Nagy Gábor compalg.inf.elte.hu/ nagy ősz

Hasonló dokumentumok
Nagy Gábor compalg.inf.elte.hu/ nagy ősz

Nagy Gábor compalg.inf.elte.hu/ nagy

Nagy Gábor compalg.inf.elte.hu/ nagy

Nagy Gábor compalg.inf.elte.hu/ nagy

Diszkrét matematika 2.C szakirány

Nagy Gábor compalg.inf.elte.hu/ nagy ősz

Diszkrét matematika 2.

Nagy Gábor compalg.inf.elte.hu/ nagy

Nagy Gábor compalg.inf.elte.hu/ nagy

Nagy Gábor compalg.inf.elte.hu/ nagy ősz

Nagy Gábor compalg.inf.elte.hu/ nagy ősz

Diszkrét matematika 2.C szakirány

Nagy Gábor compalg.inf.elte.hu/ nagy ősz

1. A maradékos osztás

1. Polinomok számelmélete

Nagy Gábor compalg.inf.elte.hu/ nagy ősz

Diszkrét matematika 1. estis képzés. Komputeralgebra Tanszék ősz

Nagy Gábor compalg.inf.elte.hu/ nagy ősz

Diszkrét matematika I.

Nagy Gábor compalg.inf.elte.hu/ nagy ősz

Nagy Gábor compalg.inf.elte.hu/ nagy

Diszkrét matematika 2. estis képzés

Diszkrét matematika 2. estis képzés

Nagy Gábor compalg.inf.elte.hu/ nagy ősz

Diszkrét matematika 2.C szakirány

Diszkrét matematika 2. estis képzés

Diszkrét matematika 2. estis képzés

1. Egész együtthatós polinomok

DISZKRÉT MATEMATIKA 2 KIDOLGOZOTT TÉTELSOR 1. RÉSZ

Diszkrét matematika 2. estis képzés

1. A maradékos osztás

Polinomok (el adásvázlat, április 15.) Maróti Miklós

1. Hatvány és többszörös gyűrűben

Diszkrét matematika 1. estis képzés

Alapvető polinomalgoritmusok

Nagy Gábor compalg.inf.elte.hu/ nagy

Klasszikus algebra előadás. Waldhauser Tamás március 24.

Diszkrét matematika I.

Diszkrét matematika 2.C szakirány

Polinomok (előadásvázlat, október 21.) Maróti Miklós

FFT. Második nekifutás. Czirbusz Sándor ELTE IK, Komputeralgebra Tanszék október 2.

Nagy Gábor compalg.inf.elte.hu/ nagy ősz

Alapfogalmak a Diszkrét matematika II. tárgyból

Diszkrét matematika 2.C szakirány

Diszkrét matematika 2 (C) vizsgaanyag, 2012 tavasz

Nagy Gábor compalg.inf.elte.hu/ nagy

1. Interpoláció. Egyértelműség Ha f és g ilyen polinomok, akkor n helyen megegyeznek, így a polinomok azonossági tétele miatt egyenlők.

Diszkrét matematika 2.C szakirány

Vizsgatematika Bevezetés a matematikába II tárgyhoz tavasz esti tagozat

Diszkrét matematika 2.C szakirány

Nagy Gábor compalg.inf.elte.hu/ nagy

Matematika A1a Analízis

Nagy Gábor compalg.inf.elte.hu/ nagy ősz

Diszkrét matematika 2. estis képzés

Nagy Gábor compalg.inf.elte.hu/ nagy

Polinomgy r k. 1. Bevezet. 2. Polinomok. Dr. Vattamány Szabolcs.

Határozatlan integrál

FELADATOK A BEVEZETŽ FEJEZETEK A MATEMATIKÁBA TÁRGY III. FÉLÉVÉHEZ. ÖSSZEÁLLÍTOTTA: LÁNG CSABÁNÉ ELTE IK Budapest

Bevezetés az algebrába az egész számok

0 ; a k ; :::) = ( 0: x = (0; 1; 0; 0; :::; 0; :::) = (0; 1)

Diszkrét matematika alapfogalmak

Algebrai alapismeretek az Algebrai síkgörbék c. tárgyhoz. 1. Integritástartományok, oszthatóság

1. A Horner-elrendezés

Diszkrét matematika 2.C szakirány

Nagy Gábor compalg.inf.elte.hu/ nagy ősz

Diszkrét matematika 2. estis képzés

1. A polinom fogalma. Számolás formális kifejezésekkel. Feladat Oldjuk meg az x2 + x + 1 x + 1. = x egyenletet.

Klasszikus algebra előadás. Waldhauser Tamás április 14.

Tartalomjegyzék 1. Műveletek valós számokkal Függvények Elsőfokú egyenletek és egyenlőtlenségek

Diszkrét matematika 2.

Diszkrét matematika 2.

Kongruenciák. Waldhauser Tamás

Diszkrét matematika 1. estis képzés

1.1. Definíció. Azt mondjuk, hogy a oszója b-nek, vagy más szóval, b osztható a-val, ha létezik olyan x Z, hogy b = ax. Ennek jelölése a b.

Diszkrét matematika I.

1. Komplex szám rendje

1. Gráfok alapfogalmai

1. Polinomfüggvények. Állítás Ha f, g C[x] és b C, akkor ( f + g) (b) = f (b) + g (b) és ( f g) (b) = f (b)g (b).

LÁNG CSABÁNÉ POLINOMOK ALAPJAI. Példák és megoldások

Algoritmuselmélet gyakorlat (MMN111G)

A lineáris algebrában központi szerepet betöltı vektortér fogalmát értelmezzük most, s megvizsgáljuk e struktúra legfontosabb egyszerő tulajdonságait.

Nagy Gábor compalg.inf.elte.hu/ nagy ősz

Diszkrét matematika 2.

Diszkrét matematika II. feladatok

Nagy Gábor compalg.inf.elte.hu/ nagy ősz

Nagy Gábor compalg.inf.elte.hu/ nagy ősz

Zárthelyi feladatok megoldásai tanulságokkal Csikvári Péter 1. a) Számítsuk ki a 2i + 3j + 6k kvaternió inverzét.

Diszkrét matematika 2.C szakirány

2012. október 2 és 4. Dr. Vincze Szilvia

Tartalom. Algebrai és transzcendens számok

Matematika A1a Analízis

Klasszikus algebra előadás. Waldhauser Tamás április 28.

Dierenciálhatóság. Wettl Ferenc el adása alapján és

Az eddig leadott anyag Diszkrét matematika II tárgyhoz tavasz

Boros Zoltán február

VEKTORTEREK I. VEKTORTÉR, ALTÉR, GENERÁTORRENDSZER október 15. Irodalom. További ajánlott feladatok

Diszkrét matematika I.

1. Diagonalizálás. A Hom(V) diagonalizálható, ha van olyan bázis, amelyben A mátrixa diagonális. A diagonalizálható van sajátvektorokból álló bázis.

A sorozat fogalma. függvényeket sorozatoknak nevezzük. Amennyiben az értékkészlet. az értékkészlet a komplex számok halmaza, akkor komplex

A L Hospital-szabály, elaszticitás, monotonitás, konvexitás

Átírás:

Diszkrét matematika 3. estis képzés 2016. ősz 1. Diszkrét matematika 3. estis képzés 4. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék 2016. ősz

Polinomok Diszkrét matematika 3. estis képzés 2016. ősz 2. Bővített euklideszi algoritmus Algoritmus Legyen R test, f, g R[x]. Ha g = 0, akkor (f, g) = f = 1 f + 0 g, különben végezzük el a következő maradékos osztásokat: f = q 1 g + r 1 ; g = q 2 r 1 + r 2 ; r 1 = q 3 r 2 + r 3 ;. r n 2 = q n r n 1 + r n ; r n 1 = q n+1 r n. Ekkor d = r n jó lesz kitüntetett közös osztónak. Az u 1 = 1, u 0 = 0, v 1 = 0, v 0 = 1 kezdőértékekkel, továbbá az u k = u k 2 q k u k 1 és v k = v k 2 q k v k 1 rekurziókkal megkapható u = u n és v = v n polinomok olyanok, amelyekre teljesül d = u f + v g.

Polinomok Diszkrét matematika 3. estis képzés 2016. ősz 3. Bővített euklideszi algoritmus Bizonyítás A maradékok foka természetes számok szigorúan monoton csökkenő sorozata, ezért az eljárás véges sok lépésben véget ér. Indukcióval belátjuk, hogy r 1 = f és r 0 = g jelöléssel r k = u k f + v k g teljesül minden 1 k n esetén: k = 1-re f = 1 f + 0 g, k = 0-ra g = 0 f + 1 g. Mivel r k+1 = r k 1 q k+1 r k, így az indukciós feltevést használva: r k+1 = u k 1 f + v k 1 g q k+1 (u k f + v k g) = = (u k 1 q k+1 u k ) f + (v k 1 q k+1 v k ) g = u k+1 f + v k+1 g. Tehát r n = u n f + v n g, és így f és g közös osztói r n -nek is osztói. Kell még, hogy r n osztója f -nek és g-nek. Indukcióval belátjuk, hogy r n r n k teljesül minden 0 k n + 1 esetén: k = 0-ra r n r n nyilvánvaló, k = 1-re r n 1 = q n+1 r n miatt r n r n 1. r n (k+1) = q n (k 1) r n k + r n (k 1) miatt az indukciós feltevést használva kapjuk az álĺıtást, és így k = n, illetve k = n + 1 helyettesítéssel r n r 0 = g, illetve r n r 1 = f.

Polinomok Diszkrét matematika 3. estis képzés 2016. ősz 4. Polinomok algebrai deriváltja Definíció Legyen R gyűrű. Az f (x) = f n x n + f n 1 x n 1 +... + f 2 x 2 + f 1 x + f 0 R[x] (f n 0) polinom algebrai deriváltja az f (x) = nf n x n 1 + (n 1)f n 1 x n 2 +... + 2f 2 x + f 1 R[x] polinom. Megjegyzés Itt kf k = f k + f k +... + f }{{ k. } k db Álĺıtás Legyen R gyűrű, a, b R és n N +. Ekkor (na)b = n(ab) = a(nb). Bizonyítás (a + a +... + a)b = (ab + ab +... + ab) = a(b + b +... + b) }{{}}{{}}{{} n db n db n db

Polinomok Diszkrét matematika 3. estis képzés 2016. ősz 5. Polinomok algebrai deriváltja Álĺıtás Ha R egységelemes integritási tartomány, akkor az f f algebrai deriválás rendelkezik a következő tulajdonságokkal: 1 konstans polinom deriváltja a nullpolinom; 2 az x polinom deriváltja az egységelem; 3 (f + g) = f + g, ha f, g R[x] (additivitás); 4 (fg) = f g + fg, ha f, g R[x] (szorzat differenciálási szabálya). Megjegyzés Megfordítva, ha egy R egységelemes integritási tartomány esetén egy f f, R[x]-et önmagába képező leképzés rendelkezik az előző 4 tulajdonsággal, akkor az az algebrai deriválás.

Polinomok Diszkrét matematika 3. estis képzés 2016. ősz 6. Polinomok algebrai deriváltja Álĺıtás Ha R egységelemes integritási tartomány, c R és n N +, akkor ((x c) n ) = n(x c) n 1. Bizonyítás n szerinti TI: n = 1 esetén (x c) = 1 = 1 (x c) 0. Tfh. n = k-ra teljesül az álĺıtás, vagyis ((x c) k ) = k(x c) k 1. Ekkor ((x c) k+1 ) = ((x c) k (x c)) = ((x c) k ) (x c)+(x c) k (x c) = = k(x c) k 1 (x c) + (x c) k 1 = (x c) k (k + 1). Ezzel az álĺıtást beláttuk. Álĺıtás (NB) Ha R integritási tartomány, char(r) = p, és 0 r R, akkor n r = 0 p n.

Polinomok Diszkrét matematika 3. estis képzés 2016. ősz 7. Polinomok algebrai deriváltja Definíció Legyen R egységelemes integritási tartomány, 0 f R[x] és n N +. Azt mondjuk, hogy c R az f egy n-szeres gyöke, ha (x c) n f, de (x c) n+1 f. Megjegyzés A definíció azzal ekvivalens, hogy f (x) = (x c) n g(x), ahol c nem gyöke g-nek. (Miért?) Tétel Legyen R egységelemes integritási tartomány, f R[x], n N + és c R az f egy n-szeres gyöke. Ekkor c az f -nek legalább (n 1)-szeres gyöke, és ha char(r) n, akkor pontosan (n 1)-szeres gyöke.

Polinomok Diszkrét matematika 3. estis képzés 2016. ősz 8. Polinomok algebrai deriváltja Bizonyítás Ha f (x) = (x c) n g(x), ahol c nem gyöke g-nek, akkor f (x) = ((x c) n ) g(x) + (x c) n g (x) = = n(x c) n 1 g(x) + (x c) n g (x) = (x c) n 1 (ng(x) + (x c)g (x)). Tehát c tényleg legalább (n 1)-szeres gyöke f -nek, és akkor lesz (n 1)-szeres gyöke, ha c nem gyöke ng(x) + (x c)g (x)-nek, vagyis 0 ng(c) + (c c)g (c) = ng(c) + 0 g (c) = ng(c). Ez pedig teljesül, ha char(r) n. Példa Legyen f (x) = x 4 x Z 3 [x]. Ekkor 1 3-szoros gyöke f -nek, mert f (x) = x(x 3 1) Z 3 = x(x 3 3x 2 + 3x 1) = x(x 1) 3. f (x) = 4x 3 1 Z 3 = x 3 3x 2 + 3x 1 = (x 1) 3, tehát 1 3-szoros gyöke f -nek is.

Polinomok Diszkrét matematika 3. estis képzés 2016. ősz 9. Lagrange-interpoláció Tétel Legyen R test, c 0, c 1,..., c n R különbözőek, továbbá d 0, d 1,..., d n R tetszőlegesek. Ekkor létezik egy olyan legfeljebb n-ed fokú polinom, amelyre f (c j ) = d j, ha j = 0, 1,..., n. Bizonyítás Legyen l j (x) = i j (x c i) i j (c j c i ), a j-edik Lagrange-interpolációs alappolinom, és legyen n f (x) = d j l j (x). l j (c i ) = 0, ha i j, és l j (c j ) = 1-ből következik az álĺıtás. j=0

Polinomok Diszkrét matematika 3. estis képzés 2016. ősz 10. Lagrange-interpoláció Példa Adjunk meg olyan f R[x] polinomot, amelyre f (0) = 3, f (1) = 3, f (4) = 7 és f ( 1) = 0! A feladat szövege alapján c 0 = 0, c 1 = 1, c 2 = 4, c 3 = 1, d 0 = 3, d 1 = 3, d 2 = 7 és d 3 = 0 értékekkel alkalmazzuk a Lagrange-interpolációt. l 0(x) = (x 1)(x 4)(x+1) = 1 x 3 x 2 1 x + 1 (0 1)(0 4)(0+1) 4 4 l 1(x) = (x 0)(x 4)(x+1) = 1 x 3 + 1 x 2 + 2 x (1 0)(1 4)(1+1) 6 2 3 l 2(x) = (x 0)(x 1)(x+1) = 1 x 3 1 x (4 0)(4 1)(4+1) 60 60 l 3(x) = (x 0)(x 1)(x 4) = 1 x 3 + 1 x 2 2 x ( 1 0)( 1 1)( 1 4) 10 2 5 f (x) = 3l 0(x) + 3l 1(x) + 7l 2(x) + 0l 3(x) = 22 x 3 3 x 2 + 68 x + 3 60 2 60 22 60 3 2 68 60 3 1 22 60 68 60 0 3 4 22 60 2 60 1 7 1 22 60 112 60 3 0

Polinomok Diszkrét matematika 3. estis képzés 2016. ősz 11. Lagrange-interpoláció Alkalmazás A Lagrange-interpoláció használható titokmegosztásra a következő módon: legyenek 1 m < n egészek, továbbá s N a titok, amit n ember között akarunk szétosztani úgy, hogy bármely m részből a titok rekonstruálható legyen, de kevesebből nem. Válasszunk a titok maximális lehetséges értékénél és n-nél is nagyobb p prímet, továbbá a 1, a 2,..., a m 1 Z p véletlen együtthatókat, majd határozzuk meg az f (x) = a m 1 x m 1 + a m 2 x m 2 +... + a 1 x + s polinomra az f (i) értékeket, és adjuk ezt meg az i. embernek (i = 1, 2,..., n). Bármely m helyettesítési értékből a Lagrange-interpolációval megkapható a polinom, így annak konstans tagja is, a titok. Ha m-nél kevesebb helyettesítési értékünk van, akkor nem tudjuk meghatározni a titkot, mert tetszőleges t esetén az f (0) = t értéket hozzávéve a többihez létezik olyan legfeljebb m-ed fokú polinom, aminek a konstans tagja t, és az adott helyeken megfelelő a helyettesítési értéke.

Polinomok Diszkrét matematika 3. estis képzés 2016. ősz 12. Titokmegosztás Példa Legyen m = 3, n = 4, s = 5, p = 7, továbbá a 1 = 3 és a 2 = 4. Ekkor f (x) = 4x 2 + 3x + 5 Z 7 [x], a titokrészletek pedig f (1) = 5, f (2) = 6, f (3) = 1 és f (4) = 4. Ha rendelkezünk például az f (1) = 5, f (3) = 1 és f (4) = 4 információkkal, akkor c 0 = 1, c 1 = 3, c 2 = 4, d 0 = 5, d 1 = 1, és d 2 = 4 értékekkel alkalmazzuk a Lagrange-interpolációt. l 0 (x) = (x 3)(x 4) (1 3)(1 4) = 1 6 (x 2 7x + 12) = 1 1 ( 6x 2 2) = 6x 2 + 2 l 1 (x) = (x 1)(x 4) (3 1)(3 4) = 1 2 (x 2 5x + 4) = 4(x 2 + 2x + 4) = 3x 2 + 6x + 5 l 2 (x) = (x 1)(x 3) (4 1)(4 3) = 1 3 (x 2 4x + 3) = 5(x 2 + 3x + 3) = 5x 2 + x + 1 f (x) = 5l 0 (x)+l 1 (x)+4l 2 (x) = 30x 2 +10+3x 2 +6x +5+20x 2 +4x +4 = = 53x 2 + 10x + 19 = 4x 2 + 3x + 5

Polinomok Diszkrét matematika 3. estis képzés 2016. ősz 13. Polinomok felbonthatósága Definíció Legyen R egységelemes integritási tartomány. Ha a 0 f R[x] polinom nem egység, akkor felbonthatatlannak (irreducibilisnek) nevezzük, ha a, b R[x]-re f = a b = (a egység b egység). Ha a 0 f R[x] polinom nem egység, és nem felbonthatatlan, akkor felbonthatónak (reducibilisnek) nevezzük. Megjegyzés Utóbbi azt jelenti, hogy f -nek van nemtriviális szorzat-előálĺıtása (olyan, amiben egyik tényező sem egység).