Nagy Gábor compalg.inf.elte.hu/ nagy

Hasonló dokumentumok
Nagy Gábor compalg.inf.elte.hu/ nagy

Nagy Gábor compalg.inf.elte.hu/ nagy ősz

Nagy Gábor compalg.inf.elte.hu/ nagy ősz

Diszkrét matematika 2.C szakirány

Nagy Gábor compalg.inf.elte.hu/ nagy

Diszkrét matematika 2.C szakirány

Nagy Gábor compalg.inf.elte.hu/ nagy ősz

Nagy Gábor compalg.inf.elte.hu/ nagy

Diszkrét matematika 2.

Nagy Gábor compalg.inf.elte.hu/ nagy ősz

Nagy Gábor compalg.inf.elte.hu/ nagy ősz

Nagy Gábor compalg.inf.elte.hu/ nagy

Nagy Gábor compalg.inf.elte.hu/ nagy ősz

DISZKRÉT MATEMATIKA 2 KIDOLGOZOTT TÉTELSOR 1. RÉSZ

Diszkrét matematika 1. estis képzés. Komputeralgebra Tanszék ősz

1. A maradékos osztás

Diszkrét matematika I.

Nagy Gábor compalg.inf.elte.hu/ nagy ősz

1. A maradékos osztás

Diszkrét matematika 2. estis képzés

Nagy Gábor compalg.inf.elte.hu/ nagy ősz

Diszkrét matematika 2. estis képzés

Polinomok (előadásvázlat, október 21.) Maróti Miklós

0 ; a k ; :::) = ( 0: x = (0; 1; 0; 0; :::; 0; :::) = (0; 1)

Polinomok (el adásvázlat, április 15.) Maróti Miklós

Alapvető polinomalgoritmusok

Nagy Gábor compalg.inf.elte.hu/ nagy

1. Hatvány és többszörös gyűrűben

1. Polinomok számelmélete

Nagy Gábor compalg.inf.elte.hu/ nagy ősz

Diszkrét matematika 2 (C) vizsgaanyag, 2012 tavasz

1. Polinomfüggvények. Állítás Ha f, g C[x] és b C, akkor ( f + g) (b) = f (b) + g (b) és ( f g) (b) = f (b)g (b).

FFT. Második nekifutás. Czirbusz Sándor ELTE IK, Komputeralgebra Tanszék október 2.

Nagy Gábor compalg.inf.elte.hu/ nagy ősz

Polinomosztás. Összeállította: Bogya Norbert. Diszkrét matematika I.gyakorlat

1. Egész együtthatós polinomok

1. A Horner-elrendezés

Diszkrét matematika I.

Diszkrét matematika 2.C szakirány

Diszkrét matematika 2. estis képzés

Nagy Gábor compalg.inf.elte.hu/ nagy

Diszkrét matematika 1. estis képzés

Algebrai alapismeretek az Algebrai síkgörbék c. tárgyhoz. 1. Integritástartományok, oszthatóság

Diszkrét matematika 2. estis képzés

Klasszikus algebra előadás. Waldhauser Tamás április 28.

Klasszikus algebra előadás. Waldhauser Tamás március 24.

Nagy Gábor compalg.inf.elte.hu/ nagy

Diszkrét matematika 2. estis képzés

Matematika A1a Analízis

Tartalomjegyzék 1. Műveletek valós számokkal Függvények Elsőfokú egyenletek és egyenlőtlenségek

Határozatlan integrál

Alapfogalmak a Diszkrét matematika II. tárgyból

1. Interpoláció. Egyértelműség Ha f és g ilyen polinomok, akkor n helyen megegyeznek, így a polinomok azonossági tétele miatt egyenlők.

Az eddig leadott anyag Diszkrét matematika II tárgyhoz tavasz

Diszkrét matematika 2.C szakirány

1. A polinom fogalma. Számolás formális kifejezésekkel. Feladat Oldjuk meg az x2 + x + 1 x + 1. = x egyenletet.

Nagy Gábor compalg.inf.elte.hu/ nagy

Diszkrét matematika 2.C szakirány

Polinomok A gyökök száma A gyökök és együtthatók összefüggése Szorzatra bontás, számelméleti kérdések A harmad- és negyedfokú egyenlet

Diszkrét matematika alapfogalmak

LÁNG CSABÁNÉ POLINOMOK ALAPJAI. Példák és megoldások

Diszkrét matematika 2.C szakirány

1.1. Definíció. Azt mondjuk, hogy a oszója b-nek, vagy más szóval, b osztható a-val, ha létezik olyan x Z, hogy b = ax. Ennek jelölése a b.

First Prev Next Last Go Back Full Screen Close Quit

Diszkrét matematika 2. estis képzés

Algoritmuselmélet gyakorlat (MMN111G)

Kongruenciák. Waldhauser Tamás

Nagy Gábor compalg.inf.elte.hu/ nagy ősz

Nagy Gábor compalg.inf.elte.hu/ nagy

Diszkrét Matematika 2 (C)

1. Komplex szám rendje

Gonda János POLINOMOK. Példák és megoldások

Nagy Gábor compalg.inf.elte.hu/ nagy ősz

Diszkrét matematika 2.C szakirány

Nagy Gábor compalg.inf.elte.hu/ nagy ősz

A L Hospital-szabály, elaszticitás, monotonitás, konvexitás

1. Diagonalizálás. A Hom(V) diagonalizálható, ha van olyan bázis, amelyben A mátrixa diagonális. A diagonalizálható van sajátvektorokból álló bázis.

2012. október 2 és 4. Dr. Vincze Szilvia

Bevezetés az algebrába az egész számok

Nagy Gábor compalg.inf.elte.hu/ nagy ősz

Klasszikus algebra előadás. Waldhauser Tamás április 14.

FELADATOK A BEVEZETŽ FEJEZETEK A MATEMATIKÁBA TÁRGY III. FÉLÉVÉHEZ. ÖSSZEÁLLÍTOTTA: LÁNG CSABÁNÉ ELTE IK Budapest

Diszkrét matematika 2.C szakirány

Diszkrét matematika 2. estis képzés

minden x D esetén, akkor x 0 -at a függvény maximumhelyének mondjuk, f(x 0 )-at pedig az (abszolút) maximumértékének.

Funkcionálanalízis. n=1. n=1. x n y n. n=1

First Prev Next Last Go Back Full Screen Close Quit. (L Hospital szabály, Taylor-polinom,

Komputeralgebra Rendszerek

A sorozat fogalma. függvényeket sorozatoknak nevezzük. Amennyiben az értékkészlet. az értékkészlet a komplex számok halmaza, akkor komplex

Diszkrét matematika 1. estis képzés

Függvény differenciálás összefoglalás

Vizsgatematika Bevezetés a matematikába II tárgyhoz tavasz esti tagozat

Analízis I. Vizsgatételsor

Taylor-polinomok. 1. Alapfeladatok április Feladat: Írjuk fel az f(x) = e 2x függvény másodfokú Maclaurinpolinomját!

Diszkrét matematika 2.C szakirány

Polinomok maradékos osztása

Dierenciálhatóság. Wettl Ferenc el adása alapján és

f(x) vagy f(x) a (x x 0 )-t használjuk. lim melyekre Mivel itt ɛ > 0 tetszőlegesen kicsi, így a a = 0, a = a, ami ellentmondás, bizonyítva

KOVÁCS BÉLA, MATEMATIKA I.

Diszkrét matematika 2.

Átírás:

Diszkrét matematika 3. estis képzés 2018. ősz 1. Diszkrét matematika 3. estis képzés 4. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék 2018. ősz

Polinomok Diszkrét matematika 3. estis képzés 2018. ősz 2. A maradékos osztás tétele és következményei Tétel (polinomok maradékos osztása) Legyen R egységelemes integritási tartomány, f, g R[x], és tegyük fel, hogy g főegyütthatója egység R-ben. Ekkor egyértelműen léteznek olyan q, r R[x] polinomok, melyekre f = qg + r, ahol deg(r) < deg(g). Egyértelműség: Tekintsük f két megfelelő előálĺıtását: f = qg + r = q g + r, amiből: g(q q ) = r r. Ha a bal oldal nem 0, akkor a foka legalább k (Miért?), de a jobb oldal foka legfeljebb k 1 (Miért?), tehát 0 = g(q q ) = r r, és így q = q és r = r.

Polinomok Diszkrét matematika 3. estis képzés 2018. ősz 3. A maradékos osztás tétele és következményei folyt. Létezés: f = 0 esetén q = 0 és r = 0 jó választás. f 0 esetén f foka szerinti TI: 0 = deg(f ) = deg(g) esetén f = f 0 = f 0 g 1 0 g 0 + 0, 0 = deg(f ) < deg(g) esetén f = 0 g + f. Ha deg(f ) < deg(g), akkor q = 0 és r = f esetén megfelelő előálĺıtást kapunk. Legyen f főegyütthatója f n, g főegyütthatója g k. n k esetén legyen f (x) = f (x) f n g 1 k g(x)x n k. deg(f ) < deg(f ) (Miért?) miatt f -ra használhatjuk az indukciós feltevést, vagyis léteznek q, r R[x] polinomok, amikre f = q g + r. f (x) = f (x) + f n g 1 k g(x)x n k = q (x)g(x) + r (x) + f n g 1 k g(x)x n k = = (q (x) + f n g 1 k x n k )g(x) + r (x), így q(x) = q (x) + f n g 1 k x n k és r(x) = r (x) jó választás. Definíció c R esetén az (x c) R[x] polinom a c-hez tartozó gyöktényező.

Polinomok Diszkrét matematika 3. estis képzés 2018. ősz 4. A maradékos osztás tétele és következményei Következmény (gyöktényező leválasztása) Ha 0 f R[x], és c R gyöke f -nek, akkor létezik olyan q R[x], amire f (x) = (x c)q(x). Osszuk el maradékosan f -et (x c)-vel (Miért lehet?): f (x) = q(x)(x c) + r(x). Mivel deg(r(x)) < deg(x c) = 1, ezért r konstans polinom. Helyettesítsünk be c-t, így azt kapjuk, hogy 0 = f (c) = q(c)(c c) + r(c) = r(c), amiből r = 0.

Polinomok Diszkrét matematika 3. estis képzés 2018. ősz 5. A maradékos osztás tétele és következményei Következmény Az f 0 polinomnak legfeljebb deg(f ) gyöke van. f foka szerinti TI: deg(f ) = 0-ra igaz az álĺıtás (Miért?). Ha deg(f ) > 0 és f (c) = 0, akkor f (x) = (x c)g(x) (Miért?), ahol deg(g) + 1 = deg(f ) (Miért?). Ha d gyöke f -nek, akkor d c = 0, amiből d = c, vagy d gyöke g-nek (Miért?). Innen következik az álĺıtás.

Polinomok Diszkrét matematika 3. estis képzés 2018. ősz 6. A maradékos osztás tétele és következményei Következmény Ha két legfeljebb n-ed fokú polinomnak n + 1 különböző helyen ugyanaz a helyettesítési értéke, akkor egyenlőek. A két polinom különbsége legfeljebb n-ed fokú, és n + 1 gyöke van (Miért?), ezért nullpolinom (Miért?), vagyis a polinomok egyenlőek. Következmény Ha R végtelen, akkor két különböző R[x]-beli polinomhoz nem tartozik ugyanaz a polinomfüggvény. Ellenkező esetben a polinomok különbségének végtelen sok gyöke lenne (Miért?).

Polinomok Diszkrét matematika 3. estis képzés 2018. ősz 7. Bővített euklideszi algoritmus Definíció Azt mondjuk, hogy f, g R[x] polinomok esetén f osztója g-nek (g többszöröse f -nek), ha létezik h R[x], amire g = f h. Definíció Az f, g R[x] polinomok kitüntetett közös osztója (legnagyobb közös osztója) az a d R[x] polinom, amelyre d f, d g, és tetszőleges c R[x] esetén (c f c g) c d. Test fölötti polinomgyűrűben tetszőleges nem-nulla polinommal tudunk maradékosan osztani, ezért működik a bővített euklideszi-algoritmus. Ez f, g R[x] esetén (R test) meghatározza f és g kitüntetett közös osztóját, a d R[x] polinomot, továbbá u, v R[x] polinomokat, amelyekre d = u f + v g.

Polinomok Diszkrét matematika 3. estis képzés 2018. ősz 8. Bővített euklideszi algoritmus Algoritmus Legyen R test, f, g R[x]. Ha g = 0, akkor (f, g) = f = 1 f + 0 g, különben végezzük el a következő maradékos osztásokat: f = q 1 g + r 1 ; g = q 2 r 1 + r 2 ; r 1 = q 3 r 2 + r 3 ;. r n 2 = q n r n 1 + r n ; r n 1 = q n+1 r n. Ekkor d = r n jó lesz kitüntetett közös osztónak. Az u 1 = 1, u 0 = 0, v 1 = 0, v 0 = 1 kezdőértékekkel, továbbá az u k = u k 2 q k u k 1 és v k = v k 2 q k v k 1 rekurziókkal megkapható u = u n és v = v n polinomok olyanok, amelyekre teljesül d = u f + v g.

Polinomok Diszkrét matematika 3. estis képzés 2018. ősz 9. Bővített euklideszi algoritmus A maradékok foka természetes számok szigorúan monoton csökkenő sorozata, ezért az eljárás véges sok lépésben véget ér. Indukcióval belátjuk, hogy r 1 = f és r 0 = g jelöléssel r k = u k f + v k g teljesül minden 1 k n esetén: k = 1-re f = 1 f + 0 g, k = 0-ra g = 0 f + 1 g. Mivel r k+1 = r k 1 q k+1 r k, így az indukciós feltevést használva: r k+1 = u k 1 f + v k 1 g q k+1 (u k f + v k g) = = (u k 1 q k+1 u k ) f + (v k 1 q k+1 v k ) g = u k+1 f + v k+1 g. Tehát r n = u n f + v n g, és így f és g közös osztói r n -nek is osztói. Kell még, hogy r n osztója f -nek és g-nek. Indukcióval belátjuk, hogy r n r n k teljesül minden 0 k n + 1 esetén: k = 0-ra r n r n nyilvánvaló, k = 1-re r n 1 = q n+1 r n miatt r n r n 1. r n (k+1) = q n (k 1) r n k + r n (k 1) miatt az indukciós feltevést használva kapjuk az álĺıtást, és így k = n, illetve k = n + 1 helyettesítéssel r n r 0 = g, illetve r n r 1 = f.

Polinomok Diszkrét matematika 3. estis képzés 2018. ősz 10. Polinomok algebrai deriváltja Definíció Legyen R gyűrű. Az f (x) = f n x n + f n 1 x n 1 +... + f 2 x 2 + f 1 x + f 0 R[x] (f n 0) polinom algebrai deriváltja az f (x) = nf n x n 1 + (n 1)f n 1 x n 2 +... + 2f 2 x + f 1 R[x] polinom. Megjegyzés Itt kf k = f k + f k +... + f }{{ k. } k db Álĺıtás Legyen R gyűrű, a, b R és n N +. Ekkor (na)b = n(ab) = a(nb). (a + a +... + a)b = (ab + ab +... + ab) = a(b + b +... + b) }{{}}{{}}{{} n db n db n db

Polinomok Diszkrét matematika 3. estis képzés 2018. ősz 11. Polinomok algebrai deriváltja Álĺıtás Ha R egységelemes integritási tartomány, akkor az f f algebrai deriválás rendelkezik a következő tulajdonságokkal: 1 konstans polinom deriváltja a nullpolinom; 2 az x polinom deriváltja az egységelem; 3 (f + g) = f + g, ha f, g R[x] (additivitás); 4 (fg) = f g + fg, ha f, g R[x] (szorzat differenciálási szabálya). Megjegyzés Megfordítva, ha egy R egységelemes integritási tartomány esetén egy f f, R[x]-et önmagába képező leképzés rendelkezik az előző 4 tulajdonsággal, akkor az az algebrai deriválás.

Polinomok Diszkrét matematika 3. estis képzés 2018. ősz 12. Polinomok algebrai deriváltja Álĺıtás Ha R egységelemes integritási tartomány, c R és n N +, akkor ((x c) n ) = n(x c) n 1. Következő órán.