Segédayag a Leíró és matematikai statisztika tatárgyhoz 07 március 8 Statisztikai sokaság: a meggyelés tárgyát képez egyedek összessége, halmaza Rövide sokaságak hívjuk A sokaság egysége: a sokaság egy eleme Statisztikai ismérv (röv: ismérv): a sokaság egyedeit jellemz tulajdoság Az ismérvek típusai: mi ségi ismérv: az egyedek számszer e em mérhet tulajdosága meyiségi ismérv: az egyedek számszer e mérhet tulajdosága Két fajtájukat külöböztetjük meg: id beli ismérv: az egységek id beli elhelyezésére szolgáló redez elvek területi ismérv: az egységek térbeli elhelyezésére szolgáló redez elvek Statisztikai sor tágabb értelembe: a sokaság egyes jellemz iek felsorolása A statisztikai sorok fajtái: Csoportosító sor: a sokaság egy megkülöböztet ismérv szeriti osztályozásáak eredméye; az adatok összegezhet k (va 'Összese' sor) Összehasolító sor: a sokaság egy részéek a sokaságot egy megkülöböztet ismérv szeriti osztályozásáak eredméye; az adatok em összegezhet k Leíró sor: külöböz fajta, gyakra eltér mértékegység statisztikai adatokat tartalmaz Az ismérvek fajtája szerit beszélhetük mi ségi, meyiségi, id beli és területi sorokról Például ha egy statisztikai sor tartalmazza az osztályterembe a hallgatókat emek szerit, akkor ez mi ségi csoportosító sor Statisztikai tábla tágabb értelembe: a statisztikai sorok összefügg redszere A tábla dimeziószáma az a szám, ameyi statisztikai sorhoz egy-egy táblabeli adat tartozik Általába, maximum 3 dimeziós táblákkal dolgozuk, eél magasabb dimeziósat már ehéz áttekitei A statisztikai táblák fajtái: Egyszer tábla: ics bee csoportosító (összegz ) sor Csoportosító tábla: egyetle csoportosító sort tartalmaz Kombiációs vagy kotigeciatábla: legalább két csoportosító sort tartalmaz A statisztikai elemzések egyik legfotosabb eszközei a viszoyszámok A viszoyszám két statisztikai adat háyadosa Jelölések: V = A B, ahol V : viszoyszám; A: a viszoyítás tárgya; B: a viszoyítás alapja A viszoyszámok fajtái: Megoszlási: a sokaság egy részét a sokaság egészéhez viszoyítjuk Koordiációs: a sokaság egy részéek a sokaság egy másik részéhez való viszoyítása Diamikus: két id pot vagy id szak adatáak háyadosa Itezitási: külöböz fajta adatok viszoyítása egymáshoz; gyakra a mértékegységük is eltér Ha egy teljes sokaságra és aak m részére redelkezésre áll a viszoyszám alapja és részei, akkor a viszoyszámokat ki tudjuk számoli a teljes sokaságra (jel V, ezt összetett viszoyszámak hívják) és aak részeire is (jel V,, V m ) Ekkor a teljes sokaságra számolt viszoyszám kiszámítási lehet ségei: V = A i = B i B i V i B i }{{} súlyozott számtai átlag = A i A i V i }{{} súlyozott harmoikus átlag A leíró statisztikai szakirodalomba az i idexeket pogyola módo le szokták hagyi: A BV A V = = = B B A V Id sorok elemzése (alapok) Id sorok fajtái: állapotid sor: a bee lév adatok egy-egy adott id potra voatkozak (pl egy cég raktárkészlete adott apoko); tartamid sor: a bee lév adatok id szakra voatkozak (pl egy cég havi yereségei) Véges id sor: Y,, Y, ahol Y i -k valószí ségi változók Ezek realizációját, kokrét értékeit jelöljük y,, y -el Az id sor meggyelt értékeib l számíthatuk diamikus viszoyszámokat A di viszoyszámok fajtái: Bázisviszoyszámok: b t = yt y b, ahol t =,, ; b x, eve: bázisid szak; Lácviszoyszámok: l t = yt y t, ahol t =,, Állítás A bázisviszoyszámok id sorából ki lehet számítai a lácviszoyszámok id sorát és fordítva: lácból bázis: b t = l l 3 l t (t =,, ); bázisból lác: l t = bt b t (t =,, ) Az id sor átlagos értékéek kiszámítása: tartamid sor eseté sima számtai átlaggal: y = állapotid sor eseté kroologikus átlaggal: y k = Az id sor átlagos változásáak vizsgálata: y t t= y+ y t+ y t=
a fejl dés átlagos mértéke: d = y y a fejl dés átlagos üteme: l = y y Meyiségi sorok elemzése Meyiségi sor készítése: Ha a meyiségi ismérv diszkrét és viszoylag kevés ismérvérték va, akkor mide ismérvértéket felsoroluk Ha a meyiségi ismérv folytoos vagy sok ismérvérték va, akkor osztályközös gyakorisági sor t készítük Jelölje a sokaság elemszámát Az osztályközök meghatározása em egyértelm, gyakra választják az osztályok számáak a k = log értéket Ha azoos hosszúságú (h) osztályközöket akaruk létrehozi, akkor h = xmax xmi k Stadard jelölések osztályközös gyakoriságú meyiségi sorokál: x i,a : az i osztályköz alsó határa; x i,f : az i osztályköz fels határa; x i : az i osztályközép, azaz x i = xi,a+x i,f ; f i : gyakoriság az i osztályközbe; f i : kumulált gyakoriság az i osztályközbe, azaz f i = g i : relatív gyakoriság az i osztályközbe, azaz g i = g i : kumulált relatív gyakoriság az i osztályközbe; s i : az i osztályköz értékösszege: z i = x i f i ; s i az i osztályköz kumulált értékösszege z i : az i osztályköz relatív értékösszege: z i = si s i ; i z i az i osztályköz kumulált relatív értékösszege i k= fi f i ; i Kocetráció: a sokasághoz tartozó teljes értékösszeg jelet s része a sokaság kevés egységére összpotosul Legye a sokaság elem, a miket érdekl ismérv szerit a külöböz ismérvértékek x,, x k, ezek gyakoriságai pedig legyeek f j -k ( f j = ) j Gii-együttható: G = ( ) k j= k f i f j x i x j Lorez-görbe: a kocetráció mértékét szemléltet ábra A vízszites tegelye a g i kumulált relatív gyakoriságok, a függ leges tegelye a z i kumulált relatív értékösszegek szerepelek, 0-t l 00%-ig Behúzzuk a 5 fokos egyeest Végül megrajzoljuk a (0, 0), (g, z ), (g, z ),, (g k, z k ), (, ) potok összekötésével kapott töröttvoalat Kocetrációs területek hívjuk a töröttvoal és az átló által közbezárt területet Er s a kocetráció, ha a töröttvoal közel va a égyzet oldalaihoz Gyege a f i ; kocetráció, ha a töröttvoal közel va az átlóhoz A kocetráció mutatószámai: Kocetrációs együttható: L = G x Ez em más, mit a kocetrációs terület -szerese Értéke 0 és között va Miél agyobb, aál er sebb a kocetráció Herdahl-idex : HI = k Értéke k Nevezetes diszkrét eloszlások: zi és közötti; miél agyobb, aál er sebb a kocetráció Eloszlás eve Jelölése Eloszlása EX D X Karakterisztikus Id(p) P (X = ) = p p p( p) (idikátorvált) P (X = 0) = p Geometriai Geo(p) P (X = k) = p( p) k (Pascal) k=,, ( )( ) M N M k k Hipergeometriai Hipgeo(N, M, ) P (X = k) = ( ) N k=0,,, ( k) p k ( p) k ( ) k p ( p) k p M N M N p p ( M ) ( ) N N p p( p) Poisso Poi(λ) P (X = k) = λk k! e λ k=0,, λ λ Nevezetes abszolút folytoos eloszlások: p ( p) p Eloszlás eve Jelölése Eloszlásfüggvéy S r ségfüggvéy EX D X 0 ha x a { x a Egyeletes E(a, b) b a ha a < x b b a ha a < x b a+b (b a) 0 külöbe ha b < x Expoeciális Exp(λ) { e λx ha x 0 0 külöbe Gamma Γ(α, λ) Biomiális Bi(, p) P (X = k) = k=0,,, Negatív biomiális NegBi(, p) P (X = k) = k=,+, Stadard ormális { λe λx ha x 0 0 külöbe { Γ(α) λα x α e λx ha x 0 0 külöbe N(0, ) Φ(x) = π e x x R 0 Normális N(m, σ ) Deíció z-kvatilis: λ α λ λ α λ πσ e (x m) σ x R m σ q(z) = q z = if{x : F (x) z}, és ameyibe F ivertálható, akkor q z = F (z)-re egyszer södik (0 < z < ) Fotos speciális kvatilisek: kvartilisek: Q := q alsó kvartilis Q = Me := q mediá (középs mitaelem) Q 3 := q 3 fels kvartilis Deíció Módusz: abszolút folytoos eloszlás eseté a s r ségfüggvéy maxi-
mumhelye(i), diszkrét eloszlás eseté pedig az eloszlás maximumhelye(i) Tehát Mo= argmax f(x), ha X abszolút folytoos; x R Mo= argmax P (X = x i ), ha X diszkrét x,x, Nem biztos, hogy létezik, és ha létezik, akkor se biztos, hogy egyértelm skew(x) = E(X EX)3 (DX) 3 skew(x)=0 az eloszlás szimmetrikus skew(x)>0 az eloszlás balra ferdült skew(x)<0 az eloszlás jobbra ferdült Deíció Ferdeség (skewess): Értelmezése: a a kurt(x) = E(X EX) (DX) 3 kurt(x)=0 az eloszlás csúcsossága a stadard ormáliséval megegyez kurt(x)<0 az eloszlás laposabb a st orm-ál kurt(x)>0 az eloszlás csúcsosabb a st orm-ál Deíció Csúcsosság (kurtosis): Értelmezés: V V V Mita: X,, X valószí ségi változó sorozat, jel X = (X,, X ) T A továbbiakba feltesszük, hogy függetleek és azoos eloszlásúak ezt rövide iid mitáak hívjuk (idepedet, idetically distributed) Az elméleti értékeket agy, a kokrét, realizált mitából számolt értékeket midig kis bet fogja jelöli, azaz mita eseté x,, x Statisztika: a mita valamely függvéye: T : X Becslés: a mita eloszlásáak ismeretle paraméterét közelíti a mita segítségével Megj: Mide becslés statisztika Néháy léyeges statisztika: Redezett mita: X X em csökke sorredbe tesszük a mitaelemeket Terjedelem: R = X X (R=rage) Mitaátlag: X = X i Tapasztalati szórás: S = (X i X) Értelmezése: az átlagtól való átlagos eltérés abszolút mértékegységbe Korrigált tapasztalati szórás : S = (X i X) Szórási együttható: V = S X Értelmezése: az átlagtól való átlagos eltérés százalékba Megj: relatív szórásak is hívják Tapasztalati eloszlásfüggvéy : F (x) = I(X i<x) { ha X i < x ahol I(X i < x) = karakterisztikus függvéy 0 ha X i x Tapasztalati z-kvatilis : Realizált mitából sokféleképpe számolható, iterpolációs módszer: ) Sorszám megállapítása: ( + )z = e + t (e: egészrész, t: törtrész) ) q z = x e + t(x e+ x e) Értelmezése: a mitaelemek z-ed része legfeljebb a q z értéket veszi fel, ( z)- ed része pedig legalább q z Osztályközös gyakorisági sorba redelkezésre álló mita eseté a következ becsést lehet haszáli: keressük meg kumulálással azt az osztályközt, ahol a q z va, sorszám: ( + )z Jelölje j az osztályköz számát Ezutá q z = x j,a + z (+) f j f j h j x j,a : a kvatilist tartalmazó osztályköz alsó értéke; h j : a kvatilist tartalmazó osztályköz hossza; f j : a kvatilist közvetleül megel z osztályköz osztályköz kumulált gyakorisága f j : a kvatilist tartalmazó osztályköz gyakorisága Iterkvartilis terjedelem: IQR = Q 3 Q Tapasztalati módusz : a legtöbbször el forduló érték Értelmezése: a mita tipikus, leggyakrabba el forduló értéke Osztályközös gyakoriságok eseté iterpolációra va szükség, ekkor a következ becslést lehet haszáli: Mo= x mo,a + da d a+d f h mo, ahol x mo,a : a móduszt tartalmazó osztályköz alsó értéke; h mo : a móduszt tartalmazó osztályköz hossza; d a : a móduszt tartalmazó osztályköz gyakorisága míusz a móduszt közvetleül megel z osztályköz gyakorisága d f : a móduszt tartalmazó osztályköz gyakorisága míusz a móduszt közvetleül követ osztályköz gyakorisága Tapasztalati ferdeség : Tapasztalati csúcsosság : (X i X) 3 S 3 (X i X) S Tétel (Gliveko-Catelli) A tapasztalati eloszlásfüggvéy valószí séggel ( egyeletese tart ) a valódi eloszlásfüggvéyhez, formálisa P lim F (x) F (x) = 0 = sup x R Boxplot ábra: (ez fekv, de lehet álló is) ahol a bet k a következ értékeket jeletik: A = max{x, Q, 5 IQR}; B = Q ; 3 3
C = Me; D = Q 3 ; E = mi{x, Q 3 +, 5 IQR}; F : kies értékek, azokat tütetjük fel potokkét, amik A- vagy E- kívülre esek Az adatelemzés lépései: Adathibák keresése, irreális adatok, értékek törlése; esetleg korrigálása Alkalmas osztályközös gyakorisági sor készítése Középértékek kiszámítása Átlag (számtai vagy mértai amelyikek értelme va) Helyzeti középértékek: Módusz az osztályközös gyakorisági sorból Mediá Szóródási mutatók kiszámítása Terjedelem Iterkvartilis terjedelem Szórás Relatív szórás Alakmutatók kiszámítása Ferdeség Csúcsosság Ábrák készítése: S r séghisztogram Boxplot ábra Lorez-görbe (értékösszeg sor eseté) Becsléselmélet Paramétertér: Θ, ahol Θ R p összefügg és yílt halmaz Deíció Torzítatla becslés: T(X) statisztika torzítatla becslése g(ϑ)-ak, ha E ϑ T (X) = g(ϑ) ϑ Θ-ra Deíció Legyeek T (X) és T (X) torzítatla becslései g(ϑ)-ak Ekkor azt modjuk, hogy T (X) hatásosabb T (X)-él, ha Dϑ (T (X)) Dϑ (T (X)) mide ϑ Θ eseté Deíció Hatásos becslés: A T (X) torzítatla becslést hatásosak evezzük, ha mide torzítatla becslésél hatásosabb Ha T (X) és T (X) hatásos becslései g(ϑ)-ak, akkor mide paraméterértékre valószí séggel megegyezek, azaz P ϑ (T (X) = T (X)) = ϑ Θ eseté Tétel A hatásos becslés egyértelm sége Deíció Aszimptotikus torzítatlaság: A T (X) becsléssorozat ( =,, ) aszimptotikusa torzítatla becslése a g(ϑ)-ak, ha E ϑ T (X) g(ϑ) ϑ Θ eseté Deíció Gyege kozisztecia: A T (X) becsléssorozat ( =,, ) gyegé kozisztes becslése a g(ϑ)-ak, ha T (X) sztochasztikusa g(ϑ) ϑ Θ eseté Másképpe: ɛ > 0-ra P ϑ ( T (X) g(ϑ) ɛ) 0 ϑ Θ eseté Tétel Elégséges feltétel gyege koziszteciára Ha E ϑ T (X) g(ϑ) és Dϑ T (X) 0, akkor T becsléssorozat gyegé kozisztes becslése g(ϑ)- ak Deíció Er s kozisztecia: A T (X) becsléssorozat ( =,, ) er se kozisztes becslése a g(ϑ)-ak, ha T (X) vsz-gel g(ϑ) ϑ Θ eseté Másképpe: P ϑ ({ω : T (X(ω)) g(ϑ) } )= ϑ Θ eseté Állítás Az eloszlásfüggvéy torzítatla és er se kozisztes becslése a tapasztalati eloszlásfüggvéy A várható érték torzítatla és er se kozisztes becslése a mitaátlag A szóráségyzet aszimptotikusa torzítatla és er se kozisztes becslése a tapasztalati szóráségyzet A szóráségyzet torzítatla és er se kozisztes becslése a korrigált tapasztalati szóráségyzet S r ségfüggvéy becslése magfüggvéy segítségével elem mitából: k Parze-Roseblatt becslés: f (x) = h ( x X i h ), ahol h alkalmas 0-hoz tartó sorozat Ez felel meg a mitapot körüli itervallum hossza feléek Tétel A Parze-Roseblatt becslés koziszteciája Alkalmas feltételek eseté h -re és a k magfüggvéyre, az f (x) Parze-Roseblatt becslés aszimptotikusa torzítatla és er se kozisztes becslése a valódi s r ségfüggvéyek Deíció Likelihood függvéy: L(ϑ, x) = f ϑ (x) = Legye X = (X,, X ) iid mita f ϑ (x i ), ha az eloszlás folytoos
L(ϑ, x) = P ϑ (X = x) = P ϑ (X i = x i ), ha az eloszlás diszkrét Deíció Log-likelihood függvéy: l(ϑ, x) = log(l(ϑ, x)) Paraméterbecslési módszerek Maximum likelihood módszer (ML-módszer): Azt a paraméterértéket keressük, ahol a likelihood függvéy a legagyobb értéket veszi fel: max ϑ L(ϑ, x) Ameyibe a függvéy deriválható ϑ szerit, akkor a maximumot kereshetjük a szokásos módo, az els és második deriváltak segítségével, azoba a feladatukat jelet se megehezíti, hogy olya -szeres szorzatot kellee deriváli, amelyikek mide tagjába ott va az a változó, ami szerit deriváluk kellee Ezért likelihood függvéy helyett a log-likelihood függvéy maximumhelyét keressük Ha ϑ dimeziós, akkor az els red feltétel: ϑ l(ϑ, x) = 0 ˆϑ másodred feltétel: ϑ l(ϑ, x) < 0 Ha ϑ p dimeziós, akkor ϑ = (ϑ,, ϑ p ), az els red feltétel: ϑi l(ϑ, x) = 0 ˆϑ i (i =,, p) ˆϑ = ( ˆϑ,, ˆϑ p ) másodred feltétel: H(ϑ,, ϑ p ) = ( ϑi ϑj l(ϑ, x) ) i,j=,,p Hessemátrix egatív deit a ϑ = ˆϑ helye Mometum módszer: A mitából számítható tapasztalati mometumokat (m i := xi j j ) egyel vé tesszük az elméleti mometumokkal (M i := E ϑ X i ), az els t l kezdve, mégpedig ayit, ameyi paraméter va Tehát p darab ismeretle paraméter eseté a következ p ismeretlees egyeletredszert oldjuk meg: M = m M p = m p Megjegyzés: m = x Fisher-tétel: Ha ϑ ML-becslése ˆϑ, akkor tetsz leges g függvéy eseté g(ϑ) MLbecslése g( ˆϑ) Az X valószí ségi változó szabadságfokú χ -eloszlást követ (jel: X χ ), ha X = U + + U, ahol U i N(0, ) mide i-re és Deíció χ -eloszlás: függetleek egymástól Deíció t-eloszlás: Az X valószí ségi változó szabadságfokú Studet-féle t-eloszlást követ (jel: X t ), ha X = Z Y, ahol Z N(0, ) és Y χ függetleek egymástól Deíció F-eloszlás: Az X valószí ségi változó m, szabadságfokú F-eloszlást követ (jel: X F m, ), ha X = Ym m Z, ahol Y m χ m és Z χ függetleek egymástól Mostatól α egy 0-hoz közeli pozitív szám lesz (például 0, 05 = 5%), és vezessük be a következ jelöléseket: u α : N(0, ) eloszlás ( α)-kvatilise, azaz u α = Φ ( α) z α := u α (sok köyvbe ezt haszálják) t,α : szabadságfokú t-eloszlás ( α)-kvatilise χ,α : szabadságfokú χ -eloszlás α-kvatilise Fm, α : m, szabadságfokú F-eloszlás α-kvatilise Deíció Kodecia itervallum: Adott α-hoz legalább ( α) valószí séggel tartalmazza az adott paramétert (vagy aak egy függvéyét): P ϑ (T (X) < ˆϑ ) < T (X) α Gyakra keresük szimmetrikus kodecia itervallumot, ilyekor T = T =:, és az itervallum ˆϑ ± alakba írható Legye X,, X N(m, σ ) iid mita m-re kodecia itervallum ha σ ismert, akkor x ± u α σ ha σ ismeretle, akkor x ± t, α σ -re kodecia itervallum: [ s ( ) (s ) ; ( ) (s χ ), α χ, α Kodecia itervallum a valószí ségre (p) agy mita eseté, ha ormális eloszlással közelítük: ˆp ± u α ˆp( ˆp) Hipotézisvizsgálat Hipotézis valami állítás, amiek igazságát vizsgáli szereték Paramétertér: Θ = Θ 0 Θ "valóság" Mitatér: X = X e X k "látszat" - MINTÁBÓL X k : kritikus tartomáy - azo X meggyelések halmaza, amikre elutasítjuk a ullhipotézist X e : elfogadási tartomáy - azo X meggyelések halmaza, amikre elfogadjuk a ullhipotézist Hipotézisvizsgálati feladat: H 0 : ϑ Θ 0 H : ϑ Θ ullhipotézis ellehipotézis ] 5
Tehát ha X X e, akkor elfogadjuk H 0 -t; ha X X k, akkor pedig elutasítjuk H 0 -t Ameyibe a Θ 0 halmaz egyelem, akkor azt modjuk, hogy H 0 egyszer H -re ugyaígy Az X mitatér felosztását általába egy statisztika (eve: próbastatisztika) segítségével végezzük el: legye T: X R, X k = {x X : T(x) > c} c eve: kritikus érték X e = {x X : T(x) c} Dötés H 0 -t "Valóság" elfogadjuk (X e ) elutasítjuk (X k ) H 0 teljesül (Θ 0 ) helyes dötés els fajú hiba H 0 em teljesül (Θ ) másodfajú hiba helyes dötés P(els fajú hiba)=α(ϑ)=p ϑ (X k ), ahol ϑ Θ 0 P(másodfajú hiba)=β(ϑ)=p ϑ (X e ), ahol ϑ Θ Er függvéy: ψ: Θ R, ψ(ϑ) = P ϑ (X k ) Terjedelem: α = sup {α(ϑ): ϑ Θ 0 } Azt modjuk, hogy az -es próba er sebb a -es próbáál, ha α = α és ψ (ϑ) ψ (ϑ) ϑ Θ Próbafüggvéy: ϕ: X [0,] eyi valószí séggel vetem el a H 0 -t a mita alapjá x X k ϕ(x) = x X e ϕ(x) = 0 p-érték: az az α terjedelem, ami eseté a próbastatisztika értéke egyel a kritikus értékkel : T(x)= c α A p-érték a legkisebb terjedelem, amire még elutasítjuk a H 0 -t Ha egy próbát számítógép segítségével végzük el, redszerit a p-érték révé tuduk dötei: ha (p-érték)< α, akkor elvetjük H 0 -t Ha mid H 0, mid H egyszer, akkor adott α terjedelemhez lehet leger sebb próbát találi, ezt pedig úgy hívják, hogy valószí ség-háyados próba A hipotéziseket folytoos esetre írom fel Diszkrétre a s r ségfüggvéy helyett a kokrét eloszlást kell íri H 0 : f = f 0 H : f = f A valószí ség-háyados próba kritikus tartomáya: X k = { x : f(x) f > c 0(x) α } Tehát azokat az x-eket, amire az f(x) f 0(x) agy, bepakoljuk a kritikus tartomáyba egésze addig, míg az adott α terjedelmet el em érjük Diszkrét esetbe ehhez általába véletleítésre va szükség, azaz bizoyos x-ek eseté em vagy 0, haem egy, e két szám közé es (jelöljük p α -val) valószí séggel vetjük el a ullhipotézist Néháy kokrét próba az α végig a próba terjedelmét jelöli, ami el re adott ) Egymitás próbák a) Egymitás u-próba X,, X N(m, σ ), ahol σ ismert, m paraméter a) H 0 : m = m 0 b) H 0 : m = m 0 c) H 0 : m = m 0 H : m m 0 H : m > m 0 H : m < m 0 A próbastatisztika: T(X)=u = X m0 H 0 eseté σ N(0, ) A kritikus tartomáyok: a) X k = {x : u > u α/ } b) X k = {x : u > u α } c) X k = {x : u < u α } b) Egymitás t-próba X,, X N(m, σ ), ahol σ, m paraméter a) H 0 : m = m 0 b) H 0 : m = m 0 c) H 0 : m = m 0 H : m m 0 H : m > m 0 H : m < m 0 A próbastatisztika: T(X)=t = X m0 s A kritikus tartomáyok: a) X k = {x : t > t,α/ } b) X k = {x : t > t,α } c) X k = {x : t < t,α } ) Kétmitás próbák H 0 eseté t X,, X N(m, σ ) Y,, Y m N(m, σ ) Az elvégzed próbák H 0 : m = m ullhipotézis eseté: a két mita a két mita függetle em függetle σ és σ ismert b) kétmitás u-próba egymitás u-próba a külöbségekre el zetes F-próba σ és σ ismeretle σ = σ σ σ egymitás t-próba c) kétmitás t-próba d) Welch-próba a külöbségekre a) F-próba m, m, σ, σ paraméterek H 0 : σ = σ és H : ami a szövegköryezetbe értelmes (s ) H 0 eseté (s F A próbastatisztika: F =,m ha s ) > s (s ) F m, ha s > s (s ) H 0 eseté b) kétmitás u-próba m, m paraméterek, σ, σ ismert H 0 : m = m és H : ami a szövegköryezetbe értelmes 6
A próbastatisztika: u = X Y σ + σ m c) kétmitás t-próba m, m, σ = σ paraméterek H 0 eseté N(0,) H 0 : m = m és H : ami a szövegköryezetbe értelmes A próbastatisztika: t = m X Y d) Welch-próba m, m, σ σ paraméterek +m A próbastatisztika: t = X Y (s ) + (s ) m ( )(s ) +(m )(s ) +m H 0 : m = m és H : ami a szövegköryezetbe értelmes H 0 eseté t f, ahol f = c + ( c) m c = (s ), ha s (s ) + (s ) > s m χ -próbák a) Diszkrét illeszkedésvizsgálat H 0 eseté t +m Feladat: adott egy X = (X,, X ) elem mita, és azt akarjuk eldötei, hogy a mita egy általuk "remélt" eloszlásból származik-e Diszkrét illeszkedésvizsgálatál feltesszük, hogy a mitaelemek r külöböz értéket vehetek fel: P(X i = x j ) = p j j =,, r Jelöljük N j -vel a gyakoriságokat, azaz azt, hogy az elem mitába háy darab x j szerepel Osztályok r Összese Valószí ségek p p p r Gyakoriságok N N N r H 0 : a valószí ségek: p=(p,, p r ) H : em ezek a valószí ségek A próbastatisztika: T = r (N i p i) p i H 0 eseté χ r eloszlásba, ha A kritikus tartomáy: X k = {x : T (x) > χ r, α} Becsléses illeszkedésvizsgálat : csak ayit "sejtük", hogy a mita valamilye eloszlású, viszot a paramétereir l ics sejtésük Ilyekor ameyibe MLmódszerrel becsüljük meg az s darab ismeretle paramétert, akkor a próbastatisztika: T H 0 eseté χ r s eloszlásba, ha Nagyo fotos: a próba csak akkor hajtható végre, ameyibe az egyes osztályokba eleged számú gyakoriság szerepel Nem egyértelm, milye határvoalat húzzuk meg Hüvelykujjszabálykét azt lehet modai, hogy a kisebb mitákál legalább 3, közepesekél legalább 5 elem szerepelje az egyes cellákba Ameyibe a cellákba túl alacsoy a gyakoriságok száma, akkor az éritett osztályokat össze kell voi Illeszkedésvizsgálat "szemmel": Q-Q plot és P-P plot Jelölje F az illesztett eloszlás eloszlásfüggvéyét, x k pedig a k redezett mitaelemet Q-Q plot: az illesztett eloszlás kvatiliseit vetjük ( össze ) a ) tapasztalati kvatilisekkel, azaz a következ potokat ábrázoljuk: (F k +, x k, ahol k =,, P-P plot: az illesztett eloszlás valószí ségeit vetjük ( össze a tapasztalati valószí - k ségekkel, azaz a következ potokat ábrázoljuk: +, F (x k ), ) ahol k =,, Midkét ábráál be szokták húzi a 5 fokos egyeest és miél jobba rásimulak a potok az egyeesre, aál jobbak tekithet az illeszkedés b) Diszkrét homogeitávizsgálat Feladat: va két függetle mita, midkett egy közös szempot szerit r osztály egyikébe sorolva Azt kell eldötei, hogy a két mita azoos eloszlásúak tekithet -e Osztályok r Összese mita Valószí ségek p p p r Gyakoriságok N N N r mita Valószí ségek q q q r Gyakoriságok M M M r m H 0 : a valószí ségek: (p,, p r ) = (q,, q r ) H : em ezek a valószí ségek A próbastat: T,m = r ( N i M i m ) H 0 eseté N i+m i χ r A kritikus tartomáy: X k = {x : T,m (x) > χ r, α} c) Függetleségvizsgálat eloszlásba, ha Feladat: va egy mita, két szempot szerit csoportosítva hogy a két szempot függetle-e egymástól p i,j =P(egy meggyelés az (i,j) osztályba kerül) N i,j =eyi meggyelés kerül az (i,j) osztályba A mitavétel eredméye: Azt kell eldötei, 7
szempot j s Összese N N j N s N szempot i N i N ij N is N i r N r N rj N rs N r Összese N N j N s ahol N i = s és N j = r N ij j= N ij H 0 : a szempotok függetleek, azaz p i,j = p i p j i, j-re H : em azok ( ) r s N A próbastatisztika: T = i,j H N i N j 0 eseté χ (r )(s ) eloszlásba, j= ha A kritikus tartomáy: X k = {x : T (x) > χ (r )(s ), α } Ha r = s =, akkor a próbastatisztika T = (NN NN) N N N N -re egyszer södik, az aszimptotikus eloszlás pedig szabadságfokú χ Feladat: Y val változót szereték közelítei X val változó lieáris függvéye segítségével: E[Y (ax + b)] mi a,b Megoldása: a opt = Cov(X,Y ) D (X) b opt = EY a opt EX Feladat (lieáris regresszió): Adottak (x, y ),, (x, y ) potok, ezekre szereték egyeest illesztei (eve: regressziós egyees) legkisebb égyzetek módszerével A modell: Y i = ax i + b + ε i, ahol Eε i = 0 és D ε i = σ < (i =,, ) Megoldás: â = (xi x)(y i y) (xi x), ˆb = y âx Reziduumok: ˆε i = y i âx i ˆb (,, ) Reziduális égyzetösszeg: RNÖ= ˆε i = (y i y) (xi x)(y i y) (xi x) ˆσ = RNÖ Tapasztalati korrelációs együttható: R = (xi x)(y i y) (xi x) (y Eek égyzetét, i y) R -et determiációs együtthatóak hívjuk, és ezzel mérjük a modell jóságát Az R mutatja meg, hogy százalékba a modell az Y változékoyságából meyit magyaráz meg Értéke 0 és között lehet, ha 0-hoz közeli, akkor a modell gyegé teljesít, ha -hez, akkor jól Érték-, ár- és volumeidexek Idex vagy idexszám: közvetleül em összesíthet, de gazdaságilag összetartozó adatok átlagos változását mutató összetett viszoyszám Tegyük fel, hogy m külöböz terméket értékesítük két külöböz id szakba, és az értékesítés árbevételét szereték elemezi Jelölések: q 0,j : a j termékb l eladott meyiség a bázisid szakba q,j : a j termékb l eladott meyiség a tárgyid szakba p 0,j (p,j ): az j termék egységára a bázis- (tárgy)id szakba v 0,j : a j termék értékesítéséb l származó árbevétel (tágabb értelembe termelési érték ) a bázisid szakba, számítása: v 0,j = q 0,j p 0,j v,j : a j termék értékesítéséb l származó árbevétel a tárgyid szakba, számítása: v,j = q,j p,j Egyedi idexek: (mostatól a j idexeket lehagyjuk) Egyedi volumeidexek: i q,j = q,j q 0,j i q = q q 0 Egyedi áridexek: i p,j = p,j p 0,j Egyedi értékidexek: i v,j = v,j v 0,j Összetett idexek: i p = p p 0 = q,j p,j p,j p 0,j i v = v v 0 = qp q 0p 0 = i p i q Bázisid szaki Tárgyid szaki Idex fajtája súlyozású vagy súlyozású vagy Fisher-féle Laspeyres-féle Paasche-féle - Áridexek: Ip 0 = q0p q0p 0 Ip = qp qp 0 Ip F = Ip 0 Ip - Volumeidexek: Iq 0 = qp 0 q0p 0 Iq = qp q0p Iq F = Iq 0 Iq, - Értékidex: I v = qp q0p 0 Néháy összefüggés: I v = I 0 q I p = I q I 0 p = q0p 0 i v q0p 0 = qp I 0 p = I q = q0p 0 i p q0p 0 = q0p q0 p q0p i q q0p = ip qp q p iq q p iv Az idexek képleteibe lév osztások helyett külöbségeket is lehet képezi, ekkor az I és i helyett K-t és k-t íruk Például K 0 p = q 0 p q 0 p 0 8