Mérnöki alapok. előadás Készítette: dr. Váradi Sándor Budapesti Műszaki és Gazdaságtudományi Egyetem Gépészmérnöki Kar Hidrodinamikai Rendszerek Tanszék 1111, Budapest, Műegyetem rkp. 3. D ép. 334. Tel: 463-16-80 Fax: 463-30-91 http://www.vizgep.bme.hu
Kerületi sebesség, centripetális gyorsulás r sugár, szögsebesség: v=r Ha =áll., v =áll. iránya változik v1 v t r v / v 1 ha 5 fok [rad]
v v1 t a cp v t r v r Centripetális gyorsulás Egyenletes körmozgás feltétele F m v r
NYOMATÉK erő * erőkar (az erő merőleges az erőkarra; vektori szorzat) A munkával szembeállítva: W skalár; M vektor Mértékegység: Nm (nem Joule!!!)
TEHETETLENSÉGI NYOMATÉK (Θ) Pontszerű m ; r sugáron mr Mértékegység: [kgm ] Általában r i sugáron m i tömeg m i r i Henger esetén 1 mr
SZÖGGYORSULÁS Időegységre eső szögsebesség-változás t Mértékegysége: 1/s ; rad/s Egyenletesen változó szögsebesség esetén: 1 állandó T
NEWTON. törvénye forgó mozgásra (nem bizonyítás; emlékeztető) F ma m v t m r t F mr t Fr M mr t
ANALÓGIA Egyenes vonalú mozgás Forgó mozgás idő t [s] idő t [s] út, elmozdulás s [m] szögelfordulás [rad] sebesség v [m/s] szögsebesség [rad/s] gyorsulás a [m/s ] szöggyorsulás [rad/s ] erő F=ma [N] nyomaték M=Θ Nm tömeg m [kg] Tehetetlenségi nyomaték Θ [kgm ] teljesítmény P=Fv [W] teljesítmény P=M W Mozgási energia mv / [J] Mozgási energia Θ / [J]
GÉPEK EGYENLETES ÜZEME GÉP: anyag, információ, energia helyének és/vagy alakjának megváltoztatására szolgál Csoportosításuk nagyság működési elv: felhasználás: - kalorikus - hidraulikus - mechanikus - elektromos stb. - közlekedés - ipar - mezőgazdaság stb.
Energetikai szerep Erőgép Közlőmű Hajtómű Munkagép Erőgép: a gép szempontjából külső energiát átalakít, legtöbbször (forgó mozgássá) mechanikai munkává (M; ) Pl.: motor (villamos motor, belső égésű motor), vagy turbina (gázturbina, gőzturbina) Közlőmű: mechanikai munkát továbbít, átalakít (sebességváltómű, kardánhajtás, stb.)
Munkagép: mechanikai munkát egy feladat elvégzésére felhasznál (esztergagép, kávédaráló, ventilátor, stb.) Megjegyzés: Ugyanaz a gép a vizsgált környezettől függően lehet erőgép, vagy munkagép is. Például a ventilátor munkagép a motor ventilátor kapcsolatban, de erőgép a ventilátor csővezeték kapcsolatban
EGYENLETES ÜZEM A jellemző mozgásforma (egyenes vonalú vagy körmozgás) időben állandó (stacionárius üzem) Legegyszerűbb példája: egyenletes vontatás lejtőn
Egyensúly (az erők eredője zérus) A mozgás irányában: F t -F s -G t =0 Merőlegesen: N+F n -G n =0 Súrlódó erő: F s = N= (G n - F n )= (G cos - F ) ha G cos F G t = G és F t = F cos helyettesítésével a mozgás irányában az erőegyensúly: F cos - (G cos F ) G =0 A vonóerő szükséglet: F G cos cos
Adott és esetén milyen irányban ( =?) érdemes húzni, ahol a legkisebb a vonóerő? Adott és esetén a vonóerő képlet számlálója állandó, így F min ott adódik, ahol a nevező maximális nevező( ) = cos + Vizsgáljuk egyenlőre grafikusan:
cos ; A nevező elemeinek vizsgálata: G =1N súlyú test vontatása =30fokos emelkedőn. ( =0.1) 1,00 1 0,998 0,996 0,994 0,99 0,99 0,988 0,986 0,984 0 4 6 8 10 1 fok] 0, 0,18 0,16 0,14 0,1 0,1 0,08 0,06 0,04 0,0 0
nevező Számítási példa: egységnyi súlyú test =30 -os hajlásszögű emelkedőn felfelé mozgatása. F=f(,, ) paramétereknek G =1N súlyú test vontatása =30fokos emelkedőn. ( =0.1) 1,006 1,005 1,004 1,003 1,00 1,001 1 0,999 0 4 6 8 10 1 fok]
F [N] Számítási példa: egységnyi súlyú test =30 -os hajlásszögű emelkedőn felfelé mozgatása. F=f(,, ) paramétereknek G =1N súlyú test vontatása =30fokos emelkedőn. ( =0.1) 0,587 0,5865 0,586 0,5855 0,585 0,5845 0,584 0,5835 0 4 6 8 10 1 fok]
A számpélda adatai szerint ha =30 és =0.1, akkor a minimum kb. 6 -nál adódik és F min 0.995F =0 Ha már deriválni tudnának, akkor dnevező d cos 0 cos opt opt opt opt arc arc 0.1 5. 71 o
Nézzük meg a vízszintes síkon való mozgatást ( =0) Húzás: ha 0 cos >0; >0 G F cos Tolás: ha cos <0; >0 Tolás esetén ugyanakkora -hoz nagyobb F erő tartozik Ha < 0 (ferde rúddal tolom a testet) cos > 0; < 0; < 0, tehát a nevező kisebb mint 1; azaz nehezebb tolni, mint húzni. Ennek ellenére, ha az üzembiztonság fontos: gyermekkocsit mindig tolunk, sohasem húzunk.
Munkavégzés W ö F L t G t F s L GL F L s G h F L s W h W v Hatásfok: W W h ö GL GL F L s 1 F Kérdés: hol maximális a hatásfok? = ( ),, G adott G cos cos F s Gcos F
A szélsőértékhez tartozó megoldás levezetése max 1 ha F s =0 G cos F G cos cos osztunk Gcos -val 1 1 1 1 1 Megoldás: ha =30, akkor =60
Tervezzünk sífelvonót! Számítandó a vonóerő szükséglet: Adatok: m=80kg =0.05 =0 =30 cos F 1 mg cos 80kg *9.81m / s * 0 cos30 o o 0.05 *cos0 0.05 * 30 o o 34.6 N
Kötélerő: K 1 =F 1 cos =96.7N 300N Ha csákányos, akkor egy csákányra két ember jut, 50 csákány esetén az eredő vonóerő: K=100*K 1 =3*10 4 N
Lejtőn magára hagyott kocsi (erőegyensúly alapján) Egy lejtős földúton magára hagyott kocsi milyen esetben mozog egyenletes sebességgel lefelé? A felfújható gumitömlő és a földút közötti ellenállás-tényező értéke: µ=0.045. G t G mg Fs Gn Gcos arc arc 0.045. 58 o mg cos
(Az energia megmaradási törvény alapján) E h mg h mgs W s F s s mg cos s Természetesen az eredmény azonos az előző megoldásban adódottal: arc arc 0.045. 58 o