Abszolútértékes egyenlôtlenségek 575. a) $, $ ; b) < - vagy $, # - vagy > 4. 5 576. a) =, =- 6, 5 =, =-, 7 =, 4 = 5; b) nincs megoldás;! c), = - ; d) =-. Abszolútértékes egyenlôtlenségek 577. a) - # #, # - 5 vagy $ -, - < < 4, < -, 5 vagy > 45;, b) # - vagy $, 5 0 - < <, - # # ; 578. a) - 5 # # 5, # - vagy $, - < < ; b) # - vagy $ 5. c) -5< < - ; d) = 5. 579. a) nincs megoldás; b) minden valós szám megoldás; c) nincs megoldás. 580. a) - # # ; b) # - 5 vagy - # # vagy $ 5 ; c) # - 4 vagy = 0 vagy $ 4 ; 7 d) # - vagy $. 58. a) < - vagy > ; b) > - ; 5 7 c) < vagy >. 58/a. 58/b.
4 Abszolútértékes egyenletek, egyenlôtlenségek 58/c. 58/a. 58/b. 584/a. 58. a) =-4 vagy $ 0; b) # vagy $ 6. 58. Az abszolútérték definíciója alapján a) - # a # ; b) b #- 06, 0 b $ 06, ; c) c< - 0 c> 8; d) - 0 < d < 6. 584. a) $ ; b) Nincs megoldás. c) 6! R esetén igaz. d) $. 584/b. 584/c. 584/d.
Abszolútértékes egyenlôtlenségek 5 585. A megoldásnál használjuk fel: a, ha a $, a = ( - a, ha a< 0. Az abszolútérték felbontása után a kapott egyenlôtlenséget vessük össze a vizsgált intervallummal, hiszen ezek közös megoldása adja a feladat megoldását. Nézzük pl.: a d) rész megoldását: Az abszolútérték jelen belüli kifejezések zérushelyei: =-, = 5. I. Ha < - ; --- + 5 # 7; $ -. Összevetve a vizsgált intervallummal: - # < -. II. Ha - # # 5; + - + 5 # 7; 6 # 7 igaz az adott intervallumon. Összevetve a vizsgált intervallummal: - # # 5. III. Ha > 5; + + - 5 # 7; #. Összevetve a vizsgált intervallummal: 5 < #. A feladat megoldása: - # #. 586/a. A megoldások: a) > ; b) Nincs megoldás. c) < - 0 $ ; d) 5 < # ; e) < - ; f) -< < -. 586. a) --# y# - ; b) y$ - + ; c) -- # y# y- + ; d) y# - vagy y$ +. 586/b. 586/c.
6 Abszolútértékes egyenletek, egyenlôtlenségek 586/d. 587/a. 587/b. 587/c. 587. a) - + # y# - ; b) Ha y $ 0, akkor y$ -, ha y < 0, akkor y# - ; c) Ha y $, akkor y$ - -, ha y <, akkor y# 5- - ; d) Ha $ 0, y $ 0, akkor ( - ) + ( y- ) 4. Hasonlóan kapjuk a többi tartományba esô pontokat is. 588. a) $ - és y # - + ; b) y$ vagy y< - ; c)! y és y< -. 587/d.
Abszolútértékes egyenlôtlenségek 7 588/a. 588/b. 588/c. 589/a. 589. a) y# és y!- ; b) y< - 4 és y< vagy y> - 4 és y> ; c) y# - és y> vagy y$ - és y<. 589/b. 589/c.
8 Abszolútértékes egyenletek, egyenlôtlenségek 590. a) $,! ; 590/a. b) $ -,!! ; c) $,! 4. 590/b. 590/c. 59. a) $,! ; 4 59/a. b) $ 4 vagy # - 4,! 5; 59/b. c) $ 4 vagy # - 6,!! 9. 59/c. 59. a) # - vagy $ ; 59/a. b) 0 # # 4 és! ; 59/b. c) 0 # # 00 és! 4,! 6.
Nehezebb feladatok 9 Nehezebb feladatok 59. 59. Ábrázoljuk az egyenlet bal oldalát. Két esetet vizsgálunk aszerint, hogy $ vagy <. A jobb oldal egy origón átmenô egyenes. A két grafikonnak akkor lesz egyetlen közös pontja (vagyis az egyenletnek pontosan egy megoldása), ha p $ vagy p < 0 vagy p =. 594. Felhasználva, hogy cos = cos - sin = - sin, az eredeti egyenlet így alakul: 4sin 4sin - = -, ahonnan - 4sin $ 0, sin #. Ez utóbbi egyenlôtlenség megoldása (lásd 594. ábra). 595. Ábrázoljuk az egyenlet bal oldalát! A jobb oldal grafikus képe egy egyenes. (595. ábra) Az egyenletnek akkor, és csak akkor lesz végtelen sok megoldása, ha a jobb oldali egyenes képe illeszkedik valamelyik lineáris darabra, vagyis, ha a = 0, b = ; vagy a =-, b = 6; vagy a =, b =- 6. 596. A feltételek szerint b= a+ c vagy b=- ( a+ c). Elsô esetben az a + ( a + c) + c = 0 és c + ( a + c) + a = 0 egyenletek közös gyöke: =-. A második esetben az a -( a + c) + c = 0 és c -( a + c) + a = 0 egyenletek közös gyöke: =. 594. 595.
0 Abszolútértékes egyenlôtlenségek Ha a két egyenletnek 0 a közös gyöke, akkor 0 0 0 a + b + c = c + b + a, azaz ( a-c)( - ) = 0. 0 Tehát 0 =!. Ha 0 =, akkor b =- ( a + c), ha 0 =-, akkor b = a + c, tehát az állítás megfordítása is igaz: b = a+ c. 597. ( ) - > 0, azaz > 0 és!. log 0 4-4+ 4-4+ 4-4+ =- log, ahonnan log # 0. Innen 4-4+ #, azaz 4-5+ # 0. Ezzel az eredeti egyenlet megoldása: # #, de!. 4 598. 598. Ábrázoljuk az egyenlet két oldalát grafikusan. A jobb oldal egy egyenes, mely -ban metszi az y tengelyt. Egy ilyen egyenesnek akkor lesz pontosan két közös pontja a bal oldal grafikus képével, ha < k < vagy - < k < -. 4 599. 599. Ábrázoljuk az egyenlet két oldalát. A jobb oldal egy olyan egyenes, mely az y tengelyt p - -ben metszi. A bal oldal ábrázolásához három esetet kell vizsgálnunk aszerint, hogy $ p, - p # < p, vagy < - p. A (; 0 p - ) ponton átmenô egyenesnek akkor, és csak akkor lesz két közös pontja a bal oldal grafikus képével, ha ez az egyenes áthalad a (-p; p) ponton is. Ekkor az egyenes: y =- p + p -.
Nehezebb feladatok 600. 60. Ezek szerint ekkor az egyenlet egyik megoldása: =- p, a másik pedig a - p + p - =- p egyenlet megoldása, azaz: = 4p - p. 600.! 0. Ábrázoljuk az egyenlet mindkét oldalát. A bal oldalon három esetet vizsgálunk, aszerint, hogy $, - # < vagy < -. A jobb oldalon két esetet vizsgálunk aszerint, hogy > 0 vagy < 0. Az egyenlet egyik megoldása: 6 = egyenlet negatív megoldása, azaz 60/I. 60.! 0. Ábrázoljuk az egyenlet mindkét oldalát. Az egyik megoldás: másik pedig az - = egyenlet pozitív gyöke, azaz 60. Az egyenlet bal oldalának grafikus képe: 60/II. Ha n páratlan: =!,!,...,! n. Ha n páros: = 0,!,! 4,...,! n.