Pl.: Galton deszka ( vagy link innen:
|
|
- Adrián Katona
- 8 évvel ezelőtt
- Látták:
Átírás
1 9. feladatsor - Minőség-ellenőrzés és binomiális eloszlás Binomiális eloszlással olyan helyzet modellezhető, ahol egy véletlen kísérletet sokszor ismétlünk azonos körülmények között és figyeljük, hogy az n ismétlés során hányszor következett be egy adott esemény. Pl.: Galton deszka ( vagy link innen: Elengedünk egy golyót a piramis tetején. Minden szinten p valószínűséggel balra és (1-p) valószínűséggel jobbra fog esni a golyó. Minden szinten a balra-vagy-jobbra kísérletet végezzük el, n szintű Galton táblán egy golyó n-szer végzi el a kísérletet, a rekesz sorszáma (k, balról 0-val kezdve a számozást) pedig a jobbra döntések számát adja meg. 1. Feladat: (Galton tábla) Tekintsünk egy n = 8 lépcsős Galton deszkát. Mekkora a valószínűsége annak, hogy egy golyó a k. (k = 0,1,2,,8) rekeszbe esik? (n k): =n! / (n-k)! / k! Excelben: = FAKT(n) / FAKT(n-k) / FAKT(k) Nagy n-re (n>170) a FAKT(n) túlcsordul, de szerencsére az excel ezen túl tud lépni és ki tudja számolni az (n k)-t: =KOMBINÁCIÓK(n;k) Spoil: a binomiális eloszlást is tudja az excel: P(S=k)-t számolja a =BINOM.ELOSZLÁS(k;n;p;0) és P(S<=k)-t számolja a =BINOM.ELOSZLÁS(k;n;p;1) A KOMBINÁCIÓK függvény (mint a pl. szórás is) használható a ZH-n. A BINOM.ELOSZLÁS nem. 2. feladat: (Vizsgaidőszak-szimuláció) Egy 120 fős évfolyam vizsgaidőszak előtt áll. Mindenkinek 8 darab szóbeli vizsgája lesz, ahol tételt kell húzni, majd a kihúzott tételből vizsgázni. Az évfolyam sokallja a tanulnivalót, ezért kollektíven úgy döntenek, hogy mindenki minden vizsgára a tételek csupán 80%-át fogja megtanulni, és ha maradékból húz tételt akkor megbukik. (Tegyük fel, hogy egyébként mindig átmegy a vizsgán.) Véletlenszám generátorral szimuláljuk a tételhúzásokat, és állapítsuk meg, hogy hány hallgató ment át minden vizsgán, hányan buktak 1, 2, 3,..., 8 vizsgán. A kapott számokból (gyakoriságokból) képezzünk relatív gyakoriságokat (ehhez a gyakoriságokat az évfolyam létszámával kell leosztani), és ezeket az értékeket vessük össze a binomiális eloszlás elméleti valószínűségeivel. Az F9 billentyű lenyomásával újragenerálhatjuk a véletlenszámokat, ezzel a vizsgaidőszak-szimulációt tetszőlegesen sokszor megismételhetjük. A feladatot úgy írjuk meg, hogy 80%-ot könnyű legyen megváltoztatni más értékre. (Tehát ne a számot írjuk a képletekbe, hanem egy külön cellába írjuk be ezt az értéket, és a képletekben erre a cellára
2 hivatkozzunk.) Így szimulálhatunk más felkészültségre vonatkozó eseteket is. (pl. 50% esetén nézzük meg) 1. A tételhúzást a VÉL() függvény segítségével szimulálhatjuk. A VÉL() által visszaadott érték minden függvényhíváskor más és más, de az értékek egyenletes eloszlást követnek a [0,1) intervallumon. (A VÉL() felfogható úgy mint egy valószínűségi változó.) A tételhúzás szimulálásánál, minket csak az érdekel, hogy megtanult, vagy nem megtanult tételt húzunk. Mivel 80% az esélye annak az eseménynek, hogy megtanult tételt húzunk és szintén 80% annak az esélye, hogy VÉL()<0,8 ez utóbbit használhatjuk a szimulációban. Kicsit szoktatva magunkat a valószínűségszámítás nyelvezetéhez, ugyanez elmondható úgy, hogy: A végzett kísérlet egy véletlenszám generálása a VÉL() segítségével. (Értéket kap a valószínűségi változónk.) A kísérlet során az általunk megfigyelni kívánt esemény az amikor VÉL()<0,8. Az esemény bekövetkezési valószínűsége 0,8, azaz P(VÉL()<0,8)=0,8. A 0,8 beégetése helyett B7 cella tartalmára hivatkozzunk, így nem kell az összes helyen javítani a képletet, ha 0,8 értékét meg szeretnénk változtatni. Vegyük figyelembe, hogy ezt a képletet mindkét irányba ki fogjuk húzni, így abszolút hivatkozásra van szükség: VÉL()<$B$7 Végül tegyük a táblázatot kifejezőbbé úgy, hogy ne az IGAZ, HAMIS értékeket jelenítsük meg, hanem az E7, F7 cellákban előre definiált és szimbólumokat. Ezt a HA(logikai_vizsgálat; érték_ha_igaz; érték_ha_hamis) függvény segítségével tehetjük meg. Most is abszolút hivatkozásokat használva pl. az első hallgató első vizsgája esetén: C11 := =HA(VÉL()<$B$7;$E$7;$F$7) Ezt a képletet húzzuk ki jobbra, egészen a 8. vizsgáig. Majd jelöljük ki az egész sort (C11:J11) és a sort húzzuk le a 120. hallgatóig. Megjegyzés: Ne lepődjünk meg azon, hogy a munkalap frissül, és mindig más az eredmény, hiszen a VÉL() minden kiértékelésre mást ad. 2. Összesítsük hallgatónként a sikeres vizsgák számát. A múlt gyakorlaton tanultak alapján az első hallgató esetében: K11 := =DARABTELI(C11:J11;$E$7) Ezt húzzuk le a 120. hallgatóig. 3. Számoljuk össze, hogy hány darab hallgatónak volt 0,1,,8 sikeres vizsgája. Az eddigiek szerint írhatnánk a 0 sikeres vizsga sorába ezt: =DARABTELI(K11:K130;0). Ahhoz, hogy a képlet kényelmesen másolható legyen a 0 beégetése helyett hivatkozzunk inkább az O11-es cella tartalmára. Így lehúzáskor mindig az adott sorban érvényes sikeres vizsgák száma fog szerepelni ezen a helyen. A (K11:K130) tartomány viszont ne mozogjon lefelé lehúzáskor, tehát: P11 := =DARABTELI(K$11:K$130;O11) Ezt a képletet már lehúzhatjuk a 8 sikeres vizsga soráig. 4. A relatív gyakoriságok megadása egyszerű: Az első sorban pl: Q11 := =P11/ Már csak az elméleti valószínűségek vannak hátra: mint a Galton táblánál: Ennek alapján (figyelembe véve, hogy p -t később változtatni szeretnénk, és hogy k különböző értékei az O11:O19 cellákban vannak, illetve n=8) pl. k=0 esetre:
3 R11 := =KOMBINÁCIÓK(8;O11) *$B$7^O11*(1-$B$7)^(8-O11) A képletet húzzuk le az egész oszlopra. 6. Minden szükséges cellát kitöltöttünk. Az F9 billentyű lenyomásával újra szimulálhatjuk az egész vizsgaidőszakot. Tegyük meg néhányszor, és figyeljük meg, hogy a tapasztalati értékek, hogyan ingadoznak az elméleti értékek körül. 7. Írjuk át a p értékét 0.5-re (ami azt az esetet jelenti, amikor csak a tételek felét tanulja meg az évfolyam minden vizsgára) és itt is végezzünk néhány szimulációt. Minőség-ellenőrzés: Egylépcsős minőség-ellenőrzési eljárás az MSz 548-as szabvány szerint: N elemű tétel elemeinek valós hiba valószínűsége (ami ugye nem ismert) p n elemű minta vizsgálata: hibás darabok száma a mintában S Ha S Ac (Accepted) A tétel a követelményeknek megfelel, a minta alapján a tételt elfogadjuk Ha S Re (Refused) a tétel nem felel meg a követelményeknek, a minta alapján a teljes tételt visszautasítjuk Tétel: egy gyártmánysorozat elemei akkor kezelhetők statisztikailag azonos módon, ha a termékek azonos műszakban, azonos gépbeállítással, azonos nyersanyag szállítmányból készültek. Az N tételszám tehát akkora, amekkora a fenti feltételeknek eleget tevő sorozat darabszáma. N ismerete mellett mekkora legyen n minta elemszám? Mekkora legyenek az Ac és a Re értékek? Választ a Kulcsjel és Egyszeres tervtípus táblázatok (ld a leírás végén) adják meg. Kérdések: Amennyiben a tétel valós selejtszázaléka p, akkor mekkora annak a valószínűsége, hogy az n elemű minta pontosan k db selejtet tartalmaz? Amennyiben a tétel valós selejtszázaléka p, akkor mekkora annak a valószínűsége, hogy az n elemű minta legfeljebb k db selejtet tartalmaz? Válasz: Binomiális eloszlás 3. feladat: (Minőség-ellenőrzés MSz 548 szerint) Egy zenelejátszó-készülékeket gyártó cég 4%-os átvételi hibaszintben állapodik meg az LCD panelek beszállítójával. Naponta 100 db-os tétel érkezik. a. Mekkora mintát kell megvizsgálni az átvevőnek II. fokozatú, egyszeres osztályozás esetén? b. Hibázik-e az átvevő, ha a mintában 5 db selejtet talál, és átveszi azt? c. Mekkora a valószínűsége annak, hogy az átvevő átveszi a tételt, ha annak valódi selejtszázaléka 6%? d. Rajzoljuk meg az eljáráshoz tartozó OC görbét!
4 a) N = 100 db-os tétel, általános II eljárás F kulcsjel n = 20 elemű minta vizsgálata szükséges b) Ac = 2, Re = 3, tehát hibázik ha átveszi. c) Ki kell számolni P(S=k)-t k = 0, 1, 2-re és össze kell őket adni: ( A d) feladatrész miatt célszerű p-t hivatkozni és nem beégetni. Ugyanezen oknál fogva vannak hol az oszlop hol a sorértékek rögzítve a hivatkozásokban ) A21: p B21: 0.06 G16: 20 A23: k A24: 0 B24: =KOMBINÁCIÓK($G$16;$A24)*B$21^$A24*(1- B$21)^($G$16-$A24) A25: 1 A26: 2 A28: P(S<=2) B28: =szum(b24:26) OC Operation characteristics Azt mutatja meg, hogy a téltel valós selejtszázalékától (p) függően mi annak a valószínűsége, hogy a selejtek száma nem éri el az eljárástól függő Re értékét azaz a tételt átvesszük (P(S<=Ac)). Ideális minőségellenőrzési eljárás OC-je az lenne, hogy ha a tétel selejtaránya a megegyezésnél jobb, akkor biztos átvesszük (azaz ha p < AQL, akkor az OC értéke 1) és ha a p > AQL, akkor biztos nem vesszük át (azaz 0). Megoldás: Számítsuk ki a c) részbeni valószínűséget p = 0, 0.01, 0.02,, 0.5 értékekre és ábrázoljuk. A fenti képlettel elég csak a 21. sorba felírni egymás mellé a p-ket és a többi sor másolható a 28. sorban ott lesznek az OC görbe értékei, a P(S<=2) azaz a P( a mintavétel alapján a tételt elfogadom ) értékek.
5
Sorozatban gyártott termékek minőségellenőrzése
Gyártásközi minőség-ellenőrzés Késztermék minőség-ellenőrzése Sorozatban gyártott termékek minőségellenőrzése Gyártásközi minőség-ellenőrzés Késztermék minőség-ellenőrzése Minőségellenőrzés a cári Oroszországban
Gyakorló feladatok. Az alábbi feladatokon kívül a félév szemináriumi anyagát is nézzék át. Jó munkát! Gaál László
Gyakorló feladatok Az alábbi feladatokon kívül a félév szemináriumi anyagát is nézzék át. Jó munkát! Gaál László I/. A vizsgaidőszak második napján a hallgatók %-ának az E épületben, %-ának a D épületben,
biometria II. foglalkozás előadó: Prof. Dr. Rajkó Róbert Matematikai-statisztikai adatfeldolgozás
Kísérlettervezés - biometria II. foglalkozás előadó: Prof. Dr. Rajkó Róbert Matematikai-statisztikai adatfeldolgozás A matematikai-statisztika feladata tapasztalati adatok feldolgozásával segítséget nyújtani
Matematikai alapok és valószínőségszámítás. Statisztikai becslés Statisztikák eloszlása
Matematikai alapok és valószínőségszámítás Statisztikai becslés Statisztikák eloszlása Mintavétel A statisztikában a cél, hogy az érdeklõdés tárgyát képezõ populáció bizonyos paramétereit a populációból
10. Mintavételi tervek minısítéses ellenırzéshez
10. Mintavételi tervek minısítéses ellenırzéshez Az átvételi ellenırzés akkor minısítéses, ha a mintában a selejtes elemek számát ill. a hibák számát vizsgáljuk, és ebbıl vonunk le következtetést a tételbeli
Véletlenszám generátorok és tesztelésük. Tossenberger Tamás
Véletlenszám generátorok és tesztelésük Tossenberger Tamás Érdekességek Pénzérme feldobó gép: $0,25-os érme 1/6000 valószínűséggel esik az élére 51% eséllyel érkezik a felfelé mutató oldalára Pörgetésnél
Statisztika I. 8. előadás. Előadó: Dr. Ertsey Imre
Statisztika I. 8. előadás Előadó: Dr. Ertsey Imre Minták alapján történő értékelések A statisztika foglalkozik. a tömegjelenségek vizsgálatával Bizonyos esetekben lehetetlen illetve célszerűtlen a teljes
2. A ξ valószín ségi változó eloszlásfüggvénye a következ : x 4 81 F (x) = x 4 ha 3 < x 0 különben
1 feladatsor 1 Egy dobozban 20 fehér golyó van Egy szabályos dobókockával dobunk, majd a következ t tesszük: ha a dobott szám 1,2 vagy 3, akkor tíz golyót cserélünk ki pirosra; ha a dobott szám 4 vagy
Biomatematika 2 Orvosi biometria
Biomatematika 2 Orvosi biometria 2017.02.13. Populáció és minta jellemző adatai Hibaszámítás Valószínűség 1 Esemény Egy kísérlet vagy megfigyelés (vagy mérés) lehetséges eredményeinek összessége (halmaza)
VALÓSZÍNŰSÉG, STATISZTIKA TANÍTÁSA
VALÓSZÍNŰSÉG, STATISZTIKA TANÍTÁSA A VALÓSZÍNŰSÉGI SZEMLÉLET ALAPOZÁSA 1-6. OSZTÁLY A biztos, a lehetetlen és a lehet, de nem biztos események megkülünböztetése Valószínűségi játékok, kísérletek események
1. tétel. Valószínűségszámítás vizsga Frissült: 2013. január 19. Valószínűségi mező, véletlen tömegjelenség.
1. tétel Valószínűségszámítás vizsga Frissült: 2013. január 19. Valószínűségi mező, véletlen tömegjelenség. A valószínűségszámítás tárgya: véletlen tömegjelenségek vizsgálata. véletlen: a kísérlet kimenetelét
10-6. ábra. Az áttérési szabályok rendszere (Papp L., Róth P., Németh L., 1992)
Hasonlítsuk össze az I., II. és III. fokozat, ill. az S1-S4 különleges fokozatok jelleggörbéit, melyeket a 10-4. és 10-5. ábra mutat. S1-tôl S4 ill. az I.-tôl a III. felé haladva a nagy selejtarányú tétel
[Biomatematika 2] Orvosi biometria
[Biomatematika 2] Orvosi biometria 2016.02.15. Esemény Egy kísérlet vagy megfigyelés (vagy mérés) lehetséges eredményeinek összessége (halmaza) alkotja az eseményteret. Esemény: az eseménytér részhalmazai.
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 10 X. SZIMULÁCIÓ 1. VÉLETLEN számok A véletlen számok fontos szerepet játszanak a véletlen helyzetek generálásában (pénzérme, dobókocka,
SZÁMÍTÁSOK A TÁBLÁZATBAN
SZÁMÍTÁSOK A TÁBLÁZATBAN Az Excelben az egyszerű adatok bevitelén kívül számításokat is végezhetünk. Ezeket a cellákba beírt képletek segítségével oldjuk meg. A képlet: olyan egyenlet, amely a munkalapon
Kabos: Statisztika II. ROC elemzések 10.1. Szenzitivitás és specificitás a jelfeldolgozás. és ilyenkor riaszt. Máskor nem.
Kabos: Statisztika II. ROC elemzések 10.1 ROC elemzések Szenzitivitás és specificitás a jelfeldolgozás szóhasználatával A riasztóberendezés érzékeli, ha támadás jön, és ilyenkor riaszt. Máskor nem. TruePositiveAlarm:
AGRÁRMÉRNÖK SZAK Alkalmazott matematika, II. félév Összefoglaló feladatok 2. 4. A síkban 16 db általános helyzetű pont hány egyenest határoz meg?
KOMBINATORIKA FELADATSOR 1 1. Hányféleképpen rendezhető egy sorba egy óvodás csoport ha 9 lány és 6 fiú van és a lányokat mindig előre akarjuk állítani? 2. Hány 6-jegyű telefonszám van ahol mind 35-tel
Valószínűségszámítás összefoglaló
Statisztikai módszerek BMEGEVGAT Készítette: Halász Gábor Budapesti Műszaki és Gazdaságtudományi Egyetem Gépészmérnöki Kar Hidrodinamikai Rendszerek Tanszék, Budapest, Műegyetem rkp. 3. D ép. 334. Tel:
Az egyenes egyenlete: 2 pont. Az összevont alak: 1 pont. Melyik ábrán látható e függvény grafikonjának egy részlete?
1. Írja fel annak az egyenesnek az egyenletét, amely áthalad az (1; 3) ponton, és egyik normálvektora a (8; 1) vektor! Az egyenes egyenlete: 2. Végezze el a következő műveleteket, és vonja össze az egynemű
Gazdasági matematika II. vizsgadolgozat megoldása A csoport
Gazdasági matematika II. vizsgadolgozat megoldása A csoport Definiálja az alábbi fogalmakat!. Egy eseménynek egy másik eseményre vonatkozó feltételes valószínűsége. ( pont) Az A esemény feltételes valószínűsége
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 4 IV. MINTA, ALAPsTATIsZTIKÁK 1. MATEMATIKAI statisztika A matematikai statisztika alapfeladatát nagy általánosságban a következőképpen
Bevezető feldatok. Elágazás és összegzés tétele
Bevezető feldatok 1. Szövegértés és algoritmikus gondolkodás Kátai Zoltán https://people.inf.elte.hu/szlavi/infodidact15/manuscripts/kz.pdf Elágazás és összegzés tétele Táblázatkezelési feladatok Feladatok
Tananyag: Kiss Béla - Krebsz Anna: Lineáris algebra, többváltozós függvények, valószínűségszámítás,
// KURZUS: Matematika II. MODUL: Valószínűség-számítás 22. lecke: A teljes valószínűség tétele és a Bayes-tétel Tananyag: Kiss Béla - Krebsz Anna: Lineáris algebra, többváltozós függvények, valószínűségszámítás,
Matematika A3 Valószínűségszámítás, 6. gyakorlat 2013/14. tavaszi félév
Matematika A3 Valószínűségszámítás, 6. gyakorlat 2013/14. tavaszi félév 1. A várható érték és a szórás transzformációja 1. Ha egy valószínűségi változóhoz hozzáadunk ötöt, mínusz ötöt, egy b konstanst,
KÖVETKEZTETŐ STATISZTIKA
ÁVF GM szak 2010 ősz KÖVETKEZTETŐ STATISZTIKA A MINTAVÉTEL BECSLÉS A sokasági átlag becslése 2010 ősz Utoljára módosítva: 2010-09-07 ÁVF Oktató: Lipécz György 1 A becslés alapfeladata Pl. Hányan láttak
Statisztikai módszerek 1. gyakorlat. Alapok,Boxplot
Statisztikai módszerek 1. gyakorlat Alapok,Boxplot Adminisztratív tudnivalók tárgy célja, tematikája stb.: Lásd előadáson Követelmények Aláírás birtokában lehet vizsgázni Aláírás a zh vagy pzh min elégséges
A feladat megoldása során a Microsoft Office Excel használata a javasolt. Ebben a feladatban a következőket fogjuk gyakorolni:
SZE INFORMATIKAI KÉPZÉS 1 A feladat megoldása során a Microsoft Office Excel használata a javasolt. Ebben a feladatban a következőket fogjuk gyakorolni: Irányított beillesztés használata. Keresőfüggvények.
Matematika A3 Valószínűségszámítás, 5. gyakorlat 2013/14. tavaszi félév
Matematika A3 Valószínűségszámítás, 5. gyakorlat 013/14. tavaszi félév 1. Folytonos eloszlások Eloszlásfüggvény és sűrűségfüggvény Egy valószínűségi változó, illetve egy eloszlás eloszlásfüggvényének egy
Készítette: Fegyverneki Sándor
VALÓSZÍNŰSÉGSZÁMÍTÁS Összefoglaló segédlet Készítette: Fegyverneki Sándor Miskolci Egyetem, 2001. i JELÖLÉSEK: N a természetes számok halmaza (pozitív egészek) R a valós számok halmaza R 2 {(x, y) x, y
MATEMATIKA HETI 3 ÓRA. IDŐPONT : 2009 június 8.
EURÓPAI ÉRETTSÉGI 2009 MATEMATIKA HETI 3 ÓRA IDŐPONT : 2009 június 8. A VIZSGA IDŐTARTAMA : 3 óra (180 perc) MEGENGEDETT SEGÉDESZKÖZÖK : Európai képletgyűjtemény Nem programozható, nem grafikus kalkulátor
Függvények II. Indítsuk el az Excel programot! A minta alapján vigyük be a Munka1 munkalapra a táblázat adatait! 1. ábra Minta az adatbevitelhez
Bevezetés Ebben a fejezetben megismerkedünk a Logikai függvények típusaival és elsajátítjuk alkalmazásukat. Jártasságot szerzünk bonyolultabb feladatok megoldásában, valamint képesek leszünk a függvények
Munkánk során a cellák tartalmát gyakran másolni szoktuk. Előfordul, hogy képleteket tartalmazó cellákat másolunk.
Táblázatkezelés 4. - Hivatkozások Az elmúlt órán végzett számításoknál, amikor a felhasználói képleteket készítettük, mindig annak a cellának a tartalmát használtuk, amelyben a számításhoz szükséges adat
Mintavétel fogalmai STATISZTIKA, BIOMETRIA. Mintavételi hiba. Statisztikai adatgyűjtés. Nem véletlenen alapuló kiválasztás
STATISZTIKA, BIOMETRIA. Előadás Mintavétel, mintavételi technikák, adatbázis Mintavétel fogalmai A mintavételt meg kell tervezni A sokaság elemei: X, X X N, lehet véges és végtelen Mintaelemek: x, x x
Környezet statisztika
Környezet statisztika Permutáció, variáció, kombináció k számú golyót n számú urnába helyezve hányféle helykitöltés lehetséges, ha a golyókat helykitöltés Minden urnába akárhány golyó kerülhet (ismétléses)
Nagy számok törvényei Statisztikai mintavétel Várható érték becslése. Dr. Berta Miklós Fizika és Kémia Tanszék Széchenyi István Egyetem
agy számok törvényei Statisztikai mintavétel Várható érték becslése Dr. Berta Miklós Fizika és Kémia Tanszék Széchenyi István Egyetem A mérés mint statisztikai mintavétel A méréssel az eloszlásfüggvénnyel
EGYSZERŰ SZÁMÍTÁSOK TÁBLÁZATKEZELÉS ELINDULÁS SZE INFORMATIKAI KÉPZÉS 1
SZE INFORMATIKAI KÉPZÉS 1 TÁBLÁZATKEZELÉS EGYSZERŰ SZÁMÍTÁSOK A feladat megoldása során az Excel 2010 program használata a javasolt. Ebben a feladatban a következőket fogjuk áttekinteni, ill. gyakorolni:
i p i p 0 p 1 p 2... i p i
. vizsga, 06--9, Feladatok és megoldások. (a) Adja meg az diszkrét eloszlás várható értékének a definícióját! i 0... p i p 0 p p... i p i (b) Tegyük fel, hogy a rigófészkekben található tojások X száma
A táblázat első sorában a feliratok vannak, ezért az x, y koordinátákat a második sortól kezdve az egymillió-egyedik sorig fogjuk elhelyezni.
Ebben a feladatban a Pi értékét fogjuk meghatározni Excelben a Monte-Carlo módszer segítségével. A feladat megoldása során az Excel 2010 használata a javasolt, de a segédlet a 2003- as verzióhoz és Calchoz
függvény grafikonja milyen transzformációkkal származtatható az f0 : R R, f0(
FÜGGVÉNYEK 1. (008. okt., 14. fel, 5+7 pont) Fogalmazza meg, hogy az f : R R, f ( x) x 1 függvény grafikonja milyen transzformációkkal származtatható az f0 : R R, f0( x) x függvény grafikonjából! Ábrázolja
1. tétel. 1. Egy derékszögű háromszög egyik szöge 50, a szög melletti befogója 7 cm. Mekkora a háromszög átfogója? (4 pont)
1. tétel 1. Egy derékszögű háromszög egyik szöge 50, a szög melletti befogója cm. Mekkora a háromszög átfogója? (4 pont). Adott az ábrán két vektor. Rajzolja meg a b, a b és az a b vektorokat! (6 pont)
1 pont. 1 pont. 1 pont. 1 pont
. feladat: a) Az utazók száma binomiális eloszlást valósít meg. Annak valószínűsége, hogy nem marad üres hely: P (mindenki utazik) = 0,9 0 0,0 A ténylegesen utazók számának várható értéke (miután egy 0;
A Microsoft OFFICE. EXCEL táblázatkezelő. program alapjai. 2013-as verzió használatával
A Microsoft OFFICE EXCEL táblázatkezelő program alapjai 2013-as verzió használatával A Microsoft Office programcsomag táblázatkezelő alkalmazása az EXCEL! Aktív táblázatok készítésére használjuk! Képletekkel,
Véletlenszám generátorok. 6. előadás
Véletlenszám generátorok 6. előadás Véletlenszerű változók, valószínűség véletlen, véletlen változók valószínűség fogalma egy adott esemény bekövetkezésének esélye értékét 0 és között adjuk meg az összes
Excel IV. Haladó ismeretek. További fontos függvények Függvényhasználat ellenőrzése
Alkalmazott Informatikai Intézeti Tanszék MŰSZAKI INFORMATIKA Dr.Dudás László 0. Excel IV. Haladó ismeretek További fontos függvények Függvényhasználat ellenőrzése Alkalmazott Informatikai Intézeti Tanszék
Mintavételes átvételi ellenőrzés
Mintavételes átvételi ellenőrzés öntés a tétel átvételéről vagy visszautasításáról beszállítótól érkezett tétel másik részlegből érkezett tétel kiszállítandó tétel Nem paraméterbecslés, hanem hipotézisvizsgálat
Microsoft Excel 2010. Gyakoriság
Microsoft Excel 2010 Gyakoriság Osztályközös gyakorisági tábla Nagy számú mérési adatokat csoportokba (osztályokba) rendezése -> könnyebb áttekintés Osztályokban szereplő adatok száma: osztályokhoz tartozó
Bevezetés az Excel 2010 használatába
Molnár Mátyás Bevezetés az Excel 2010 használatába Csak a lényeg érthetően! Tartalomjegyzék A TÁBLÁZATKEZELÉS ALAPJAI 1 AZ EXCEL PROGRAMABLAK FELÉPÍTÉSE 1 GYORSELÉRÉSI ESZKÖZTÁR 5 ÁLLAPOTSOR 6 AZ EXCEL
Statisztikai módszerek 7. gyakorlat
Statisztikai módszerek 7. gyakorlat A tanult nem paraméteres próbák: PRÓBA NEVE Illeszkedés-vizsgálat Χ 2 próbával Homogenitás-vizsgálat Χ 2 próbával Normalitás-vizsgálataΧ 2 próbával MIRE SZOLGÁL? A val.-i
Matematika III. 4. A valószínűségi változó és jellemzői Prof. Dr. Závoti, József
Matematika III. 4. A valószínűségi változó és jellemzői Prof. Dr. Závoti, József Matematika III. 4. : A valószínűségi változó és jellemzői Prof. Dr. Závoti, József Lektor : Bischof, Annamária Ez a modul
Statisztika - bevezetés Méréselmélet PE MIK MI_BSc VI_BSc 1
Statisztika - bevezetés 00.04.05. Méréselmélet PE MIK MI_BSc VI_BSc Bevezetés Véletlen jelenség fogalma jelenséget okok bizonyos rendszere hozza létre ha mindegyik figyelembe vehető egyértelmű leírás általában
[Biomatematika 2] Orvosi biometria
[Biomatematika 2] Orvosi biometria 2016.02.22. Valószínűségi változó Véletlentől függő számértékeket (értékek sokasága) felvevő változókat valószínűségi változóknak nevezzük(jelölés: ξ, η, x). (pl. x =
Microsoft Excel 2010
Microsoft Excel 2010 Milyen feladatok végrehajtására használatosak a táblázatkezelők? Táblázatok létrehozására, és azok formai kialakítására A táblázat adatainak kiértékelésére Diagramok készítésére Adatbázisok,
SZÁMÍTÓGÉPES ADATFELDOLGOZÁS
SZÁMÍTÓGÉPES ADATFELDOLGOZÁS A TÁBLÁZATKEZELŐK Irodai munka megkönnyítése Hatékony a nyilvántartások, gazdasági, pénzügyi elemzések, mérési kiértékelések, beszámolók stb. készítésében. Alkalmazható továbbá
Ebben a feladatban szűrésekkel, kimutatásokkal fogunk foglalkozni. A megoldás során egy hallgatói adatbázissal dolgozunk.
1 NEGYEDIK EXCEL GYAKORLAT VIZSGA A feladat megoldása során az Excel 2010 használata a javasolt, de a segédlet a 2003-as verzióhoz és a Calchoz is használható. A feladat elvégzése során a következőket
1. Egy Kft dolgozóit a havi bruttó kereseteik alapján csoportosítottuk: Havi bruttó bér, ezer Ft/fő
Figyelem! A példasor nem tartalmazza valamennyi típuspéldát. A dolgozatban az órán leadott feladatok közül bármely típusú előfordulhat. A példasor már a második dolgozat anyagát gyakorló feladatokat is
Vizsgáljuk elôször, hogy egy embernek mekkora esélye van, hogy a saját
376 Statisztika, valószínûség-számítás 1500. Az elsô kérdésre egyszerû válaszolni, elég egy ellenpélda, és biztosan nem lehet akkor így kiszámolni. Pl. legyen a három szám a 3; 5;. A két kisebb szám átlaga
MATEMATIKA HETI 5 ÓRA. IDŐPONT: 2009. június 8.
EURÓPAI ÉRETTSÉGI 2009 MATEMATIKA HETI 5 ÓRA IDŐPONT: 2009. június 8. A VIZSGA IDŐTARTAMA: 4 óra (240 perc) ENGEDÉLYEZETT SEGÉDESZKÖZÖK : Európai képletgyűjtemény Nem programozható, nem grafikus kalkulátor
Mérési hibák 2006.10.04. 1
Mérési hibák 2006.10.04. 1 Mérés jel- és rendszerelméleti modellje Mérési hibák_labor/2 Mérési hibák mérési hiba: a meghatározandó értékre a mérés során kapott eredmény és ideális értéke közötti különbség
Hogyan lehet Pivot tábla segítségével komplex adatokat elemezni és bemutatni?
Hogyan lehet Pivot tábla segítségével komplex adatokat elemezni és bemutatni? Fordította: IFUA Horváth & Partners Képzelje el, hogy a vállalat értékesítési vezetője megkéri Önt, hogy rövid időn belül elemezze
az Excel for Windows programban
az Excel for Windows táblázatkezelőblázatkezel programban Mit nevezünk nk képletnek? A táblt blázatkezelő programok nagy előnye, hogy meggyorsítj tják és könnyebbé teszik a felhasználó számára a számítási
Azaz 56 7 = 49 darab 8 jegyű szám készíthető a megadott számjegyekből.
1 Kombináció, variáció, permutáció 1. Hányféleképpen rakhatunk be 6 levelet 1 rekeszbe, ha a levelek között nem teszünk különbséget és egy rekeszbe maximum egy levelet teszünk? Mivel egy rekeszbe legfeljebb
1. oldal, összesen: 5
1. oldal, összesen: 5 Elmélet Word 1. Döntse el az alábbi állításról, hogy a tagmondatok tartalma igaz-e, s A WORD helyesírás-ellenőrző rendszere minden helyesírási hibánkat kijavítja, mert felismeri,
Gépi tanulás. Hány tanítómintára van szükség? VKH. Pataki Béla (Bolgár Bence)
Gépi tanulás Hány tanítómintára van szükség? VKH Pataki Béla (Bolgár Bence) BME I.E. 414, 463-26-79 pataki@mit.bme.hu, http://www.mit.bme.hu/general/staff/pataki Induktív tanulás A tanítás folyamata: Kiinduló
Utolsó módosítás: Véletlenszámok
Utolsó módosítás: 2015.08.30. Véletlenszámok Tartalom Véletlenszámok... 1 Tartalom... 1 1 A véletlen (számok) természete... 2 2 A véletlenszám-generátor... 3 2.1 A véletlenszám-generátor függvénye... 3
Biometria az orvosi gyakorlatban. Korrelációszámítás, regresszió
SZDT-08 p. 1/31 Biometria az orvosi gyakorlatban Korrelációszámítás, regresszió Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu Korrelációszámítás
Microsoft Excel. Táblázatkezelés. Dr. Dienes Beatrix
Microsoft Excel Táblázatkezelés Dr. Dienes Beatrix A táblázatkezelı feladata: Táblázatosan elrendezett adatok hatékony és látványos kezelése. Nagy adathalmazok adatbázis-kezelı Legfontosabb szolgáltatások:
Való szí nű sé gi va ltózó, sű rű sé gfű ggvé ny, élószla sfű ggvé ny
Való szí nű sé gi va ltózó, sű rű sé gfű ggvé ny, élószla sfű ggvé ny Szűk elméleti összefoglaló Valószínűségi változó: egy függvény, ami az eseményteret a valós számok halmazára tudja vetíteni. A val.
Mi az adat? Az adat elemi ismeret. Az adatokból információkat
Mi az adat? Az adat elemi ismeret. Tények, fogalmak olyan megjelenési formája, amely alkalmas emberi eszközökkel történő értelmezésre, feldolgozásra, továbbításra. Az adatokból gondolkodás vagy gépi feldolgozás
4.4. Egy úton hetente átlag 3 baleset történik. Mi a valószínűsége, hogy egy adott héten 2?
HIPERGEO. BINOM. POISSON 4.1. Egy üzletben 100-an vásárolnak, közülük 80-an rendelkeznek bankkártyával. A pénztárnál 10-en állnak sorba, mi a valószínűsége, hogy 7-nek lesz bankkártyája? 4.2. Egy üzletben
Excel Hivatkozások, függvények használata
Excel Hivatkozások, függvények használata 1. Fejezet Adatok, képletek, függvények Adatok táblázat celláiba írjuk, egy cellába egy adat kerül lehet szám, vagy szöveg * szám esetén a tizedes jegyek elválasztásához
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Függvények
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek
Eseményalgebra. Esemény: minden amirl a kísérlet elvégzése során eldönthet egyértelmen hogy a kísérlet során bekövetkezett-e vagy sem.
Eseményalgebra. Esemény: minden amirl a kísérlet elvégzése során eldönthet egyértelmen hogy a kísérlet során bekövetkezett-e vagy sem. Elemi esemény: a kísérlet egyes lehetséges egyes lehetséges kimenetelei.
Excel Hivatkozások, függvények használata
Excel Hivatkozások, függvények használata 1. Fejezet Adatok, képletek, függvények Adatok táblázat celláiba írjuk, egy cellába egy adat kerül lehet szám, vagy szöveg * szám esetén a tizedes jegyek elválasztásához
Matematikai alapok és valószínőségszámítás. Valószínőségi eloszlások Binomiális eloszlás
Matematikai alapok és valószínőségszámítás Valószínőségi eloszlások Binomiális eloszlás Bevezetés A tudományos életben megfigyeléseket teszünk, kísérleteket végzünk. Ezek többféle különbözı eredményre
Biometria az orvosi gyakorlatban. Számítógépes döntéstámogatás
SZDT-01 p. 1/23 Biometria az orvosi gyakorlatban Számítógépes döntéstámogatás Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu Gyakorlat SZDT-01 p.
HÁZI DOLGOZAT. Érmefeldobások eredményei és statisztikája. ELTE-TTK Kémia BSc Tantárgy: Kémia felzárkóztató (A kémia alapjai)
ELTE-TTK Kémia BSc Tantárgy: Kémia felzárkóztató (A kémia alapjai) HÁZI DOLGOZAT Érmefeldobások eredményei és statisztikája Készítette: Babinszki Bence EHA-kód: BABSAET.ELTE E-mail cím: Törölve A jelentés
Matematika III. 5. Nevezetes valószínűség-eloszlások Prof. Dr. Závoti, József
Matematika III. 5. Nevezetes valószínűség-eloszlások Prof. Dr. Závoti, József Matematika III. 5. : Nevezetes valószínűség-eloszlások Prof. Dr. Závoti, József Lektor : Bischof, Annamária Ez a modul a TÁMOP
MATEMATIKA ÉRETTSÉGI május 3. EMELT SZINT I.
MATEMATIKA ÉRETTSÉGI 0. május. EMELT SZINT I. ) Hatjegyű pozitív egész számokat képezünk úgy, hogy a képzett számban szereplő számjegy annyiszor fordul elő, amekkora a számjegy. Hány ilyen hatjegyű számjegy
STATISZTIKA ELŐADÁS ÁTTEKINTÉSE. Matematikai statisztika. Mi a modell? Binomiális eloszlás sűrűségfüggvény. Binomiális eloszlás
ELŐADÁS ÁTTEKINTÉSE STATISZTIKA 9. Előadás Binomiális eloszlás Egyenletes eloszlás Háromszög eloszlás Normális eloszlás Standard normális eloszlás Normális eloszlás mint modell 2/62 Matematikai statisztika
Kiválasztás. A változó szerint. Rangok. Nem-paraméteres eljárások. Rang: Egy valamilyen szabály szerint felállított sorban elfoglalt hely.
Kiválasztás A változó szerint Egymintás t-próba Mann-Whitney U-test paraméteres nem-paraméteres Varianciaanalízis De melyiket válasszam? Kétmintás t-próba Fontos, hogy mindig a kérdésnek és a változónak
Gazdasági matematika II. tanmenet
Gazdasági matematika II. tanmenet Mádi-Nagy Gergely A hivatkozásokban az alábbi tankönyvekre utalunk: T: Tóth Irén (szerk.): Operációkutatás I., Nemzeti Tankönyvkiadó 1987. Cs: Csernyák László (szerk.):
Excel. Nem összefügg tartomány kijelölése: miután a tartomány els részét kijelöltük, lenyomjuk és nyomva tartjuk a CTRL gombot.
Excel A tartomány és kijelölése Munkánk során gyakran elfordul, hogy nem egy, hanem több cellából álló területtel kell dolgoznunk. Ezt a területet tartománynak vagy blokknak nevezzük. Cella jelölése: például
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Függvények
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Függvények ) Az ábrán egy ; intervallumon értelmezett függvény grafikonja látható. Válassza ki a felsoroltakból a függvény hozzárendelési szabályát! a) x
Nevezetes diszkre t eloszlá sok
Nevezetes diszkre t eloszlá sok Szűk elméleti összefoglaló Binomiális eloszlás: Jelölés: X~B(n, p) vagy X B(n, p) Tipikus használata: Egy kétféle kimenetelű (valami beteljesül vagy sem) kísérletet elvégzünk
Elemi statisztika. >> =weiszd= << december 20. Szerintem nincs sok szükségünk erre... [visszajelzés esetén azt is belerakom] x x = n
Elemi statisztika >> =weiszd=
Osztályozóvizsga követelményei
Osztályozóvizsga követelményei Képzés típusa: Tantárgy: Nyolcosztályos gimnázium Matematika Évfolyam: 12 Emelt óraszámú csoport Emelt szintű csoport Vizsga típusa: Írásbeli Követelmények, témakörök: Emelt
36 0,3. Mo.: 36 0,19. Mo.: 36 0,14. Mo.: 32 = 0,9375 32 = 0,8125 32 = 0,40625. Mo.: 32 = 0,25
Valószínűségszámítás I. Kombinatorikus valószínűségszámítás. BKSS 4... Egy szabályos dobókockát feldobva mennyi annak a valószínűsége, hogy a -ost dobunk; 0. b legalább 5-öt dobunk; 0, c nem az -est dobjuk;
MINİSÉGBIZTOSÍTÁS 12. ELİADÁS Május 9. Összeállította: Dr. Kovács Zsolt egyetemi tanár
MINİSÉGBIZTOSÍTÁS Összeállította: Dr. Kovács Zsolt egyetemi tanár 12. ELİADÁS 2011. Május 9. NyME FMK Terméktervezési és Gyártástechnológiai Intézet http://tgyi.fmk.nyme.hu NYME FMK TGYI 2006.08.28. 1.
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉPSZINT Függvények
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉPSZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek megoldásához!
2. Készítsen awk szkriptet, amely kiírja az aktuális könyvtár összes alkönyvtárának nevét, amely februári keltezésű (bármely év).
1. fejezet AWK 1.1. Szűrési feladatok 1. Készítsen awk szkriptet, ami kiírja egy állomány leghosszabb szavát. 2. Készítsen awk szkriptet, amely kiírja az aktuális könyvtár összes alkönyvtárának nevét,
Hasonlóságelemzés COCO használatával
Hasonlóságelemzés COCO használatával Miért a CoCo?? Mire használhatom a CoCo-t?! Például megállapíthatom, hogy van-e a piacon olyan cég, amely az árhoz és a többiekhez képest kevesebbet vagy többet teljesít.?
BIOMATEMATIKA ELŐADÁS
BIOMATEMATIKA ELŐADÁS 9. Együttes eloszlás, kovarianca, nevezetes eloszlások Debreceni Egyetem, 2015 Dr. Bérczes Attila, Bertók Csanád A diasor tartalma 1 Bevezetés, definíciók Együttes eloszlás Függetlenség
Matematika A3 Valószínűségszámítás, 0. és 1. gyakorlat 2013/14. tavaszi félév
Matematika A3 Valószínűségszámítás, 0. és 1. gyakorlat 2013/14. tavaszi félév 1. Kombinatorikus módszer ismétlés nélküli ismétléses permutáció k 1!k 2!...k r! n futó beérkezésének sorrendje n golyót ennyiféleképpen
Tananyag: Kiss Béla - Krebsz Anna: Lineáris algebra, többváltozós függvények, valószínűségszámítás,
// KURZUS: Matematika II. MODUL: Valószínűség-számítás 21. lecke: A feltételes valószínűség, események függetlensége Tananyag: Kiss Béla - Krebsz Anna: Lineáris algebra, többváltozós függvények, valószínűségszámítás,
ORVOSI STATISZTIKA. Az orvosi statisztika helye. Egyéb példák. Példa: test hőmérséklet. Lehet kérdés? Statisztika. Élettan Anatómia Kémia. Kérdések!
ORVOSI STATISZTIKA Az orvos statsztka helye Élettan Anatóma Kéma Lehet kérdés?? Statsztka! Az orvos döntéseket hoz! Mkor jó egy döntés? Mennyre helyes egy döntés? Mekkora a tévedés lehetősége? Példa: test
Bevezetés a hipotézisvizsgálatokba
Bevezetés a hipotézisvizsgálatokba Nullhipotézis: pl. az átlag egy adott µ becslése : M ( x -µ ) = 0 Alternatív hipotézis: : M ( x -µ ) 0 Szignifikancia: - teljes bizonyosság csak teljes enumerációra -
Valószínűségszámítás és statisztika
Valószínűségszámítás és statisztika Programtervező informatikus szak esti képzés Varga László Valószínűségelméleti és Statisztika Tanszék Matematikai Intézet Természettudományi Kar Eötvös Loránd Tudományegyetem
1.1.1 Dátum és idő függvények
1.1.1 Dátum és idő függvények Azt már tudjuk, hogy két dátum különbsége az eltelt napok számát adja meg, köszönhetően a dátum tárolási módjának az Excel-ben. Azt is tudjuk a korábbiakból, hogy a MA() függvény
Matematika érettségi emelt 2008 október. x 2 0. nem megoldás. 9 x
Matematika érettségi emelt 8 október ( ) lg( 8) 8 8 nem megoldás lg( 8) 8 9 ] ; [ ] ; [, M {;} Matematika érettségi emelt 8 október 6 I. eset II. eset ;[ ] 5 5 6 ;[ ], [ [; 5 5 6 [ [; 4, {;} M Matematika
Az MS Excel táblázatkezelés modul részletes tematika listája
Az MS Excel táblázatkezelés modul részletes tematika listája A táblázatkezelés alapjai A táblázat szerkesztése A táblázat formázása A táblázat formázása Számítások a táblázatban Oldalbeállítás és nyomtatás