelekció Komplex sejtszelekció Ex vivo sejtszaporítás Sejtaktiválás Immunizálás Génmodifikálás Köldökzsinórvér bank Limfocita

Részletesebben

Őssejtek és hemopoiézis 1/23

Őssejtek és hemopoiézis 1/23 Őssejtek és hemopoiézis 1/23 Sejtsorsok Sejtosztódás Sejt differenciáció sejtvonulatok szövetek (több sejtvonulat) Sejt pusztulás Sejtvonulat az őssejtek és azok utódai egy adott szöveti sejt differenciációja

Részletesebben

Mit tud a genetika. Génterápiás lehetőségek MPS-ben. Dr. Varga Norbert

Mit tud a genetika. Génterápiás lehetőségek MPS-ben. Dr. Varga Norbert Mit tud a genetika Génterápiás lehetőségek MPS-ben Dr. Varga Norbert Oki terápia Terápiás lehetőségek MPS-ben A kiváltó okot gyógyítja meg ERT Enzimpótló kezelés Őssejt transzplantáció Genetikai beavatkozások

Részletesebben

BIOLÓGIA OSZTÁLYOZÓ VIZSGA ÉS JAVÍTÓVIZSGA KÖVETELMÉNYEK (2016)

BIOLÓGIA OSZTÁLYOZÓ VIZSGA ÉS JAVÍTÓVIZSGA KÖVETELMÉNYEK (2016) BIOLÓGIA OSZTÁLYOZÓ VIZSGA ÉS JAVÍTÓVIZSGA KÖVETELMÉNYEK (2016) 1 Biológia tantárgyból mindhárom évfolyamon (10.-11.-12.) írásbeli és szóbeli vizsga van. A vizsga részei írásbeli szóbeli Írásbeli Szóbeli

Részletesebben

Immunológia II GY. 1. Bevezetés febr. 16. Bajtay Zsuzsa

Immunológia II GY. 1. Bevezetés febr. 16. Bajtay Zsuzsa Immunológia II GY 1. Bevezetés 2018. febr. 16. Bajtay Zsuzsa Tankönyv: Immunológiai módszerek szerkesztette: Erdei Anna (Medicina, 2006) Laboratóriumi gyakorlatok MSc MIM: - halim1mb17lm Haladó immunológiai

Részletesebben

Intelligens Rendszerek Elmélete. Párhuzamos keresés genetikus algoritmusokkal

Intelligens Rendszerek Elmélete. Párhuzamos keresés genetikus algoritmusokkal Intelligens Rendszerek Elmélete Dr. Kutor László Párhuzamos keresés genetikus algoritmusokkal http://mobil.nik.bmf.hu/tantargyak/ire.html login: ire jelszó: IRE0 IRE / A természet általános kereső algoritmusa:

Részletesebben

Transzgénikus technológiák az orvostudományban A kövér egerektől a reumás betegségek gyógyításáig

Transzgénikus technológiák az orvostudományban A kövér egerektől a reumás betegségek gyógyításáig Transzgénikus technológiák az orvostudományban A kövér egerektől a reumás betegségek gyógyításáig ELTE TTK Biológiai Intézet Budapest, 2015. okt. 7. Dr. Mócsai Attila Semmelweis Egyetem ÁOK Élettani Intézet

Részletesebben

K-46171 Egér klónozás testi- és embrionális ős-sejtekből: A donor sejtek eredetének és kezelésének hatása a genetikai újraprogramozás folyamatára

K-46171 Egér klónozás testi- és embrionális ős-sejtekből: A donor sejtek eredetének és kezelésének hatása a genetikai újraprogramozás folyamatára Zárójelentés K-46171 Egér klónozás testi- és embrionális ős-sejtekből: A donor sejtek eredetének és kezelésének hatása a genetikai újraprogramozás folyamatára A testi sejtes klónozás módszere az elmúlt

Részletesebben

Todd D.L. Woods, M.D.: A szibériai husky színöröklõdésének alapvetõ genetikája

Todd D.L. Woods, M.D.: A szibériai husky színöröklõdésének alapvetõ genetikája Todd D.L. Woods, M.D.: A szibériai husky színöröklõdésének alapvetõ genetikája A genetika legalább alapszintû ismerete nélkül a szibériai husky tenyésztése csak a tenyészegyedek külsõ tulajdonságaik alapján

Részletesebben

GENETIKA MEGOLDÁS EMELT SZINT 1

GENETIKA MEGOLDÁS EMELT SZINT 1 GENETIKA MEGOLDÁS EMELT SZINT 1 I. A színtévesztés öröklése (15 pont) 1. X kromoszómához kötődő recesszív mutáció 2 pont 2. X S X s (más betűjelölés is elfogadható) (mert az apától csak X s allélt kaphatott)

Részletesebben

A preventív vakcináció lényege :

A preventív vakcináció lényege : Vakcináció Célja: antigénspecifkus immunválasz kiváltása a szervezetben A vakcina egy olyan készítmény, amely fokozza az immunitást egy adott betegséggel szemben (aktiválja az immunrendszert). A preventív

Részletesebben

TUDOMÁNYOS MŰHELY. A hibridek életképessége

TUDOMÁNYOS MŰHELY. A hibridek életképessége TUDOMÁNYOS MŰHELY A hibridek életképessége Ki ne tapasztalta volna kertjében, hogy vetés után a kikelt növények közül némelyek erőteljesebben, mások gyengébben növekednek, noha egyazon tiszta fajtához

Részletesebben

Sejtek - őssejtek dióhéjban. 2014. február. Sarkadi Balázs, MTA-TTK Molekuláris Farmakológiai Intézet - SE Kutatócsoport, Budapest

Sejtek - őssejtek dióhéjban. 2014. február. Sarkadi Balázs, MTA-TTK Molekuláris Farmakológiai Intézet - SE Kutatócsoport, Budapest Sejtek - őssejtek dióhéjban 2014. február Sarkadi Balázs, MTA-TTK Molekuláris Farmakológiai Intézet - SE Kutatócsoport, Budapest A legtöbb sejtünk osztódik, differenciálódik, elpusztul... vérsejtek Vannak

Részletesebben

Állatkísérletek Elmélete és Gyakorlata- B szint

Állatkísérletek Elmélete és Gyakorlata- B szint Szegedi Tudományegyetem ÁOK Állatkísérletek Elmélete és Gyakorlata- B szint Sebészeti Műtéttani Intézet 2017. december 06-december 15. Referencia szám: AA1.0/2015; AB1.0/2015 Core modul 4/4 A kísérleti

Részletesebben

Õssejtek és a klónozás lehetõségei

Õssejtek és a klónozás lehetõségei Magyar Tudomány 2004/3 Õssejtek és a klónozás lehetõségei Dinnyés András az MTA doktora, Mezõgazdasági Biotechnológiai Kutatóközpont, Gödöllõ, Állatbiológiai Intézet Mikromanipulációs és Genetikai Újraprogramozási

Részletesebben

Természetes szelekció és adaptáció

Természetes szelekció és adaptáció Természetes szelekció és adaptáció Amiről szó lesz öröklődő és variábilis fenotípus természetes szelekció adaptáció evolúció 2. Természetes szelekció Miért fontos a természetes szelekció (TSZ)? 1. C.R.

Részletesebben

MUTÁCIÓK. A mutáció az örökítő anyag spontán, maradandó megváltozása, amelynek során új genetikai tulajdonság keletkezik.

MUTÁCIÓK. A mutáció az örökítő anyag spontán, maradandó megváltozása, amelynek során új genetikai tulajdonság keletkezik. MUTÁCIÓK A mutáció az örökítő anyag spontán, maradandó megváltozása, amelynek során új genetikai tulajdonság keletkezik. Pontmutáció: A kromoszóma egy génjében pár nukleotidnál következik be változás.

Részletesebben

Újabb szempontok a donor és a recipiens kiválasztásánál szerv és hemopoetikus őssejt transzplantáció előtt

Újabb szempontok a donor és a recipiens kiválasztásánál szerv és hemopoetikus őssejt transzplantáció előtt Újabb szempontok a donor és a recipiens kiválasztásánál szerv és hemopoetikus őssejt transzplantáció előtt A TRANSZFUZIOLÓGIA AKTUÁLIS KÉRDÉSEI KÖTELEZŐ SZINTEN TARTÓ TANFOLYAM TRANSZFUZIOLÓGUSOKNAK Budapest,

Részletesebben

MÉREGHATÁST BEFOLYÁSOLÓ TÉNYEZŐK ELŐADÓ DR. LEHEL JÓZSEF

MÉREGHATÁST BEFOLYÁSOLÓ TÉNYEZŐK ELŐADÓ DR. LEHEL JÓZSEF MÉREGHATÁST BEFOLYÁSOLÓ TÉNYEZŐK ELŐADÓ DR. LEHEL JÓZSEF 2006.09.13. 1 BEFOLYÁSOLÓ TÉNYEZŐK XENOBIOTIKUM FIZIKAI-KÉMIAI KÉMIAI TULAJDONSÁGAI SZERVEZET BIOLÓGIAI SAJÁTOSSÁGAI KÖRNYEZET EGYÉB TULAJDONSÁGAI

Részletesebben

Evolúció. Dr. Szemethy László egyetemi docens Szent István Egyetem VadVilág Megőrzési Intézet

Evolúció. Dr. Szemethy László egyetemi docens Szent István Egyetem VadVilág Megőrzési Intézet Evolúció Dr. Szemethy László egyetemi docens Szent István Egyetem VadVilág Megőrzési Intézet Mi az evolúció? Egy folyamat: az élőlények tulajdonságainak változása a környezethez való alkalmazkodásra Egy

Részletesebben

Kérdések, feladatok: 1. Milyen tényezők járulhatnak a populációk génállományának megváltozásához?

Kérdések, feladatok: 1. Milyen tényezők járulhatnak a populációk génállományának megváltozásához? III. BESZÁMOLÓ A populációk genetikai egyensúlya Az ideális populációra mely külső hatásoktól mentes a genetikai egyensúly jellemző. A reális populációkban folyamatos változás jellemző. Ennek következtében

Részletesebben

Jelentés asszisztált reprodukciós eljárásokat végző intézmények 2011. évi tevékenységéről

Jelentés asszisztált reprodukciós eljárásokat végző intézmények 2011. évi tevékenységéről Jelentés asszisztált reprodukciós eljárásokat végző intézmények 2011. évi tevékenységéről Az asszisztált reprodukciós beavatkozásokat végző intézetek kötelező adatgyűjtését a 339/2008 (XII.30.) Kormányrendelet

Részletesebben

Kiegészítések a genetikához

Kiegészítések a genetikához Kiegészítések a genetikához A génműködés szabályozása A baktériumok génműködés-szabályozásának egyik példája a már tanul laktóz-operon. A különböző felépítésű- és működésű testi sejtjeink azonos genetikai

Részletesebben

Antigén, Antigén prezentáció

Antigén, Antigén prezentáció Antigén, Antigén prezentáció Biológiai Intézet Immunológiai Tanszék Bajtay Zsuzsa ELTE, TTK Biológiai Intézet Immunológiai Tanszék ORFI Klinikai immunológia tanfolyam, 2019. február. 26 Bev. 2. ábra Az

Részletesebben

Immunitás és evolúció

Immunitás és evolúció Immunitás és evolúció (r)evolúció az immunrendszerben Az immunrendszer evolúciója Müller Viktor ELTE Növényrendszertani, Ökológiai és Elméleti Biológiai Tanszék http://ramet.elte.hu/~viktor Az immunitás

Részletesebben

A biológia szerepe az egészségvédelemben

A biológia szerepe az egészségvédelemben A biológia szerepe az egészségvédelemben Nagy Kinga nagy.kinga@mail.bme.hu 2017.10.24 Mikróbák az ember szolgálatában (Néhány példán keresztül bemutatva) Antibiotikumok (gombák, baktériumok) Restrikciós

Részletesebben

Állatvédelem, állati jólét. Génmanipuláció, transzgénikus állatok, klónok

Állatvédelem, állati jólét. Génmanipuláció, transzgénikus állatok, klónok Állatvédelem, állati jólét Génmanipuláció, transzgénikus állatok, klónok Valami új Az állatokkal való foglalkozás hagyományos problémái lehetnek: Szándékos, direkt kegyetlenkedés Az ölésből adódó direkt

Részletesebben

Állatvédelem. 4. Az állattenyésztők felelőssége

Állatvédelem. 4. Az állattenyésztők felelőssége Állatvédelem 4. Az állattenyésztők felelőssége Kedvencek tenyésztése szinte mindent Kutya Macska Díszhal Díszmadár Kisemlősök Egyéb emlősök Mosómedve Főemlősök Ragadozók Ízeltlábúak Hüllők Teknős Kaméleon

Részletesebben

Őssejtkezelés kardiovaszkuláris kórképekben

Őssejtkezelés kardiovaszkuláris kórképekben Őssejtkezelés kardiovaszkuláris kórképekben Papp Zoltán Debreceni Egyetem Kardiológiai Intézet Klinikai Fiziológiai Tanszék Megmenthető a károsodott szív őssejtekkel? Funkcionális változások az öregedő

Részletesebben

VÁLASZ DR. CSEH SÁNDOR PROFESSZOR ÚRNAK, AZ MTA DOKTORÁNAK, OPPONENSI VÉLEMÉNYÉRE

VÁLASZ DR. CSEH SÁNDOR PROFESSZOR ÚRNAK, AZ MTA DOKTORÁNAK, OPPONENSI VÉLEMÉNYÉRE VÁLASZ DR. CSEH SÁNDOR PROFESSZOR ÚRNAK, AZ MTA DOKTORÁNAK, OPPONENSI VÉLEMÉNYÉRE Nagyon köszönöm Dr. Cseh Sándor professzor úrnak, hogy elvállalta doktori értekezésem bírálatát. Köszönöm, hogy az általam

Részletesebben

In vivo szövetanalízis. Különös tekintettel a biolumineszcens és fluoreszcens képalkotási eljárásokra

In vivo szövetanalízis. Különös tekintettel a biolumineszcens és fluoreszcens képalkotási eljárásokra In vivo szövetanalízis Különös tekintettel a biolumineszcens és fluoreszcens képalkotási eljárásokra In vivo képalkotó rendszerek Célja Noninvazív módon Biológiai folyamatokat képes rögzíteni Élő egyedekben

Részletesebben

TDK lehetőségek az MTA TTK Enzimológiai Intézetben

TDK lehetőségek az MTA TTK Enzimológiai Intézetben TDK lehetőségek az MTA TTK Enzimológiai Intézetben Vértessy G. Beáta egyetemi tanár TDK mind 1-3 helyezettek OTDK Pro Scientia különdíj 1 második díj Diákjaink Eredményei Zsűri különdíj 2 első díj OTDK

Részletesebben

A NAGYMAMA, AKI LEHOZOTT MINKET A FÁRÓL: A menopauza evolúciója és következményei

A NAGYMAMA, AKI LEHOZOTT MINKET A FÁRÓL: A menopauza evolúciója és következményei A NAGYMAMA, AKI LEHOZOTT MINKET A FÁRÓL: A menopauza evolúciója és következményei Nem érdemes fenntartani egy szervezetet, ha már nem szaporodik Menopauza!? Menopauza az élővilágban Quadratus yoshinomiyai

Részletesebben

HUMÁNGENETIKA. összeállította: Perczel Tamás

HUMÁNGENETIKA. összeállította: Perczel Tamás HUMÁNGENETIKA összeállította: Perczel Tamás Fenotípus változatok A MENNYISÉGI JELLEGEK folyamatos, átfedő tulajdonságok testmagasság, testtömeg, IQ, bőrszín több gén határozza meg, számtalan kölcsönhatás

Részletesebben

Gyakran előforduló genetikai betegségek macskában: HCM (Hypertrophic Cardiomyopathy) és PKD (Polycystic Kidney Disease)

Gyakran előforduló genetikai betegségek macskában: HCM (Hypertrophic Cardiomyopathy) és PKD (Polycystic Kidney Disease) Gyakran előforduló genetikai betegségek macskában: HCM (Hypertrophic Cardiomyopathy) és PKD (Polycystic Kidney Disease) ÍRTA: Pavelka Alexandra állattenyésztő mérnök Az állattenyésztés során egyre több

Részletesebben

Az orvosi biotechnológiai mesterképzés megfeleltetése az Európai Unió új társadalmi kihívásainak a Pécsi Tudományegyetemen és a Debreceni Egyetemen

Az orvosi biotechnológiai mesterképzés megfeleltetése az Európai Unió új társadalmi kihívásainak a Pécsi Tudományegyetemen és a Debreceni Egyetemen Az orvosi biotechnológiai mesterképzés megfeleltetése az Európai Unió új társadalmi kihívásainak a Pécsi Tudományegyetemen és a Debreceni Egyetemen Azonosító szám: Az orvosi biotechnológiai mesterképzés

Részletesebben