Véletlenszám generátorok és tesztelésük. Tossenberger Tamás

Hasonló dokumentumok
Véletlenszám generátorok és tesztelésük HORVÁTH BÁLINT

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

e (t µ) 2 f (t) = 1 F (t) = 1 Normális eloszlás negyedik centrális momentuma:

Statisztika - bevezetés Méréselmélet PE MIK MI_BSc VI_BSc 1

Véletlen jelenség: okok rendszere hozza létre - nem ismerhetjük mind, ezért sztochasztikus.

biometria II. foglalkozás előadó: Prof. Dr. Rajkó Róbert Matematikai-statisztikai adatfeldolgozás

egyenletesen, és c olyan színű golyót teszünk az urnába, amilyen színűt húztunk. Bizonyítsuk

Valószínűségi változók. Várható érték és szórás

Gazdasági matematika II. vizsgadolgozat megoldása A csoport

Valószínűségszámítás összefoglaló

Készítette: Fegyverneki Sándor

BIOMATEMATIKA ELŐADÁS

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

Matematika A3 Valószínűségszámítás, 5. gyakorlat 2013/14. tavaszi félév

[Biomatematika 2] Orvosi biometria

Statisztika I. 4. előadás Mintavétel. Kóczy Á. László KGK-VMI. Minta Mintavétel Feladatok.

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

Nagy számok törvényei Statisztikai mintavétel Várható érték becslése. Dr. Berta Miklós Fizika és Kémia Tanszék Széchenyi István Egyetem

Gazdasági matematika II. vizsgadolgozat megoldása, június 10

Statisztika I. 4. előadás Mintavétel. Kóczy Á. László KGK-VMI. Minta Mintavétel Feladatok.

Statisztika I. 8. előadás. Előadó: Dr. Ertsey Imre

x, x R, x rögzített esetén esemény. : ( ) x Valószínűségi Változó: Feltételes valószínűség: Teljes valószínűség Tétele: Bayes Tétel:

STATISZTIKA ELŐADÁS ÁTTEKINTÉSE. Matematikai statisztika. Mi a modell? Binomiális eloszlás sűrűségfüggvény. Binomiális eloszlás

Megoldások. ξ jelölje az első meghibásodásig eltelt időt. Akkor ξ N(6, 4; 2, 3) normális eloszlású P (ξ

Eseményalgebra. Esemény: minden amirl a kísérlet elvégzése során eldönthet egyértelmen hogy a kísérlet során bekövetkezett-e vagy sem.

Elméleti összefoglaló a Valószín ségszámítás kurzushoz

A valószínűségszámítás elemei

Véletlenszám generátorok. 6. előadás

Algoritmuselmélet 18. előadás

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

Adatok statisztikai értékelésének főbb lehetőségei

Véletlen szám generálás

Mi az adat? Az adat elemi ismeret. Az adatokból információkat

A valószínűségszámítás elemei

Utolsó módosítás: Véletlenszámok

1. Példa. A gamma függvény és a Fubini-tétel.

Biometria az orvosi gyakorlatban. Számítógépes döntéstámogatás

Markov-láncok stacionárius eloszlása

Populációbecslés és monitoring. Eloszlások és alapstatisztikák

[Biomatematika 2] Orvosi biometria

konvergensek-e. Amennyiben igen, számítsa ki határértéküket!

Kísérlettervezés alapfogalmak

Matematika A3 Valószínűségszámítás, 6. gyakorlat 2013/14. tavaszi félév

3. Egy szabályos dobókockával háromszor dobunk egymás után. Legyen A az az esemény, hogy

Biomatematika 2 Orvosi biometria

f(x) vagy f(x) a (x x 0 )-t használjuk. lim melyekre Mivel itt ɛ > 0 tetszőlegesen kicsi, így a a = 0, a = a, ami ellentmondás, bizonyítva

Nagy Gábor compalg.inf.elte.hu/ nagy ősz

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

12. előadás - Markov-láncok I.

előadás Diszkrét idejű tömegkiszolgálási modellek Poisson-folyamat Folytonos idejű Markov-láncok Folytonos idejű sorbanállás

Abszolút folytonos valószín ségi változó (4. el adás)

Diszkrét idejű felújítási paradoxon

Matematikai alapok és valószínőségszámítás. Valószínőségi eloszlások Binomiális eloszlás

Algoritmuselmélet 2. előadás

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

Közlemény. Biostatisztika és informatika alapjai. Alapsokaság és minta

SHk rövidítéssel fogunk hivatkozni.

Gazdasági matematika II. vizsgadolgozat, megoldással,

2010. október 12. Dr. Vincze Szilvia

Statisztika Elıadások letölthetık a címrıl

Monte Carlo módszerek a statisztikus fizikában. Az Ising modell. 8. előadás

Kísérlettervezés alapfogalmak

Sorozatok határértéke SOROZAT FOGALMA, MEGADÁSA, ÁBRÁZOLÁSA; KORLÁTOS ÉS MONOTON SOROZATOK

Sorozatok, sorok, függvények határértéke és folytonossága Leindler Schipp - Analízis I. könyve + jegyzetek, kidolgozások alapján

1/1. Házi feladat. 1. Legyen p és q igaz vagy hamis matematikai kifejezés. Mutassuk meg, hogy

Többváltozós lineáris regressziós modell feltételeinek

A továbbiakban Y = {0, 1}, azaz minden szóhoz egy bináris sorozatot rendelünk

A maximum likelihood becslésről

i p i p 0 p 1 p 2... i p i

Elméleti összefoglaló a Sztochasztika alapjai kurzushoz

2. A ξ valószín ségi változó eloszlásfüggvénye a következ : x 4 81 F (x) = x 4 ha 3 < x 0 különben

Valószín ségszámítás és statisztika

4. Az A és B események egymást kizáró eseményeknek vagy idegen (diszjunkt)eseményeknek nevezzük, ha AB=O

36 0,3. Mo.: 36 0,19. Mo.: 36 0,14. Mo.: 32 = 0, = 0, = 0, Mo.: 32 = 0,25

egyetemi jegyzet Meskó Balázs

Matematika III. 4. A valószínűségi változó és jellemzői Prof. Dr. Závoti, József

Összetett programozási tételek Rendezések Keresések PT egymásra építése. 10. előadás. Programozás-elmélet. Programozás-elmélet 10.

Egymintás próbák. Alapkérdés: populáció <paramétere/tulajdonsága> megegyezik-e egy referencia paraméter értékkel/tulajdonsággal?

Anyagvizsgálati módszerek Mérési adatok feldolgozása. Anyagvizsgálati módszerek

STATISZTIKA ELŐADÁS ÁTTEKINTÉSE. Mi a modell? Matematikai statisztika. 300 dobás. sűrűségfüggvénye. Egyenletes eloszlás

RSA algoritmus. P(M) = M e mod n. S(C) = C d mod n. A helyesség igazoláshoz szükséges számelméleti háttér. a φ(n) = 1 mod n, a (a 1,a 2,...

Funkcionálanalízis. n=1. n=1. x n y n. n=1

[Biomatematika 2] Orvosi biometria

Gazdasági matematika II. tanmenet

Leíró és matematikai statisztika el adásnapló Matematika alapszak, matematikai elemz szakirány 2016/2017. tavaszi félév

(Independence, dependence, random variables)

Analízis előadás és gyakorlat vázlat

Nevezetes diszkre t eloszlá sok

Való szí nű sé gi va ltózó, sű rű sé gfű ggvé ny, élószla sfű ggvé ny

A sorozat fogalma. függvényeket sorozatoknak nevezzük. Amennyiben az értékkészlet. az értékkészlet a komplex számok halmaza, akkor komplex

Diszkrét matematika I.

Nyugat-magyarországi Egyetem Geoinformatikai Kara. Prof. Dr. Závoti József. Matematika III. 4. MA3-4 modul. A valószínűségi változó és jellemzői

Leképezések. Leképezések tulajdonságai. Számosságok.

10. Előadás P[M E ] = H

Biomatematika 12. Szent István Egyetem Állatorvos-tudományi Kar. Fodor János

Hipotézis, sejtés STATISZTIKA. Kétmintás hipotézisek. Tudományos hipotézis. Munkahipotézis (H a ) Nullhipotézis (H 0 ) 11. Előadás

Számelméleti alapfogalmak

A mérési eredmény megadása

Biometria gyakorló feladatok BsC hallgatók számára

3. Lineáris differenciálegyenletek

Átírás:

Véletlenszám generátorok és tesztelésük Tossenberger Tamás

Érdekességek Pénzérme feldobó gép: $0,25-os érme 1/6000 valószínűséggel esik az élére 51% eséllyel érkezik a felfelé mutató oldalára Pörgetésnél akár 80% eséllyel a nehezebbik oldalára esik

Érdekességek II Dobókockák pontatlansága: Legjobb szabvány: oldalhoszszok közt legfeljebb 5 μm -es eltérés megengedett Keresés youtube videólinkek közt Keresés π -ben

TRNG PRNG, TRNG, CSRNG Mi lehet TRNG? Radioaktív bomlás, quantum jelenségek Határeset: random.org, hőmérsékleti zaj

PRNG Véletlen ~ egyáltalán nem tudjuk megjósolni a sorozat következő elemét az előzőekből De a PRNG-ok épphogy rekurzívak Új elvárás véletlenre : a konkrét alkalmazásunkban az eredmény szempontjából legyen (közel) egyenértékű egy TRNG-vel Alkalmazások: fizikai szimulációk, MC-módszerek, online játékok/szerencsjátékok, mintavétel

Mi a véletlen? Elméletben: X 1, X 2, X 3,... azonos eloszlású független valószínűségi változók felvett sorozatait szeretnénk szimulálni Probléma: gyakorlati szempontból nem megvalósítható; számsorozatokról szeretnénk eldönteni, hogy azok véletlen sorozatok-e A véletlen U ([ 0 ;1)) -sorozat fogalmát szeretnénk valahogy megfogni, egy intuitíve elvárt tulajdonságát definiálni Ezután ugyanezt megtenni a {0,1,..., b 1} halmazra vonatkozó diszkrét egyenletes eloszlás-sorozatra

A véletlen sorozat esszenciája Adott U =U 1, U 2, U 3,... U ([ 0 ;1 )) -beli számsorozat μ(n,u, v):= { j: 0 j<n, u U j <v} a sorozat első n tagja közül azoknak a száma, melyek az [u ;v) intervallumra esnek Szeretnénk: u<v [0;1]:lim μ(n, u,v) =v u n Szemléletesebb jelöléssel: A sorozat -egyenletes, ha P (u U j <v):=lim μ(n, u, v) n P (u 1 U j <v 1,..., u k U j+ k 1 <v k )=(v 1 u 1 )...(v k u k ) A sorozat -egyenletes, ha k -ra -egyenletes

Ugyanez b alapú számsorozatokra A számítógép által generálható számsorozatokra szeretnénk véletlen fogalmat nyerni; valós számsorozatokat (általánosan) nem tudunk generálni Egy b alapú sorozat -egyenletes, ha P ( X j =x 1,... X j+ k 1 = x k )= 1 b k x 1,..., x k {0,..., b 1} -ra Megjegyzés: -egyenletes sorozat (k 1) -egyenletes -egyenletes, ha k-ra -egyenletes

Ugyanez b alapú számsorozatokra A számítógép által generálható számsorozatokra szeretnénk véletlen fogalmat nyerni; valós számsorozatokat (általánosan) nem tudunk generálni Egy b alapú sorozat -egyenletes, ha P ( X j =x 1,... X j+ k 1 = x k )= 1 b k x 1,..., x k {0,..., b 1} -ra Megjegyzés: -egyenletes sorozat (k 1) -egyenletes -egyenletes, ha k-ra -egyenletes

Mi a helyzet a véges sorozatokkal? Bizonyos értelemben nincs értelme véges sorozatok véletlenségéről beszélni: mindegyik ugyanolyan valószínűségű Viszont egyes alkalmazásokban célszerű kizárni bizonyos nem véletlenszerűnek ítélt sorozatokat Adott X 1,..., X b n alapú sorozat -egyenletes, ha P ( X j = x 1,..., X j+ k 1 = x k ) 1b k 1 n A sorozat véletlen ha -egyenletes k log b N -re Pl. 170 db 11 hosszú nem véletlen bináris sorozat létezik

Négyzetközép-módszer Egy n jegyű számból indulunk ki (tetszőleges számrendszerben) Rekurzió: az aktuális n jegyű számot négyzetre emeljük, és az eredménynek, mint 2n jegyű szám, vesszük a középső n jegye által alkotott n jegyű számot Nem túl gyors; egy ideig véletlenszerűként viselkedik, de utána általában rövid ciklusba áll be: pl. 20 bites számok esetén csak 13 különböző ciklus van, és ezek közül a leghosszabb 142 hosszú

Lineáris kongruencia módszer Z m gyűrűben dolgozunk Adott ( m modulus,) X 0 kezdőérték, a együttható és c növekmény Z m -ből Rekurzió: X n+1 =a X n +c m (maximális) ciklushossz elérhető, ha: (c, m)=1; a 1 -et osztja m minden prímosztója; és ha 4 m, akkor 4 a 1 Célszerű választás: 0.01 m a 0.99 m Nagyon gyors, és egyszerű alkalmazásokra megbízható

1 lépéses rekurziók Megéri-e kombinálni a PRNG-ainkat? Pl. X n+1 =((a X n )mod (m+1)+c)mod m még véletlenszerűbb? Az 1-egyenletességhez nagy ciklusra van szükségünk (ha a az ismétlődéses fázist is fel akarjuk használni) Véletlen választott 1 lépéses rekurzió esetén legalább 1 e a valószínűsége, hogy 1 hosszú ciklusba jutunk, és legfeljebb ismétlésmentes szakasznak n e a várható értéke a

χ 2 -próba Csak diszkrét eloszlások vizsgálatára alkalmas Az elemi eseményeket osszuk be k partícióba, ezekbeli gyakoriságot jelölje Y j, az elméleti valószínűségét pedig az adott partícióba esésnek jelölje p j k (Y V = j n p j ) 2 = 1 k 2 Y j eloszlású λ= 1, j=1 n p j n j=1 2 2 paraméterekkel, így táblázatból kiolvasható, vagy kiszámolható, a kívánt valószínűség p j n Γ α= k 1 Konyhamódszer: ha 3 sorozatból legalább 2 gyanús (5%-nál kevesebb, vagy 95%-nál több), akkor a generátor nem elég véletlenszerű

Kolmogorov-Szmirnov-próba Csak folytonos eloszlásfüggvényű eloszlásokra alkalmazható A tapasztalati és az elméleti eloszlásfüggvény legnagyobb eltéréseit karakterizálja K + n = n max(f n ( x) F (x)), K n = n max(f (x) F n (x)) Táblázatból kiolvasható a keresett valószínűség A kis lokális eltéréseket nem mutatja ki

Egyéb tesztek Sorozatpróba: k -asokba rendezzük a sorozat elemeit, és ezekre χ 2 -próbát végzünk; nagyobb -ra érdemesebb pl. pókerpróbát használni Pókerpróba: számötösökre bontjuk a sorozatot, majd 7 partíciót hozunk létre: mind különböző, egy pár, két pár, drill, full house, póker, öt egyforma; ezekre χ 2 -próbát végzünk Hézagpróba: a hézagok hosszainak eloszlását vizsgáljuk, elméletben ez geometriai eloszlást adna, ezzel összevetjük χ 2 próba segítségével k

Egyéb eloszlások szimulálása Eddig csak egyenletes eloszlást próbáltunk meg szimulálni, de gyakran más nevezetes eloszlások generálására is szükségünk van; szerencsére ezek (általában) visszavezethetőek az egyenletesre Ha X valószínűségi változó F (x) eloszlásfüggvénye ismert, akkor mivel F 1 (U ) eloszlásfüggvénye megegyezik az előbbivel, ezért ezen formula segítségével szimulálhatjuk X eloszlást

Normális eloszlás A normális eloszlásnak nem ismerjük az eloszlásfüggvényét, így az előbbi módszert nem tudjuk alkalmazni Box-Muller algoritmus: Adott U 1, U 2 [0 ;1) -en egyenletes (független) valószínűségi változók (1) Legyen V 1 =2U 1 1, V 2 =2 U 2 1 és S =V 2 2 1 +V 2 (2) Ha S 1 GOTO (1) (3) Legyen X 1 =V 1 2 ln S és X S 2 =V 2ln S 2 S Így X 1, X 2 független, normális eloszlású valószínűségi változók

Tesztkérdés Melyik (végtelen) bináris sorozat 2-egyenletes az alábbiak közül? A) 101010... B) 100100100... C) 001100110011... D) 111000111000111000...