Utolsó módosítás: Véletlenszámok
|
|
- Bence Juhász
- 8 évvel ezelőtt
- Látták:
Átírás
1 Utolsó módosítás: Véletlenszámok Tartalom Véletlenszámok... 1 Tartalom A véletlen (számok) természete A véletlenszám-generátor A véletlenszám-generátor függvénye Négyzet-közép módszer Négyzet-közép módszer Transzcendens számok Transzcendens számok Egy művészi alkalmazás A Póker-teszt A színei Kongruenciális véletlenszám-generátor...10
2 1 A véletlen (számok) természete Mennyire véletlenek az alábbi 0-1 sorozatok? A sorozatok a valamilyen tulajdonságú sorozat első néhány, jellegzetes tagját mutatja (azaz a folytatás is hasonló lenne). A. B. C. D. E Nem tűnik annak, mert túl sok a 0, túl kevés az 1: nagyon eltérő számúak a kijöhető értékek Bár azonos számúak a kijöhető értékek, még sem tűnik annak, mert túl szabályos: csak 10 és 01 kételemű sorozatot tartalmaz, egyetlen egyet sem a 00 -ból, s az 11 -ből Ez sem jó, mert bár 0-k és 1-ek száma azonos, sőt a 2-hosszú részsorozatok is kiegyensúlyozottak (Db( 00 ): 10, Db( 01 ): 10, Db( 10 ): 9, Db( 11 ): 10), a szabályosság megmaradt. A kiegyensúlyozatlanság a 3-asokra, és a többesekre változatlanul fenn áll Ránézésre elfogadható, mert nem fedezhető föl benne szabályosság. Előfordulnak hoszszabb 0- és 1-sorozatok. Persze ez a szakasz statisztikailag nem teljesen kiegyensúlyozott, de a rövidségre foghatjuk. (Db( 0 ): 18, Db( 1 ): 32; Db( 00 ): 5, Db( 01 ): 11, Db( 10 ): 12, Db( 11 ): 19 Valójában algoritmikusan teljesen szabályos. A szabály: a 0, 1, 2 15 számok bináris alakban! Ránézésre ez is elfogadható, mert ebben sem fedezhető föl szabályosság. Előfordulnak hosszabb 0- és 1-sorozatok. Persze ez a szakasz sem teljesen kiegyensúlyozott statisztikailag, de a rövidségre foghatjuk. (Db( 0 ): 92, Db( 1 ): 76; Db( 00 ): 24, Db( 01 ): 21, Db( 10 ): 21, Db( 11 ): 17 Valójában ez is teljesen szabályos. A szabály: 5-től a prímek bináris alakban első és utolsó jegyük nélkül. A bonyolítás magyarázata: mivel a prímek (a 2 kivételével) páratlanok, így utolsó jegyük 1-es, első értékes jegyük szintén 1-es, ezért az 1-esekből eleve többlet lenne. A fenti sorozat levezetése : 5: 0, 7: 1, 11: 01, 13: 10, 17: 000, 19: 001, 23: 011, 29: 110, 31: 111, 37: 0010, 41: 0100, 43: 0101, , 53: 1010, 59: 1101, 61: 1110, 67: 00001, 71: 00011, 73: 00100, 79: 00111, 83: 01001, 89: 01100, 97:
3 Nézzük meg kicsit hosszabb sorozatra az alábbi ábrán (prímek 1000-ig), és a BinVel.exe program 1 futtatásával még hosszabbra (pl. a prímek ig)! 1. ábra. A BinVel.exe futási képe. (1000-ig) 2 A véletlenszám-generátor Lássunk egy kis bemutatót a véletlenszámokról! A program feladata, hogy bemutassa a véletlenszám-generálás egy-két titkát. (Gyakorlat_letolt.zip 2 ) A továbbiakban a rövidség kedvéért hadd hivatkozzunk a véletlenszámot generáló függvényre RND-vel. A program lépései: 1. Az RND függvény segítségével generálunk 80 darab 0 és 9 közötti egyenletesen véletlenszámot. 2. A négyzet-közép módszer kipróbálása. 3. A négyzet-közép módszerrel előállítjuk az összes kezdőértékkel a sorozatokat, az első ismétlésig. Kíváncsiak vagyunk a leghosszabb sorozatra. 4. A két nevezetes transzcendens szám statisztikai elemzését végezzük el. Meghatározzuk a és az e számjegy-gyakoriságát az első 1000 szám-jegyük alapján. 5. Az előbbi két nevezetes transzcendens szám statisztikai elemzését végezzük el ismét: a számjegy-párok gyakoriságára vonatkozólag. 6. Véletlen ábrákat generálunk a véletlenszám-generátorral. S így jópofa Vasarely-szerű képekhez juthatunk. 7. A Pascal Random függvényével előállított számsorozat véletlenszerűségét vizsgáljuk az ún. Póker-teszttel. 8. A színei. 2.1 A véletlenszám-generátor függvénye Az RND függvény segítségével generálunk 80 darab 0 és 9 közötti egyenletesen véletlenszámot
4 Pascal tudnivalók: Function Random(Const x:word):word {Random: N, 0 Random(x)<x} Function Random:Real {Random: R, 0 Random<1} VBA tudnivalók: Function Rnd:Single Rnd: N, 0 Rnd<1 Megfigyelhető, hogy minden lehetséges számjegy előfordul, eléggé váratlan sorrendben. 2. ábra. A demonstrációs program 1. eredménye : mennyire tűnik véletlennek a sorozat? 2.2 Négyzet-közép módszer 1. A négyzet-közép módszer kipróbálása néhány kiinduló értékre. Egy 2-jegyű számot megadva a program kiszámolja a belőle kapható 100 db véletlenszámot. Érdekes kezdőérték jóság szerinti csoportosításban: 69, 76, 77; 15, 99; 24, 57, 79; 10, 50. A módszer képlete (2-jegyű véletlenszámok előállítására): R(i+1):=((R(i)*R(i)) Div 10) Mod 100, ahol R(x) az x. véletlenszám (x=0, 1, 2 ). Újra meg újra megadható a kezdő érték, így ameddig tetszik folytatható a kísérletezgetés. 3. ábra. A demonstrációs program 2. eredménye. A 76-ből eredő sorozat véletlenszerű fejsora 14 elemű. 1. feladat: Adja meg a formulát, ha nem 2, hanem 2*k jegyű véletlen számokat akarunk a fenti módszerrel generálni! 4
5 2. feladat: Írja meg azt a függvényt, amely előállítja a következő véletlen értéket! Világos, hogy az előzőleg generált értéket és a k-t a függvényen kívül elhelyezett globális változók tartalmazzák. A korrekt használathoz kell egy inicializáló eljárás is, amely a 0. értéket állítja be. 2.3 Négyzet-közép módszer 2. Ismét 2-jegyű véletlenszámokat generálunk a négyzet-közép módszerrel: Előállítjuk az összes kezdőértékkel a sorozatokat, az első ismétlésig. Kíváncsiak vagyunk, melyik a leghosszabb sorozat. A kiírást tetszőleges (mondjuk a SPACE) billentyű lenyomásával időlegesen felfüggeszthetjük. Újabb billentyű lenyomása után folytatódik a listázás. és végül: 4. ábra. A demonstrációs program 3. eredményének egy részlete. Az eddigi leghosszabb (5 hosszú) véletlen sorozat a 9-ből készült. 5. ábra. A demonstrációs program 3. eredményének a befejező részlete. 3. feladat: Készítsen paraméteres függvényt, amely a korábbi véletlenszám függvényt addig hívja újra meg újra, amíg ismétlés nem lép föl. Paramétere a kezdőérték, visszaadott értéke az aperiodikus szakasz hossza (az első ismétlődésig generált elemek száma). Milyen módszert lát arra, hogy az ismétlődést a leghatékonyabban tudja megállapítani? Először felteheti, hogy a véletlenszámok közöttiek. 5
6 2.4 Transzcendens számok 1. A véletlen(számok) természete fejezetben már próbálkoztunk speciális számokból kiindulni a véletlen számsorozat előállításánál. Kézenfekvő gondolat valamely transzcendens számból kiindulni, mondván: legyen az i. véletlenszám az ő i. véletlen számjegye. A transzcendens volta garantálja, hogy periodikus szakaszokkal nem fogunk találkozni. A két nevezetes transzcendens szám statisztikai elemzését végezzük el. Meghatározzuk a és az e számok első 1000 szám-jegyük alapján a számjegy-gyakoriságot, ezek várhatóértékét és szórását, továbbá a minimum- és maximum-helyet/-értéket. A két transzcendens számot egy-egy fájlból olvassuk be, amelyeket az internetről töltöttük le (hogy ne kelljen hosszú, bonyolult számítással magunknak létrehozni) ábra. A demonstrációs program 4. eredményének az első fele. 7. ábra. A demonstrációs program 4. eredményének folytatása. 4. feladat: Készítsen paraméteres eljárást, amely egy szövegfájlból számkaraktereket olvas, közben számolja ezek gyakoriságát, majd megadja a legkevesebbszer előforduló karaktert, gyakoriságával együtt, a legtöbbször előfordulót a gyakoriságok átlagát és szórását! A program paramétere a fájl neve legyen! Az eredményt a képernyőre írja
7 2.5 Transzcendens számok 2. A két nevezetes transzcendens szám statisztikai elemzését végezzük el ismét: most a számjegy-párjainak a gyakoriságát határozzuk meg az első 1000 számjegyük alapján. Megadjuk a számjegy-párok gyakorisága mellett a várhatóértékeket, szórásokat és a minimum- és maximum-helyeket, valamint értékeket. 8. ábra. A demonstrációs program 5. eredményének az első fele. A elemzése. 9. ábra. A demonstrációs program 5. eredményének a folytatása. Az e elemzése. Konklúzió: az első ezer számjegyük alapján nem igazán tűnnek megfelelő véletlenszám-forrásnak; ui. nem kellően egyenletesek a vizsgált két (számjegy és számpár gyakoriság) szempontból. 2.6 Egy művészi alkalmazás Egy kis pihenésként nézzünk egy véletlenszám alkalmazást: képeket festünk Vasarely stílusában. Alapgondolat: véletlen ábrákat generálunk a véletlenszám-generátorral. Összesen 4- féle alapábrából fogjuk kirakni mozaikszerűen a képet. Hogy mely alapábrát válasszuk éppen, azt a véletlenre bízzuk. 7
8 2.7 A Póker-teszt 10. ábra. A demonstrációs program 6. stációjának 3 kompozíciója. A Pascal Random függvénnyel előállított számsorozat véletlenszerűségét vizsgáljuk az ún. Póker-teszttel. A lényege, hogy a pókerben nevezetes (4-es helyett 5-ös) kombinációkat megszámoljuk, majd összevetjük az egyenletesség esetén elméleti eloszlásból kapható értékkel. A program véletlenszerűen 10-féle lapból (0..9) húzogat a paraméter meghatározta számszor (4 helyett) 5 értéket. Így egy adott figura kijövetelének 1/10 a valószínűsége. Ennek figyelembe vételével határoztuk meg az egyes pókerbeli kombinációk valószínűségét. Póker-leosztás Kombináció Valószínűség royal póker aaaaa 0,0001 póker aaaab 0,0045 full aaabb 0,0090 drill aaabc 0, pár aabbc 0, pár aabcd 0,5040 más abcde 0, ábra. A demonstrációs program 7. eredményének részlete (N=100). Ha a képernyőn már követhetetlenül sok a generálandó szám, akkor azokat már nem jeleníti meg a program, csak az összegzést. 8
9 12. ábra. A demonstrációs program 7. eredményének egy további részlete (N=1000). A további kísérletek megnyugtatóak: jól konvergál az elvárt értékekhez. 5. feladat: Írjon függvényt, amely paraméterül kap 5 értéket, és eldönti, hogy a póker mely nevezetes leosztása! Értéke 1, ha 1 pár; 2, ha 2 pár; 3, ha drill; 4, ha full; 5, ha póker; 6, ha royal póker, és 0, ha egyéb. Erre a függvényre építve szervezze meg egy számsorozat Pókerteszt szerinti kiértékelését A színei A számjegyeit színkódnak tekintve generálunk egy színes dinamikus ábrát az első jegyéből. (A dinamikus jelző azt jelenti, hogy időben változó képként jön létre a lenyomata.) 10. ábra. A demonstrációs program 8. stációjának végső állapota. 9
10 3 Kongruenciális véletlenszám-generátor Végezetül és közvetlen tapasztalatszerzésül írjunk programot, amely az alábbi érdekes állítás igazságtartalmát empirikusan megvizsgálja! Állítás: 4 Legyen R(i+1) b*r(i)+c (Mod m), c 0, b 1, m=p e (p prímszám, e>1 egész) rekurzívan definiált számsorozat akkor és csak akkor m (azaz maximális) periódushosszú, ha (1) c és m relatív prímek, (2) b 1 (Mod p), (3) b 1 (Mod 4), ha p=2. A program lépései legyenek a következők: 1. A program bekéri a véletlenszám-generátor paramétereit: b, c, m és R(0)-at. Ezek mind nem negatív egészek. 2. Ellenőrzi az állítás feltételeinek a teljesülését, és megjósolja, hogy az állítás szerint van-e esély a maximális hosszúságú (azaz m-hosszú) véletlenszám-sorozatra. 3. A vizsgáló részben addig generál a fenti rekurzív formulával számokat, amíg az első ismétlődő számig el nem jut. A generált számok száma legjobb esetben m lesz, azaz ekkora tömb elegendő lesz a számok gyűjtésére (ez egyben az aperiodikus szakasz hossza). A két azonos érték sorszámának a különbsége lesz a periódushossz. A program addig gyártja az újabb és újabb véletlenszám-sorozatot, amíg ESC-pel ki nem lépünk. Valami ilyesmit kellene kapni: KongruenciaModszer.exe 5. (Példaparaméterek: c=2, b=28, m=3 3, R(0)=tetszőleges.) 4 5 Deák István: Véletlenszámok-generátorok és alkalmazásuk c. (Akadémiai Kiadó, 1986) könyvben a 42. oldalon szereplő állítás. és a megoldás: 10
Véletlenszám generátorok és tesztelésük. Tossenberger Tamás
Véletlenszám generátorok és tesztelésük Tossenberger Tamás Érdekességek Pénzérme feldobó gép: $0,25-os érme 1/6000 valószínűséggel esik az élére 51% eséllyel érkezik a felfelé mutató oldalára Pörgetésnél
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 10 X. SZIMULÁCIÓ 1. VÉLETLEN számok A véletlen számok fontos szerepet játszanak a véletlen helyzetek generálásában (pénzérme, dobókocka,
Demográfiai modellek (folytatás)
Demográfiai modellek (folytatás) 4. A teljesebb anyag 4.1. A megoldás egy változata Alábbiakban az előző gyakorlaton szereplő keretprogramból kapható egy lehetséges megoldást részletezzük. (Ha már a sajátja
Véletlenszám generátorok és tesztelésük HORVÁTH BÁLINT
Véletlenszám generátorok és tesztelésük HORVÁTH BÁLINT Mi a véletlen? Determinisztikus vs. Véletlen esemény? Véletlenszám: számok sorozata, ahol véletlenszerűen követik egymást az elemek Pszeudo-véletlenszám
Bevezetés a programozásba I.
Bevezetés a programozásba I. 3. gyakorlat Tömbök, programozási tételek Surányi Márton PPKE-ITK 2010.09.21. ZH! PlanG-ból papír alapú zárthelyit írunk el reláthatólag október 5-én! Tömbök Tömbök Eddig egy-egy
Felvételi tematika INFORMATIKA
Felvételi tematika INFORMATIKA 2016 FEJEZETEK 1. Természetes számok feldolgozása számjegyenként. 2. Számsorozatok feldolgozása elemenként. Egydimenziós tömbök. 3. Mátrixok feldolgozása elemenként/soronként/oszloponként.
biometria II. foglalkozás előadó: Prof. Dr. Rajkó Róbert Matematikai-statisztikai adatfeldolgozás
Kísérlettervezés - biometria II. foglalkozás előadó: Prof. Dr. Rajkó Róbert Matematikai-statisztikai adatfeldolgozás A matematikai-statisztika feladata tapasztalati adatok feldolgozásával segítséget nyújtani
Véletlenszám generátorok. 6. előadás
Véletlenszám generátorok 6. előadás Véletlenszerű változók, valószínűség véletlen, véletlen változók valószínűség fogalma egy adott esemény bekövetkezésének esélye értékét 0 és között adjuk meg az összes
Programozás alapjai. 6. gyakorlat Futásidő, rekurzió, feladatmegoldás
Programozás alapjai 6. gyakorlat Futásidő, rekurzió, feladatmegoldás Háziellenőrzés Egészítsd ki úgy a simplemaths.c programot, hogy megfelelően működjön. A program feladata az inputon soronként megadott
Változók. Mennyiség, érték (v. objektum) szimbolikus jelölése, jelentése Tulajdonságai (attribútumai):
Python Változók Mennyiség, érték (v. objektum) szimbolikus jelölése, jelentése Tulajdonságai (attribútumai): Név Érték Típus Memóriacím A változó értéke (esetleg más attribútuma is) a program futása alatt
INFORMATIKA javítókulcs 2016
INFORMATIKA javítókulcs 2016 ELMÉLETI TÉTEL: Járd körbe a tömb fogalmát (Pascal vagy C/C++): definíció, egy-, két-, több-dimenziós tömbök, kezdőértékadás definíciókor, tömb típusú paraméterek átadása alprogramoknak.
Hatékonyság 1. előadás
Hatékonyság 1. előadás Mi a hatékonyság Bevezetés A hatékonyság helye a programkészítés folyamatában: csak HELYES programra Erőforrásigény: a felhasználó és a fejlesztő szempontjából A hatékonyság mérése
Pl.: Galton deszka (http://www.youtube.com/watch?v=ufd3hizzhwg vagy link innen:
9. feladatsor - Minőség-ellenőrzés és binomiális eloszlás Binomiális eloszlással olyan helyzet modellezhető, ahol egy véletlen kísérletet sokszor ismétlünk azonos körülmények között és figyeljük, hogy
Bevezetés a programozásba I 3. gyakorlat. PLanG: Programozási tételek. Programozási tételek Algoritmusok
Pázmány Péter Katolikus Egyetem Információs Technológiai Kar Bevezetés a programozásba I 3. gyakorlat PLanG: 2011.09.27. Giachetta Roberto groberto@inf.elte.hu http://people.inf.elte.hu/groberto Algoritmusok
Adatszerkezetek II. 10. előadás
Adatszerkezetek II. 10. előadás Kombinatorikai algoritmusok A kombinatorika: egy véges halmaz elemeinek valamilyen szabály alapján történő csoportosításával, kiválasztásával, sorrendbe rakásával foglalkozik
Első egyéni feladat (Minta)
Első egyéni feladat (Minta) 1. Készítsen olyan programot, amely segítségével a felhasználó 3 különböző jelet tud generálni, amelyeknek bemenő adatait egyedileg lehet változtatni. Legyen mód a jelgenerátorok
KÖZELÍTŐ INFERENCIA II.
STATISZTIKAI TANULÁS AZ IDEGRENDSZERBEN KÖZELÍTŐ INFERENCIA II. MONTE CARLO MÓDSZEREK ISMÉTLÉS Egy valószínűségi modellben a következtetéseinket a látensek vagy a paraméterek fölötti poszterior írja le.
BME MOGI Gépészeti informatika 5.
BME MOGI Gépészeti informatika 5. 1. feladat Készítsen alkalmazást, mely feltölt egy egydimenziós tömböt adott tartományba eső, véletlenszerűen generált egész értékekkel! Határozza meg a legkisebb és a
7. Laboratóriumi gyakorlat: Vezérlési szerkezetek II.
7. Laboratóriumi gyakorlat: Vezérlési szerkezetek II. A gyakorlat célja: 1. A shell vezérlő szerkezetei használatának gyakorlása. A használt vezérlő szerkezetek: if/else/fi, for, while while, select, case,
KÖZELÍTŐ INFERENCIA II.
STATISZTIKAI TANULÁS AZ IDEGRENDSZERBEN KÖZELÍTŐ INFERENCIA II. MONTE CARLO MÓDSZEREK ISMÉTLÉS Egy valószínűségi modellben a következtetéseinket a látensek vagy a paraméterek fölötti poszterior írja le.
VÉLETLEN PERMUTÁCIÓ ELŐÁLLÍTÁSA
VÉLETLEN PERMUTÁCIÓ ELŐÁLLÍTÁSA Az alábbi algoritmusban X(1..N) tömb elemeinek egy véletlen permutációját állítjuk elő. Természetesen elvárjuk, hogy a HalmazFelsorolás(X) előfeltétel teljesüljön. Talán
Véletlen sorozatok ellenőrzésének módszerei. dolgozat
Eötvös Loránd Tudományegyetem Informatikai Kar Komputeralgebra Tanszék Véletlen sorozatok ellenőrzésének módszerei dolgozat Témavezető: Dr. Iványi Antal Miklós egyetemi tanár Készítette: Potempski Dániel
1. Olvassuk be két pont koordinátáit: (x1, y1) és (x2, y2). Határozzuk meg a két pont távolságát és nyomtassuk ki.
Számítás:. Olvassuk be két pont koordinátáit: (, y) és (2, y2). Határozzuk meg a két pont távolságát és nyomtassuk ki. 2. Olvassuk be két darab két dimenziós vektor komponenseit: (a, ay) és (b, by). Határozzuk
Erdő generálása a BVEPreproc programmal
Erdő generálása a BVEPreproc programmal Első lépés, hogy elkészítjük a falevél objektumot. Ezeket fogjuk rárakni a faág objektumokra, majd jön a fatörzs... Ez csak vicc volt. Elkészítjük/összeollózzuk
VALÓSZÍNŰSÉG, STATISZTIKA TANÍTÁSA
VALÓSZÍNŰSÉG, STATISZTIKA TANÍTÁSA A VALÓSZÍNŰSÉGI SZEMLÉLET ALAPOZÁSA 1-6. OSZTÁLY A biztos, a lehetetlen és a lehet, de nem biztos események megkülünböztetése Valószínűségi játékok, kísérletek események
A rész (30 pont) A.1. Vajon mit csinál? (5 pont) A generál(n) algoritmus egy n természetes számot dolgoz fel (0 < n < 100).
BABEŞ-BOLYAI TUDOMÁNYEGYETEM MATEMATIKA-INFORMATIKA KAR Felvételi verseny - szeptember Informatika írásbeli A versenyzők figyelmébe: 1. Minden tömböt 1-től kezdődően indexelünk. 2. A rácstesztekre (A rész)
Változók. Mennyiség, érték (v. objektum) szimbolikus jelölése, jelentése Tulajdonságai (attribútumai):
Javascript Változók Mennyiség, érték (v. objektum) szimbolikus jelölése, jelentése Tulajdonságai (attribútumai): Név Érték Típus Memóriacím A változó értéke (esetleg más attribútuma is) a program futása
7. Laboratóriumi gyakorlat, 1. rész : Vezérlési szerkezetek II.
7. Laboratóriumi gyakorlat, 1. rész : Vezérlési szerkezetek II. A gyakorlat célja: 1. A shell vezérlő szerkezetei használatának gyakorlása. A használt vezérlő szerkezetek: if/else/fi, for, while while,
i p i p 0 p 1 p 2... i p i
. vizsga, 06--9, Feladatok és megoldások. (a) Adja meg az diszkrét eloszlás várható értékének a definícióját! i 0... p i p 0 p p... i p i (b) Tegyük fel, hogy a rigófészkekben található tojások X száma
A 2015/2016 tanévi Országos Középiskolai Tanulmányi Verseny első forduló javítási-értékelési útmutató. INFORMATIKA II. (programozás) kategória
Oktatási Hivatal 2015/2016 tanévi Országos Középiskolai Tanulmányi Verseny első forduló javítási-értékelési útmutató INFORMTIK II. (programozás) kategória Kérjük a tisztelt tanár kollégákat, hogy a dolgozatokat
Számelmélet Megoldások
Számelmélet Megoldások 1) Egy számtani sorozat második tagja 17, harmadik tagja 1. a) Mekkora az első 150 tag összege? (5 pont) Kiszámoltuk ebben a sorozatban az első 111 tag összegét: 5 863. b) Igaz-e,
Osztott algoritmusok
Osztott algoritmusok A benzinkutas példa szimulációja Müller Csaba 2010. december 4. 1. Bevezetés Első lépésben talán kezdjük a probléma ismertetésével. Adott két n hosszúságú bináris sorozat (s 1, s 2
Matlab alapok. Baran Ágnes. Baran Ágnes Matlab alapok Elágazások, függvények 1 / 15
Matlab alapok Baran Ágnes Elágazások, függvények Baran Ágnes Matlab alapok Elágazások, függvények 1 / 15 Logikai kifejezések =, ==, = (két mátrixra is alkalmazhatóak, ilyenkor elemenként történik
7. gyakorlat Sorozatok, Fájlkezelés
7. gyakorlat Sorozatok, Fájlkezelés Házi ellenőrzés - f0124 Írj programot, amelyben a felhasználónak egy, a program által meghatározott számot kell kitalálnia! A felhasználó tippjét a program vagy elfogadja,
Programozás alapjai 9.Gy: Struktúra 2.
Programozás alapjai 9.Gy: Struktúra 2. Ördögi részletek P R O A L A G 35/1 B ITv: MAN 2018.11.10 Euró árfolyam statisztika Az EURO árfolyamát egy negyedéven keresztül hetente nyilvántartjuk (HUF / EUR).
Alkalmazott modul: Programozás. Programozási tételek, rendezések. Programozási tételek Algoritmusok és programozási tételek
Eötvös Loránd Tudományegyetem Informatikai Kar Alkalmazott modul: Programozás, rendezések 2015 Giachetta Roberto groberto@inf.elte.hu http://people.inf.elte.hu/groberto Algoritmusok és programozási tételek
Bevezetés a matematikába (2009. ősz) 1. röpdolgozat
Bevezetés a matematikába (2009. ősz) 1. röpdolgozat 1. feladat. Fogalmazza meg a következő ítélet kontrapozícióját: Ha a sorozat csökkenő és alulról korlátos, akkor konvergens. 2. feladat. Vezessük be
// keressük meg a legnagyobb faktoriális értéket, ami kisebb, // mint százmillió
BME MOGI Gépészeti informatika 3. 1. feladat Végezze el a következő feladatokat! Kérjen be számokat 0 végjelig, és határozza meg az átlagukat! A feladat megoldásához írja meg a következő metódusokat! a.
Tömbök kezelése. Példa: Vonalkód ellenőrzőjegyének kiszámítása
Tömbök kezelése Példa: Vonalkód ellenőrzőjegyének kiszámítása A számokkal jellemzett adatok, pl. személyi szám, adószám, taj-szám, vonalkód, bankszámlaszám esetében az elírásból származó hibát ún. ellenőrző
MÉRÉSI EREDMÉNYEK PONTOSSÁGA, A HIBASZÁMÍTÁS ELEMEI
MÉRÉSI EREDMÉYEK POTOSSÁGA, A HIBASZÁMÍTÁS ELEMEI. A mérési eredmény megadása A mérés során kapott értékek eltérnek a mérendő fizikai mennyiség valódi értékétől. Alapvetően kétféle mérési hibát különböztetünk
A számok kiírása is alapvetően karakterek kiírásán alapul, azonban figyelembe kell venni, hogy a számjegyeket, mint karaktereket kell kiírni.
Példák számok kiírására A számok kiírása is alapvetően karakterek kiírásán alapul, azonban figyelembe kell venni, hogy a számjegyeket, mint karaktereket kell kiírni. Decimális számok kiírása Az alábbi
Statisztika I. 8. előadás. Előadó: Dr. Ertsey Imre
Statisztika I. 8. előadás Előadó: Dr. Ertsey Imre Minták alapján történő értékelések A statisztika foglalkozik. a tömegjelenségek vizsgálatával Bizonyos esetekben lehetetlen illetve célszerűtlen a teljes
1. Feladat: beolvas két számot úgy, hogy a-ba kerüljön a nagyobb
1. Feladat: beolvas két számot úgy, hogy a-ba kerüljön a nagyobb #include main() { int a, b; printf( "a=" ); scanf( "%d", &a ); printf( "b=" ); scanf( "%d", &b ); if( a< b ) { inttmp = a; a =
HÁZI DOLGOZAT. Érmefeldobások eredményei és statisztikája. ELTE-TTK Kémia BSc Tantárgy: Kémia felzárkóztató (A kémia alapjai)
ELTE-TTK Kémia BSc Tantárgy: Kémia felzárkóztató (A kémia alapjai) HÁZI DOLGOZAT Érmefeldobások eredményei és statisztikája Készítette: Babinszki Bence EHA-kód: BABSAET.ELTE E-mail cím: Törölve A jelentés
Valószínűségszámítás összefoglaló
Statisztikai módszerek BMEGEVGAT Készítette: Halász Gábor Budapesti Műszaki és Gazdaságtudományi Egyetem Gépészmérnöki Kar Hidrodinamikai Rendszerek Tanszék, Budapest, Műegyetem rkp. 3. D ép. 334. Tel:
Adatbázis és szoftverfejlesztés elmélet. Programozási tételek
Adatbázis és szoftverfejlesztés elmélet Témakör 8. 1. Egy sorozathoz egy érték hozzárendelése Az összegzés tétele Összefoglalás Programozási tételek Adott egy számsorozat. Számoljuk és írassuk ki az elemek
INFORMATIKAI ALAPISMERETEK
Informatikai alapismeretek középszint 0631 ÉRETTSÉGI VIZSGA 2006. október 24. INFORMATIKAI ALAPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM
Kísérlettervezés alapfogalmak
Kísérlettervezés alapfogalmak Rendszermodellezés Budapest University of Technology and Economics Fault Tolerant Systems Research Group Budapest University of Technology and Economics Department of Measurement
Számítógépes döntéstámogatás. Genetikus algoritmusok
BLSZM-10 p. 1/18 Számítógépes döntéstámogatás Genetikus algoritmusok Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu BLSZM-10 p. 2/18 Bevezetés 1950-60-as
Nemes Tihamér Nemzetközi Informatikai Tanulmányi Verseny 2-3. korcsoport. Maximális növekedés
Maximális növekedés N napon keresztül naponta feljegyeztük az eladott mobiltelefonok számát. Készíts programot, amely megadja két olyan nap sorszámát, amelyek közötti napokon az első napon volt a legkevesebb,
NULLADIK MATEMATIKA ZÁRTHELYI
A NULLADIK MATEMATIKA ZÁRTHELYI 20-09-2 Terem: Munkaidő: 0 perc. A dolgozat megírásához íróeszközön kívül semmilyen segédeszköz nem használható! Csak és kizárólag tollal tölthető ki a feladatlap, a ceruzával
BME MOGI Gépészeti informatika 1.
BME MOGI Gépészeti informatika 1. 1. feladat Végezze el a következő feladatokat! Olvassa be a nevét és írjon üdvözlő szöveget a képernyőre! Generáljon két 1-100 közötti egész számot, és írassa ki a hányadosukat
I. Specifikáció készítés. II. Algoritmus készítés
Tartalomjegyzék I. Specifikáció készítés...2 II. Algoritmus készítés...2 Egyszerű programok...6 Beolvasásos feladatok...10 Elágazások...10 Ciklusok...1 Vegyes feladatok...1 1 I. Specifikáció készítés A
Bevezető feldatok. Elágazás és összegzés tétele
Bevezető feldatok 1. Szövegértés és algoritmikus gondolkodás Kátai Zoltán https://people.inf.elte.hu/szlavi/infodidact15/manuscripts/kz.pdf Elágazás és összegzés tétele Táblázatkezelési feladatok Feladatok
Gyakorló feladatok az 1. nagy zárthelyire
Gyakorló feladatok az 1. nagy zárthelyire 2012. október 7. 1. Egyszerű, bevezető feladatok 1. Kérjen be a felhasználótól egy sugarat. Írja ki az adott sugarú kör kerületét illetve területét! (Elegendő
2018, Diszkre t matematika. 10. elo ada s
Diszkre t matematika 10. elo ada s MA RTON Gyo ngyve r mgyongyi@ms.sapientia.ro Sapientia Egyetem, Matematika-Informatika Tansze k Marosva sa rhely, Roma nia 2018, o szi fe le v MA RTON Gyo ngyve r 2018,
Programozás alapjai. 5. előadás
5. előadás Wagner György Általános Informatikai Tanszék Cserélve kiválasztásos rendezés (1) A minimum-maximum keresés elvére épül. Ismétlés: minimum keresés A halmazból egy tetszőleges elemet kinevezünk
Bevezetés a programozásba I.
Elágazás Bevezetés a programozásba I. 2. gyakorlat, tömbök Surányi Márton PPKE-ITK 2010.09.14. Elágazás Elágazás Eddigi programjaink egyszer ek voltak, egy beolvasás (BE: a), esetleg valami m velet (a
Kísérlettervezés alapfogalmak
Kísérlettervezés alapfogalmak Rendszermodellezés Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs Rendszerek Tanszék Kísérlettervezés Cél: a modell paraméterezése a valóság alapján
PRÓBAÉRETTSÉGI VIZSGA
MATEMATIKA PRÓBAÉRETTSÉGI VIZSGA 2012. 2013. április január 7. 19. KÖZÉPSZINTŰ PRÓBAÉRETTSÉGI VIZSGA Név Tanárok neve Pontszám 2013. január 19. II. Időtartam: 135 perc STUDIUM GENERALE MATEMATIKA SZEKCIÓ
A gúla ~ projekthez 2. rész
1 A gúla ~ projekthez 2. rész Dolgozatunk 1. részében egy speciális esetre a négyzet alapú egyenes gúla esetére írtuk fel és alkalmaztuk képleteinket. Most a tetszőleges oldalszámú szabályos sokszög alakú
Algoritmizálás, adatmodellezés tanítása 1. előadás
Algoritmizálás, adatmodellezés 1. előadás Az algoritmus fogalma végrehajtható (van hozzá végre-hajtó) lépésenként hajtható végre a lépések maguk is algoritmusok pontosan definiált, adott végre-hajtási
ALÁÍRÁS NÉLKÜL A TESZT ÉRVÉNYTELEN!
A1 A2 A3 (8) A4 (12) A (40) B1 B2 B3 (15) B4 (11) B5 (14) Bónusz (100+10) Jegy NÉV (nyomtatott nagybetűvel) CSOPORT: ALÁÍRÁS: ALÁÍRÁS NÉLKÜL A TESZT ÉRVÉNYTELEN! 2011. december 29. Általános tudnivalók:
Megjegyzés: A programnak tartalmaznia kell legalább egy felhasználói alprogramot. Példa:
1. Tétel Az állomány két sort tartalmaz. Az első sorában egy nem nulla természetes szám van, n-el jelöljük (5
Hódmezővásárhelyi Városi Matematikaverseny április 14. A osztályosok feladatainak javítókulcsa
Hódmezővásárhelyi Városi Matematikaverseny 2003. április 14. A 11-12. osztályosok feladatainak javítókulcsa 1. feladat Egy számtani sorozatot az első eleme és különbsége egyértelműen meghatározza, azt
Prímszámok statisztikai analízise
Prímszámok statisztikai analízise Puszta Adrián 28. április 18. Kivonat Munkám során a prímszámok és a páros prímek eloszlását, illetve különbségét vizsgáltam, majd ebből következtettem a véletlenszerű
6. Előadás. Vereb György, DE OEC BSI, október 12.
6. Előadás Visszatekintés: a normális eloszlás Becslés, mintavételezés Reprezentatív minta A statisztika, mint változó Paraméter és Statisztika Torzítatlan becslés A mintaközép eloszlása - centrális határeloszlás
BME MOGI Gépészeti informatika 13.
BME MOGI Gépészeti informatika 13. 1. feladat Készítsen alkalmazást, mely elvégzi a következő feladatokat! a. Állítson elő adott intervallumba eső, adott számú véletlen számot, és írja ki a számokat egy
Informatikai tehetséggondozás:
Ég és Föld vonzásában a természet titkai Informatikai tehetséggondozás: isszalépéses kiválogatás TÁMOP-4.2.3.-12/1/KON isszalépéses kiválogatás 1. Az összes lehetséges sorrend Sokszor előfordul feladatként,
Az osztályok csomagokba vannak rendezve, minden csomag tetszőleges. Könyvtárhierarhiát fed: Pl.: java/util/scanner.java
Függvények, csomagok Csomagok Az osztályok csomagokba vannak rendezve, minden csomag tetszőleges számú osztályt tartalmazhat Pl.: java.util.scanner Könyvtárhierarhiát fed: Pl.: java/util/scanner.java Célja:
4. A negatív binomiális eloszlás
1 / 7 2011.03.17. 14:27 Virtuális laboratóriumok > 10. Bernoulli kísérletek > 1 2 3 4 5 6 4. Alapelmélet Tételezzük fel, hogy a véletlen kísérletünk, amit végrehajtunk Bernoulli kísérleteknek egy X = (X
10. gyakorlat Struktúrák, uniók, típusdefiníciók
10. gyakorlat Struktúrák, uniók, típusdefiníciók Házi - (f0218) Olvass be 5 darab maximum 99 karakter hosszú szót úgy, hogy mindegyiknek pontosan annyi helyet foglalsz, amennyi kell! A sztringeket írasd
Operációs rendszerek. 9. gyakorlat. Reguláris kifejezések - alapok, BASH UNIVERSITAS SCIENTIARUM SZEGEDIENSIS UNIVERSITY OF SZEGED
UNIVERSITAS SCIENTIARUM SZEGEDIENSIS UNIVERSITY OF SZEGED Reguláris kifejezések - alapok, BASH Operációs rendszerek 9. gyakorlat Szegedi Tudományegyetem Természettudományi és Informatikai Kar Csuvik Viktor
Függetlenségvizsgálat, Illeszkedésvizsgálat
Varga Beatrix, Horváthné Csolák Erika Függetlenségvizsgálat, Illeszkedésvizsgálat 4. előadás Üzleti statisztika A sokaság/minta több ismérv szerinti vizsgálata A statisztikai elemzés egyik ontos eladata
6. gyakorlat Egydimenziós numerikus tömbök kezelése, tömbi algoritmusok
6. gyakorlat Egydimenziós numerikus tömbök kezelése, tömbi algoritmusok 1. feladat: Az EURO árfolyamát egy negyedéven keresztül hetente nyilvántartjuk (HUF / EUR). Írjon C programokat az alábbi kérdések
Gyakorló feladatok. Az alábbi feladatokon kívül a félév szemináriumi anyagát is nézzék át. Jó munkát! Gaál László
Gyakorló feladatok Az alábbi feladatokon kívül a félév szemináriumi anyagát is nézzék át. Jó munkát! Gaál László I/. A vizsgaidőszak második napján a hallgatók %-ának az E épületben, %-ának a D épületben,
Matematika A3 Valószínűségszámítás, 6. gyakorlat 2013/14. tavaszi félév
Matematika A3 Valószínűségszámítás, 6. gyakorlat 2013/14. tavaszi félév 1. A várható érték és a szórás transzformációja 1. Ha egy valószínűségi változóhoz hozzáadunk ötöt, mínusz ötöt, egy b konstanst,
Algoritmizálás, adatmodellezés tanítása 6. előadás
Algoritmizálás, adatmodellezés tanítása 6. előadás Tesztelési módszerek statikus tesztelés kódellenőrzés szintaktikus ellenőrzés szemantikus ellenőrzés dinamikus tesztelés fekete doboz módszerek fehér
A 2017/2018 tanévi Országos Középiskolai Tanulmányi Verseny második fordulójának feladatai. INFORMATIKA II. (programozás) kategória
Oktatási Hivatal A 1/18 tanévi Országos Középiskolai Tanulmányi Verseny második fordulójának feladatai INFORMATIKA II. (programozás) kategória 1. feladat: K-homogén sorozat ( pont) Azt mondjuk, hogy az
1. Adatok kiértékelése. 2. A feltételek megvizsgálása. 3. A hipotézis megfogalmazása
HIPOTÉZIS VIZSGÁLAT A hipotézis feltételezés egy vagy több populációról. (pl. egy gyógyszer az esetek 90%-ában hatásos; egy kezelés jelentősen megnöveli a rákos betegek túlélését). A hipotézis vizsgálat
Mintavétel fogalmai STATISZTIKA, BIOMETRIA. Mintavételi hiba. Statisztikai adatgyűjtés. Nem véletlenen alapuló kiválasztás
STATISZTIKA, BIOMETRIA. Előadás Mintavétel, mintavételi technikák, adatbázis Mintavétel fogalmai A mintavételt meg kell tervezni A sokaság elemei: X, X X N, lehet véges és végtelen Mintaelemek: x, x x
Mérési hibák 2006.10.04. 1
Mérési hibák 2006.10.04. 1 Mérés jel- és rendszerelméleti modellje Mérési hibák_labor/2 Mérési hibák mérési hiba: a meghatározandó értékre a mérés során kapott eredmény és ideális értéke közötti különbség
Statisztika I. 4. előadás Mintavétel. Kóczy Á. László KGK-VMI. Minta Mintavétel Feladatok. http://uni-obuda.hu/users/koczyl/statisztika1.
Statisztika I. 4. előadás Mintavétel http://uni-obuda.hu/users/koczyl/statisztika1.htm Kóczy Á. László KGK-VMI koczy.laszlo@kgk.uni-obuda.hu Sokaság és minta Alap- és mintasokaság A mintasokaság az a részsokaság,
Programozási nyelvek 4. előadás
Programozási nyelvek 4. előadás Fa rajzolása rekurzívan Logo fa variációk A fa egy törzsből áll, amelynek tetején két ág nő ki, s mindkettő tulajdonképpen egy-egy alacsonyabb, rövidebb törzsű fa. Az ábrában
[Biomatematika 2] Orvosi biometria
[Biomatematika 2] Orvosi biometria 2016.02.15. Esemény Egy kísérlet vagy megfigyelés (vagy mérés) lehetséges eredményeinek összessége (halmaza) alkotja az eseményteret. Esemény: az eseménytér részhalmazai.
2. Készítsen awk szkriptet, amely kiírja az aktuális könyvtár összes alkönyvtárának nevét, amely februári keltezésű (bármely év).
1. fejezet AWK 1.1. Szűrési feladatok 1. Készítsen awk szkriptet, ami kiírja egy állomány leghosszabb szavát. 2. Készítsen awk szkriptet, amely kiírja az aktuális könyvtár összes alkönyvtárának nevét,
1. Jelölje meg az összes igaz állítást a következők közül!
1. Jelölje meg az összes igaz állítást a következők közül! a) A while ciklusban a feltétel teljesülése esetén végrehajtódik a ciklusmag. b) A do while ciklusban a ciklusmag után egy kilépési feltétel van.
1. Írjunk programot mely beolvas két egész számot és kinyomtatja az összegüket.
1. Írjunk programot mely beolvas két egész számot és kinyomtatja az összegüket. // változó deklaráció int number1; // első szám int number2; // második szám int sum; // eredmény std::cout
egyenletesen, és c olyan színű golyót teszünk az urnába, amilyen színűt húztunk. Bizonyítsuk
Valószínűségszámítás 8. feladatsor 2015. november 26. 1. Bizonyítsuk be, hogy az alábbi folyamatok mindegyike martingál. a S n, Sn 2 n, Y n = t n 1+ 1 t 2 Sn, t Fn = σ S 1,..., S n, 0 < t < 1 rögzített,
First Prev Next Last Go Back Full Screen Close Quit
Többváltozós függvények (2) First Prev Next Last Go Back Full Screen Close Quit 1. Egyváltozós függvények esetén a differenciálhatóságból következett a folytonosság. Fontos tudni, hogy abból, hogy egy
SCILAB programcsomag segítségével
Felhasználói függvények de niálása és függvények 3D ábrázolása SCILAB programcsomag segítségével 1. Felhasználói függvények de niálása A Scilab programcsomag rengeteg matematikai függvényt biztosít a számítások
Biomatematika 2 Orvosi biometria
Biomatematika 2 Orvosi biometria 2017.02.13. Populáció és minta jellemző adatai Hibaszámítás Valószínűség 1 Esemény Egy kísérlet vagy megfigyelés (vagy mérés) lehetséges eredményeinek összessége (halmaza)
Tudnivalók az otthon kidolgozandó feladatokról
Tudnivalók az otthon kidolgozandó feladatokról Otthon kidolgozandó feladat megoldásának beküldése csak azok számára kötelező, akik fölvették az Assembly programozás konzultáció kurzust. Minden hallgató,
Hipotézis STATISZTIKA. Kétmintás hipotézisek. Munkahipotézis (H a ) Tematika. Tudományos hipotézis. 1. Előadás. Hipotézisvizsgálatok
STATISZTIKA 1. Előadás Hipotézisvizsgálatok Tematika 1. Hipotézis vizsgálatok 2. t-próbák 3. Variancia-analízis 4. A variancia-analízis validálása, erőfüggvény 5. Korreláció számítás 6. Kétváltozós lineáris
2018, Funkcionális programozás
Funkcionális programozás 6. előadás Sapientia Egyetem, Matematika-Informatika Tanszék Marosvásárhely, Románia mgyongyi@ms.sapientia.ro 2018, tavaszi félév Miről volt szó? Haskell modulok, kompilálás a
Adatok statisztikai értékelésének főbb lehetőségei
Adatok statisztikai értékelésének főbb lehetőségei 1. a. Egy- vagy kétváltozós eset b. Többváltozós eset 2. a. Becslési problémák, hipotézis vizsgálat b. Mintázatelemzés 3. Szint: a. Egyedi b. Populáció
Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Számelmélet I.
Számelmélet I. DEFINÍCIÓ: (Osztó, többszörös) Ha egy a szám felírható egy b szám és egy másik egész szám szorzataként, akkor a b számot az a osztójának, az a számot a b többszörösének nevezzük. Megjegyzés:
Statisztika I. 4. előadás Mintavétel. Kóczy Á. László KGK-VMI. Minta Mintavétel Feladatok. http://uni-obuda.hu/users/koczyl/statisztika1.
Statisztika I. 4. előadás Mintavétel http://uni-obuda.hu/users/koczyl/statisztika1.htm Kóczy Á. László KGK-VMI koczy.laszlo@kgk.uni-obuda.hu Sokaság és minta Alap- és mintasokaság A mintasokaság az a részsokaság,
Nagyméretű adathalmazok kezelése (BMEVISZM144) Reinhardt Gábor április 5.
Asszociációs szabályok Budapesti Műszaki- és Gazdaságtudományi Egyetem 2012. április 5. Tartalom 1 2 3 4 5 6 7 ismétlés A feladat Gyakran együtt vásárolt termékek meghatározása Tanultunk rá hatékony algoritmusokat
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Számelmélet
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Számelmélet A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek