9. Szegmentálás. Kató Zoltán. Képfeldolgozás és Számítógépes Grafika tanszék SZTE (
|
|
- Ilona Dudásné
- 7 évvel ezelőtt
- Látták:
Átírás
1 9. Szegmentálás Kató Zoltán Képfeldolgozás és Számítógépes Grafika tanszék SZTE (
2 2 Szegmentálás célja Partícionáljuk a képet koherens objektumokra Nincs egzakt definíció (alkalmazásfüggő, szubjektív) image human segmentation
3 3 Szegmentálási példák
4 4 Terminológia Szegmentálás, csoportosítás, perceptuális rendezés (Segmentation, grouping, perceptual organization): az összetartozó jellemzők összegyűjtése, csoportosítása Illesztés (Fitting): modell társítása a megfigyelt jellemzőkhöz Szegmentálás felülről lefelé (Top-down segmentation): a pixelek összetartozásának alapja a közös objektumba tarztozás (ehhez ismerni kell a keresett objektumot) Szegmentálás lentről fölfelé (Bottom-up segmentation): a pixelek összetartozásának alapja az azonos vizuális jellemző (pl. hasonló szín)
5 5 Szegmentálási módszerek Szegmentálás mint klaszterezés Küszöbölés, K-means, Mean shift Régió alapú szegmentálás Régiónövelés, split & merge Kontúr alapú szegmentálás Canny, kontúrkövetés, alakzatillesztés
6 6 GLOBÁLIS ÉS LOKÁLIS KÜSZÖBÖLÉS
7 7 Küszöbölés Alapfeltevések: Az objektum és a háttér eltérő intenzitású (nagy kontraszt) Az objektum és a háttér önmagában homogén intenzitású Például: sötét objektum világos háttéren: f(x,y) - input kép; t(x,y) - szegmentált kép; T=küszöbérték f(x,y)<=t t(x,y)=1 (objektum) f(x,y)>t t(x,y)=0 (háttér)
8 8 Küszöbérték meghatározása Zajos kép esetében nehéz (~lehetetlen) kielégítő küszöbértéket meghatározni a szegmentálás inhomogén lesz. Zajszűrés jelenthet megoldást, ha nem túl nagy a zaj
9 9 Küszöbérték meghatározása Lehet az input képtől függetlenül, manuálisan rögzített érték Egyszerű Kontrollált környezetben jól használható (ipari alkalmazások) Adaptív eljárások, melyek az input képhez automatikusan választják ki az optimális küszöbértéket: Globális hisztogram-ból klaszterezéssel számított érték Isodata algoritmus (Yanni) Otsu algoritmus Lokálisan változó érték (egyenetlen megvilágítás) Niblack algoritmus
10 10 Isodata algoritmus (Yanni) Jól használható, ha az előtér és a háttér kb. ugyanannyi pixelből áll. 1. Inicializálás: a hisztogramot két részre osztjuk (célszerűen a felezőponton): T 0 2. kiszámítjuk az objektum valamint a háttér intenzitásának középértékét: M i,m i 3. Az új küszöbérték a két középérték átlaga: T i =(M i +m i )/2 4. Vége ha a küszöbérték már nem változik: T k+1 =T k
11 11 Otsu algoritmus A bemeneti kép L szürkeárnyalatot tartalmaz a normalizált hisztogram minden x szürkeértékhez megadja az előfordulási gyakoriságát (valószínűségét): p x Az algoritmus lényege: keressük meg azt a T küszöbszámot, amely maximalizálja az objektum-háttér közötti varianciát. Az előtér/háttér pixelek gyakorisága és középértéke: háttér: B( T ) legyen m( T ) x1 x1 háttér középértéke T T p xp : x x B objektum : a teljes m( T ) B( T ) ; 1 B( T ) kép középértéke xt 1 objektum középértéke : L p x m( L) : O L x1 xp x m( T ) 1 B( T )
12 Otsu algoritmus Az előtér/háttér pixelek szórása: A teljes kép szórása: nyilván 2 konstans, és T-t úgy kell beállítani, hogy C2 (T) a lehető legnagyobb legyen: L 1 T x 2 O 2 T 1 x 2 B 2 ) (x - ) ( 1 1, ) (x - ) ( 1 x O x B p T B p B T ) ( ) ( )) ( (1 ) ( ) ( ) ( )) ( (1 ) (... ) (x - ) (x közöttivarianciátólfügg osztályok ), ( 2 2 belülivarianciátólfügg osztályon ), ( 2 2 L 1 T x 2 T 1 x T T T B T B T B T B p p C W T O B T O B x x C W )) ( )(1 ( )) ( ) ( (... ) ( 2 2 T B T B T B T T C 12
13 13 Otsu algoritmus A hisztogram elejéről kezdve nézzük meg minden szürkeértéket, mint lehetséges küszöböt: Számoljuk ki C2 (T) értékét µ(t) és B(T) segítségével mindaddig növeljük T értékét, amíg C2 (T) növekszik. Ez az algoritmus feltételezi, hogy C2 (T) nek egyetlen maximuma van!
14 Otsu 14 Példák Original Isodata (Yanni)
15 15 Lokálisan változó küszöbérték Mit tehetünk abban az esetben, ha az objektum vagy a háttér nem homogén? Amennyiben az objektum és a háttér kontrasztja lokálisan továbbra is nagy, akkor alkalmazhatunk lokális küszöbölést.
16 16 Lokális hisztogram + Otsu T=186 T=133
17 17 Niblack algoritmus Egyetlen küszöb nem elegendő az objektum és háttér szétválasztásához változó küszöbérték (T(i,j)) kell, amely követi az intenzitásváltozásokat: T( i, j) ( i, j) k ( i, j) (i,j) adott környezetében: (i,j) - középérték (i,j) - szórás k mennyire vegyük figyelembe a szórást Sötét objektum k< 0, világos objektum k>0 Általában k ~ 0.2 A környezet mérete: elég kicsi ahhoz, hogy a lokális részleteket megőrizze, de elég nagy ahhoz, hogy a zajt elnyomja (általában 15X15).
18 18 Niblack algoritmus: példák original Niblack k= X30 Otsu Niblack k= X30 Niblack k= X15 Niblack k= X60 Niblack k= X15 Niblack k= X60
19 19 Postprocessing ghost objektumok eltüntetése Számitsuk ki az átlagos gradiens értékét az objektumok élei mentén Töröljük le azokat az objektumokat, amelyeknek az átlagos gradiense egy adott küszöbérték alatt van
20 20 Postprocessing példák original Niblack k= X15 gradiens postprocess után
21 21 RÉGIÓ ALAPÚ SZEGMENTÁLÁS
22 22 Szegmentálási kritériumok Particionáljuk a képet az alábbi kritériumokat kielégítő régiókba (Pavlidis): 1. S i = S A régiók lefedik a teljes képet 2. S i S j =, i j A régiók nem átfedőek 3. S i, P(S i ) = true Minden régió kielégíti a homogenitási kritériumot 4. P(S i S j ) = false Szomszédos régiók uniója i j, S i adjacent S j nem elégíti ki a homogenitási kritériumot
23 23 Címkézés A szegmentált képet címkézéssel állítjuk elő: Egy adott régióhoz tartozó pixeleket azonos címkével (~szürkeárnyalat) jelöljük meg.
24 24 Régiónövelés (Region Growing) Inicializáljuk a régiómagokat (seed point) Ezek kiválasztása alkalmazás-függő Lehet egyszerűen az első még nem címkézett pixel Növeljük a régiókat a szomszédos pixelek hozzáadásával a homogenitási kritériumnak megfelelően Szín távolság a szomszédoktól A régión belüli inhomogenitás mérésével Régió mérete vagy alakja,
25 Régiónövelés Homogenitási kritériumként alkalmazhatjuk pl. az alábbi statisztikai tesztet: Legyen R az aktuális régió, amely N pixelből áll. P jelölje a vizsgált szomszédos pixel intenzitását. A statisztika: (n-1) szabadsági fokú Student s eloszlást követ R y x R y x y x I N y x I N ), ( 2 2 ), ( ) ), ( ( 1 1 ), ( P N N 25
26 26 Régiónövelés Egy megfelelő T küszöbszámot statisztikai táblázatból választhatunk a megfelelő szabadsági fokhoz és konfidencia szinthez Ha T, akkor a vizsgált pixelt az R régióhoz adjuk Ha >T, akkor a vizsgált pixel egy másik (új) régióhoz tartozik. forráspontok növesztett régiók fehérállomány szegmentálása MR agyvizsgálaton
27 27 Split & Merge 1. P homogenitási kritérium 2. R i régiót osszuk fel 4 részre, ha P( R i ) False 3. Vonjuk össze az R i és R j szomszédos régiókat, ha P( R i R j True 4. Vége, ha nem lehet több régiót feldarabolni vagy összevonni. )
28 28 Split & Merge quad-tree R R 21 R 22 R 1 R 23 R 24 R 1 R 3 R 4 R 2 R 3 R 4 R 21 R 22 R 23 R 24 eredeti kép dekompozíció
29 29 Klaszterezés Adott K klaszter: C 1,, C K. A kalszterek középértékét jelölje µ 1,, µ K. LSE (Least Square Error): D K k1 x C i k x i k 2 Az összes lehetséges particionálás közül válasszuk azt, amelyik minimalizálja D-t. Sok lehetséges particionálás kereséssel nem határozható meg a minimum.
30 30 K adaptív meghatározása (Meng-Hee Heng) 1. Válasszunk 2 pontot (Y és Z), amelyek a legmesszebb helyezkednek el egymástól a feature-térben. Ezek lesznek a kezdeti klaszter-középértékek. 2. A kép minden pontját rendeljük ahhoz a klaszterhez, amelynek a középértéke a legközelebb van. 3. Legyen D a maximális távolság, amely egy pont és az ő klaszter-középpontja között van. Jelölje X ezt a pontot. 4. Legyen q az átlagos távolság a klaszter-középpontok között. 5. Ha D>q/2, akkor legyen X egy új klaszter-középpont. 6. Ha új klaszter-középpont keletkezett, akkor 2.
31 31 K adaptív meghatározása (Meng-Hee Heng) Y q X D>q/2 Z
32 32 K-means példa K=4
33 33 Problémák Nem konvex klaszterek detektálására közvetlenül nem használható. Spektrális klaszterezés OK K-means Spectral???
34 34 MEAN SHIFT
35 35 Mean shift szegmentálás Klaszterező eljárás számos alkalmazással éltartó simítás, szegmentálás, mozgáskövetés, D. Comaniciu and P. Meer, Mean Shift: A Robust Approach toward Feature Space Analysis, IEEE Transactions on Pattern Analyzis & Machine Intelligence, 2002.
36 36 Mean shift működése ROI Súlypont Mean Shift vektor Slide by Y. Ukrainitz & B. Sarel
37 37 Mean shift működése ROI Súlypont Mean Shift vektor Slide by Y. Ukrainitz & B. Sarel
38 38 Mean shift működése ROI Súlypont Mean Shift vektor Slide by Y. Ukrainitz & B. Sarel
39 39 Mean shift működése ROI Súlypont Mean Shift vektor Slide by Y. Ukrainitz & B. Sarel
40 40 Mean shift működése ROI Súlypont Mean Shift vektor Slide by Y. Ukrainitz & B. Sarel
41 41 Mean shift működése ROI Súlypont Mean Shift vektor Slide by Y. Ukrainitz & B. Sarel
42 42 Mean shift működése ROI Súlypont Slide by Y. Ukrainitz & B. Sarel
43 43 Mean shift klaszterezés Egy csúcs vonzáskörzetébe tartozó adatpontokat soroljuk egy klaszterbe. Vonzáskörzet: az a régió, amelyből minden trajektória ugyanabba a csúcsba vezet. Pixelérték és képi pozíció alapján klaszterezve szuperpixeleket kapunk
44 44 Mean shift algoritmus 1. Input: n darab d-dimenziós pontból álló halmaz: {x i } i=1..n 2. Statisztikai modell: a ponthalmazt egy ismeretlen sűrűségfüggvényű (PDF) valószínűségi változó mintáinak tekintjük. A sűrűségfüggvény paramétereire vonatkozóan semmit nem tételezünk fel (vagyis egy paraméter nélküli modellt alkalmazunk). 3. Cél: minden ponthoz keressük meg az ismeretlen sűrűségfüggvény hozzá legközelebb eső lokális maximumát.
45 45 Sűrűség becslés paraméter nélkül Nem parametrikus sűrűség becslés Diszkrét PDF reprezentáció ponthalmaz Nem parametrikus sűrűség GRADIENS becslés (Mean Shift) PDF elemzés Nem parametrikus = nincs feltevés a PDF alakjára nézve (pl. parametrikus, ha feltesszük, hogy Gauss sűrűségfüggvénye van) A sűrűségfüggvény helyett csak a gradiensét fogjuk meghatározni
46 46 Kernel Density Estimation, Parzen ablak Kernel: Az {x i } i=1..n adatpontok függvénye: n Statisztikában Parzen-ablakként is ismert 1 P( x) K( x - x ) A kernel egy nem-negatív, valós, integrálható K(x) függvény, amely kielégíti a következő feltételeket: Normalizált Szimmetrikus Exponenciálisan csökken a súlya K( x) dx1 R d x K( x ) d x 0 R xx T K( x ) d x c I R d d d lim x K( x) 0 x n i 1 Adatpontok i
47 47 Kernel példák A gyakorlatban az alábbi egyszerűbb alakok használatosak: d Ugyanaz a függvény minden dimenzióban: K( x) ck( xi ) Vektor hosszának függvénye: K( x) ck x i1 Epanechnikov Kernel K E ( x) 2 c x x otherwise Uniform Kernel K U ( x) c x 1 0 otherwise Normal Kernel KN ( x) cexp 1 2 x 2
48 48 Sűrűség gradiens becslése A sűrűség helyett becsüljük annak gardiensét: n 1 P( x) K( x - x ) n i 1 2 x - x i Ebből a kernelből: K( x - xi ) ck h n Kapjuk: ig n n i c c x i1 P( x) ki gi n n i1 n i1 gi i1 i ablakméret x g( x) k( x)
49 Az elmozdulás (Mean Shift) kiszámítása ( ) n i i n n i i i n i i i i g c c P k g n n g x x x Újabb Kernel density estimation! Számítsuk ki a mean shift vektort Toljuk el az ablakot m(x)-el ( ) n i i i n i i g h g h x - x x m x x x - x g( ) ( ) k x x 49
50 50 Mik lesznek az adatpontok? Egy digitális képet 2 dimenziós rácson vett r- dimenziós vektorok (pixelértékek) reprezentálnak r=1 szürkeárnyalatos kép esetén, 3 színes kép esetén, A rácspontok alkotják a képteret A szürkeárnyalat, szín alkotja a radiometriai tartományt. Miután normalizáltuk h s el a képteret és h r -el a radiometriai tartományt, a pozíció és radiometriai vektorokat konkatenálva megkapjuk a közös kép-radiometriai teret, amely d=r+2 dimenziós.
51 51 Jellemző tér Jellemző tér = képtér koordináták + radiometriai érték Kernel: s r x x K( x) C ks kr h s h r Vagyis a képet úgy tekintjük, mint adatpontok a közös kép-radiometriai térben Képi adat Mean Shift vektorok Simítás eredménye
52 52 Éltartó simítás A módusok a sima régiókban keletkeznek
53 53 Éltartó simítás Az ablakméret hatása a kép- és a radiometriai térben
54 54 Mean Shift szegmentálás 1. Minden pixelre határozzuk meg a legközelebbi módust, és tároljuk (Mean Shift által adott érték) 2. Határozzuk meg azokat a pixeleket, amelyekhez tartozó módusok közel azonosak (<0.5 távolság) 3. Cjmkézzük meg az így kapott pixeleket régió 4. Esetleg töröljük a túl kicsi régiókat (rendeljük őket a legközelebbi szomszédhoz) Mindezt párhuzamosan is végrehajthatjuk
55 55 Módusok keresése Fedjük le a teret nem átfedő ablakokkal Futtassuk párhuzamosan az algoritmust
56 56 Módusok keresése A kék pontokon keresztülhaladt az ablak a módus felé
57 57 Szegmentálási eredmény Szegmentált kép Input kép Kontúrok
58 58 Mean shift szegmentálási eredmények
59 59 Mean shift előnyök és hátrányok Előnyök Tetszőleges alakú klasztereket detektál (K-means csak gömbszerűeket!) Egyetlen paraméter (ablakméret) Tetszőleges számú csúcsot képes megtalálni Hátrányok Az eredmény függ az ablakmérettől Nagy számításigényű Rosszul skálázható (a feature-tér dimenziójára érzékeny)
60 60 Felhasznált anyagok Palágyi Kálmán: Digitális Képfeldolgozás /pub/digitalis_kepfeldolgozas Svetlana Lazebnik: COMP 776: Computer Vision Yaron Ukrainitz & Bernard Sarel: Advanced Topics in Computer Vision, Weizmann Institute es/mean_shift/mean_shift.ppt További források az egyes diákon megjelölve
7. Régió alapú szegmentálás
Digitális képek szegmentálása 7. Régió alapú szegmentálás Kató Zoltán http://www.cab.u-szeged.hu/~kato/segmentation/ Szegmentálási kritériumok Particionáljuk a képet az alábbi kritériumokat kielégítő régiókba
8. Pontmegfeleltetések
8. Pontmegfeleltetések Kató Zoltán Képfeldolgozás és Számítógépes Grafika tanszék SZTE (http://www.inf.u-szeged.hu/~kato/teaching/) 2 Példa: panoráma kép készítés 1. Jellemzőpontok detektálása mindkét
Keresés képi jellemzők alapján. Dr. Balázs Péter SZTE, Képfeldolgozás és Számítógépes Grafika Tanszék
Keresés képi jellemzők alapján Dr. Balázs Péter SZTE, Képfeldolgozás és Számítógépes Grafika Tanszék Lusta gépi tanulási algoritmusok Osztályozás: k=1: piros k=5: kék k-legközelebbi szomszéd (k=1,3,5,7)
3. Szűrés képtérben. Kató Zoltán. Képfeldolgozás és Számítógépes Grafika tanszék SZTE (http://www.inf.u-szeged.hu/~kato/teaching/)
3. Szűrés képtérben Kató Zoltán Képfeldolgozás és Számítógépes Grafika tanszék SZTE http://www.inf.u-szeged.hu/~kato/teaching/ 2 Kép transzformációk típusai Kép értékkészletének radiometriai információ
6. Éldetektálás. Kató Zoltán. Képfeldolgozás és Számítógépes Grafika tanszék SZTE (http://www.inf.u-szeged.hu/~kato/teaching/)
6. Éldetektálás Kató Zoltán Képeldolgozás és Számítógépes Graika tanszék SZTE (http://www.in.u-szeged.hu/~kato/teaching/) 2 Élek A képen ott található él, ahol a kép-üggvény hirtelen változik. A kép egy
Számítógépes képelemzés 7. előadás. Dr. Balázs Péter SZTE, Képfeldolgozás és Számítógépes Grafika Tanszék
Számítógépes képelemzés 7. előadás Dr. Balázs Péter SZTE, Képfeldolgozás és Számítógépes Grafika Tanszék Momentumok Momentum-alapú jellemzők Tömegközéppont Irányultáság 1 2 tan 2 1 2,0 1,1 0, 2 Befoglaló
Digitális képek szegmentálása. 5. Textúra. Kató Zoltán.
Digitális képek szegmentálása 5. Textúra Kató Zoltán http://www.cab.u-szeged.hu/~kato/segmentation/ Textúra fogalma Sklansky: Egy képen egy területnek állandó textúrája van ha a lokális statisztikák vagy
2. Pont operációk. Kató Zoltán. Képfeldolgozás és Számítógépes Grafika tanszék SZTE (http://www.inf.u-szeged.hu/~kato/teaching/)
2. Pont operációk Kató Zoltán Képfeldolgozás és Számítógépes Grafika tanszék SZTE (http://www.inf.u-szeged.hu/~kato/teaching/) 2 Kép transzformációk típusai Kép értékkészletének (radiometriai információ)
6. Modell illesztés, alakzatok
6. Modell illesztés, alakzatok Kató Zoltán Képfeldolgozás és Számítógépes Grafika tanszék SZTE (http://www.inf.u-szeged.hu/~kato/teaching/) 2 ROBOSZTUS EGYENES ILLESZTÉS Egyenes illesztés Adott a síkban
Adatbányászati szemelvények MapReduce környezetben
Adatbányászati szemelvények MapReduce környezetben Salánki Ágnes salanki@mit.bme.hu 2014.11.10. Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs Rendszerek Tanszék Felügyelt
Statisztika - bevezetés Méréselmélet PE MIK MI_BSc VI_BSc 1
Statisztika - bevezetés 00.04.05. Méréselmélet PE MIK MI_BSc VI_BSc Bevezetés Véletlen jelenség fogalma jelenséget okok bizonyos rendszere hozza létre ha mindegyik figyelembe vehető egyértelmű leírás általában
Regresszió. Csorba János. Nagyméretű adathalmazok kezelése március 31.
Regresszió Csorba János Nagyméretű adathalmazok kezelése 2010. március 31. A feladat X magyarázó attribútumok halmaza Y magyarázandó attribútumok) Kérdés: f : X -> Y a kapcsolat pár tanítópontban ismert
Sergyán Szabolcs szeptember 21.
Éldetektálás Sergyán Szabolcs Budapesti Műszaki Főiskola Neumann János Informatikai Kar 2009. szeptember 21. Sergyán Sz. (BMF NIK) Éldetektálás 2009. szeptember 21. 1 / 28 Mit nevezünk élnek? Intuitív
Normális eloszlás tesztje
Valószínűség, pontbecslés, konfidenciaintervallum Normális eloszlás tesztje Kolmogorov-Szmirnov vagy Wilk-Shapiro próba. R-funkció: shapiro.test(vektor) balra ferde eloszlás jobbra ferde eloszlás balra
Adaptív dinamikus szegmentálás idősorok indexeléséhez
Adaptív dinamikus szegmentálás idősorok indexeléséhez IPM-08irAREAE kurzus cikkfeldolgozás Balassi Márton 1 Englert Péter 1 Tömösy Péter 1 1 Eötvös Loránd Tudományegyetem Informatikai Kar 2013. november
Éldetektálás, szegmentálás (folytatás) Orvosi képdiagnosztika 11_2 ea
Éldetektálás, szegmentálás (folytatás) Orvosi képdiagnosztika 11_2 ea Geometrikus deformálható modellek Görbe evolúció Level set módszer A görbe evolúció parametrizálástól független mindössze geometriai
Pontműveletek. Sergyán Szabolcs Óbudai Egyetem Neumann János Informatikai Kar február 20.
Pontműveletek Sergyán Szabolcs sergyan.szabolcs@nik.uni-obuda.hu Óbudai Egyetem Neumann János Informatikai Kar 2012. február 20. Sergyán (OE NIK) Pontműveletek 2012. február 20. 1 / 40 Felhasznált irodalom
Gépi tanulás a gyakorlatban. Kiértékelés és Klaszterezés
Gépi tanulás a gyakorlatban Kiértékelés és Klaszterezés Hogyan alkalmazzuk sikeresen a gépi tanuló módszereket? Hogyan válasszuk az algoritmusokat? Hogyan hangoljuk a paramétereiket? Precízebben: Tegyük
Él: a képfüggvény hirtelen változása. Típusai. Felvételeken zajos formában jelennek meg. Lépcsős
Él: a képfüggvény hirtelen változása Típusai Lépcsős Rámpaszerű Tetőszerű Vonalszerű él Felvételeken zajos formában jelennek meg Adott pontbeli x ill. y irányú változás jellemezhető egy f folytonos képfüggvény
Adatbányászat: Klaszterezés Haladó fogalmak és algoritmusok
Adatbányászat: Klaszterezés Haladó fogalmak és algoritmusok 9. fejezet Tan, Steinbach, Kumar Bevezetés az adatbányászatba előadás-fóliák fordította Ispány Márton Logók és támogatás A tananyag a TÁMOP-4.1.2-08/1/A-2009-0046
Gépi tanulás a gyakorlatban. Lineáris regresszió
Gépi tanulás a gyakorlatban Lineáris regresszió Lineáris Regresszió Legyen adott egy tanuló adatbázis: Rendelkezésünkre áll egy olyan előfeldolgozott adathalmaz, aminek sorai az egyes ingatlanokat írják
10. Alakzatok és minták detektálása
0. Alakzatok és mnták detektálása Kató Zoltán Képfeldolgozás és Számítógépes Grafka tanszék SZTE http://www.nf.u-szeged.hu/~kato/teachng/ 2 Hough transzformácó Éldetektálás során csak élpontok halmazát
Képszűrés II. Digitális képelemzés alapvető algoritmusai. Laplace-operátor és approximációja. Laplace-szűrő és átlagolás. Csetverikov Dmitrij
Képszűrés II Digitális képelemzés alapvető algoritmusai Csetverikov Dmitrij Eötvös Lóránd Egyetem, Budapest csetverikov@sztaki.hu http://vision.sztaki.hu Informatikai Kar 1 Laplace-szűrő 2 Gauss- és Laplace-képpiramis
Közösség detektálás gráfokban
Közösség detektálás gráfokban Önszervező rendszerek Hegedűs István Célkitűzés: valamilyen objektumok halmaza felett minták, csoportok detektálása csakis az egyedek közötti kapcsolatok struktúrájának a
Bevezetés a hipotézisvizsgálatokba
Bevezetés a hipotézisvizsgálatokba Nullhipotézis: pl. az átlag egy adott µ becslése : M ( x -µ ) = 0 Alternatív hipotézis: : M ( x -µ ) 0 Szignifikancia: - teljes bizonyosság csak teljes enumerációra -
Modern műszeres analitika szeminárium Néhány egyszerű statisztikai teszt
Modern műszeres analitika szeminárium Néhány egyszerű statisztikai teszt Galbács Gábor KIUGRÓ ADATOK KISZŰRÉSE STATISZTIKAI TESZTEKKEL Dixon Q-tesztje Gyakori feladat az analitikai kémiában, hogy kiugrónak
Gépi tanulás. Féligellenőrzött tanulás. Pataki Béla (Bolgár Bence)
Gépi tanulás Féligellenőrzött tanulás Pataki Béla (Bolgár Bence) BME I.E. 414, 463-26-79 pataki@mit.bme.hu, http://www.mit.bme.hu/general/staff/pataki Féligellenőrzött tanulás Mindig kevés az adat, de
Képfeldolgozás haladóknak Lovag Tamás Novák Gábor 2011
Dokumentáció Küszöbölés A küszöbölés során végighaladunk a képen és minden egyes képpont intenzitásáról eldöntjük, hogy teljesül-e rá az a küszöbölési feltétel. A teljes képre vonatkozó küszöbölés esetében
Biostatisztika VIII. Mátyus László. 19 October
Biostatisztika VIII Mátyus László 19 October 2010 1 Ha σ nem ismert A gyakorlatban ritkán ismerjük σ-t. Ha kiszámítjuk s-t a minta alapján, akkor becsülhetjük σ-t. Ez további bizonytalanságot okoz a becslésben.
Képfeldolgozás Szegmentálás Osztályozás Képfelismerés Térbeli rekonstrukció
Mesterséges látás Miről lesz szó? objektumok Bevezetés objektumok A mesterséges látás jelenlegi, technikai eszközökön alapuló világunkban gyakorlatilag azonos a számítógépes képfeldolgozással. Számítógépes
Általánosan, bármilyen mérés annyit jelent, mint meghatározni, hányszor van meg
LMeasurement.tex, March, 00 Mérés Általánosan, bármilyen mérés annyit jelent, mint meghatározni, hányszor van meg a mérendő mennyiségben egy másik, a mérendővel egynemű, önkényesen egységnek választott
Minták automatikus osztályba sorolása a mintát leíró jellemzők alapján. Típusok: felügyelt és felügyelet nélküli tanuló eljárások
Minták automatikus osztályba sorolása a mintát leíró jellemzők alapján Típusok: felügyelt és felügyelet nélküli tanuló eljárások Különbség: előbbinél szükséges egy olyan tanulóhalmaz, ahol ismert a minták
1. Adatok kiértékelése. 2. A feltételek megvizsgálása. 3. A hipotézis megfogalmazása
HIPOTÉZIS VIZSGÁLAT A hipotézis feltételezés egy vagy több populációról. (pl. egy gyógyszer az esetek 90%-ában hatásos; egy kezelés jelentősen megnöveli a rákos betegek túlélését). A hipotézis vizsgálat
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 10 X. SZIMULÁCIÓ 1. VÉLETLEN számok A véletlen számok fontos szerepet játszanak a véletlen helyzetek generálásában (pénzérme, dobókocka,
[Biomatematika 2] Orvosi biometria
[Biomatematika 2] Orvosi biometria 2016.02.29. A statisztika típusai Leíró jellegű statisztika: összegzi egy adathalmaz jellemzőit. A középértéket jelemzi (medián, módus, átlag) Az adatok változékonyságát
Least Squares becslés
Least Squares becslés A négyzetes hibafüggvény: i d i ( ) φx i A négyzetes hibafüggvény mellett a minimumot biztosító megoldás W=( d LS becslés A gradiens számítása és nullává tétele eredményeképp A megoldás
A maximum likelihood becslésről
A maximum likelihood becslésről Definíció Parametrikus becsléssel foglalkozunk. Adott egy modell, mellyel elképzeléseink szerint jól leírható a meghatározni kívánt rendszer. (A modell típusának és rendszámának
3D Számítógépes Geometria II.
3D Számítógépes Geometria II. 1. Bevezetés http://cg.iit.bme.hu/portal/3dgeo2 https://www.vik.bme.hu/kepzes/targyak/viiiav16 Dr. Várady Tamás, Dr. Salvi Péter BME, Villamosmérnöki és Informatikai Kar Irányítástechnika
Az objektum leírására szolgálnak. Mire jók? Sokszor maga a jellemző az érdekes: Tömörítés. Objektumok csoportosítására
Az objektum leírására szolgálnak Mire jók? Sokszor maga a jellemző az érdekes: pl.: átlagosan mekkora egy szitakötő szárnyfesztávolsága? Tömörítés pl.: ha körszerű objektumokat tartalmaz a kép, elegendő
Nagy számok törvényei Statisztikai mintavétel Várható érték becslése. Dr. Berta Miklós Fizika és Kémia Tanszék Széchenyi István Egyetem
agy számok törvényei Statisztikai mintavétel Várható érték becslése Dr. Berta Miklós Fizika és Kémia Tanszék Széchenyi István Egyetem A mérés mint statisztikai mintavétel A méréssel az eloszlásfüggvénnyel
Navigáci. stervezés. Algoritmusok és alkalmazásaik. Osváth Róbert Sorbán Sámuel
Navigáci ció és s mozgástervez stervezés Algoritmusok és alkalmazásaik Osváth Róbert Sorbán Sámuel Feladat Adottak: pálya (C), játékos, játékos ismerethalmaza, kezdőpont, célpont. Pálya szerkezete: akadályokkal
Lényege: valamilyen szempont szerint homogén csoportok képzése a pixelekből. Amit már ismerünk:
Lényege: valamilyen szempont szerint homogén csoportok képzése a pixelekből. Amit már ismerünk: Küszöbölés, vágás, sávkijelölés hátránya: az azonos csoportba sorolt pixelek nem feltétlenül alkotnak összefüggő
Alap-ötlet: Karl Friedrich Gauss ( ) valószínűségszámítási háttér: Andrej Markov ( )
Budapesti Műszaki és Gazdaságtudományi Egyetem Gépészmérnöki Kar Hidrodinamikai Rendszerek Tanszék, Budapest, Műegyetem rkp. 3. D ép. 334. Tel: 463-6-80 Fa: 463-30-9 http://www.vizgep.bme.hu Alap-ötlet:
Véletlen jelenség: okok rendszere hozza létre - nem ismerhetjük mind, ezért sztochasztikus.
Valószín ségelméleti és matematikai statisztikai alapfogalmak összefoglalása (Kemény Sándor - Deák András: Mérések tervezése és eredményeik értékelése, kivonat) Véletlen jelenség: okok rendszere hozza
Adatbányászat. Klaszterezés Szociális hálózatok. Szegei Tudományegyetem. Lehetetlenségi tétel Hierarchikus eljárások Particionáló módszerek
Adatányászat Klaszterezés Szociális hálózatok Szegei Tudományegyetem Adatányászat Mit várhatunk egy klaszterezőtől? Az ojektumok olyan csoportjainak megtalálása, hogy az egy csoportan levő ojektumok hasonlóak
STATISZTIKA ELŐADÁS ÁTTEKINTÉSE. Matematikai statisztika. Mi a modell? Binomiális eloszlás sűrűségfüggvény. Binomiális eloszlás
ELŐADÁS ÁTTEKINTÉSE STATISZTIKA 9. Előadás Binomiális eloszlás Egyenletes eloszlás Háromszög eloszlás Normális eloszlás Standard normális eloszlás Normális eloszlás mint modell 2/62 Matematikai statisztika
A médiatechnológia alapjai
A médiatechnológia alapjai Úgy döntöttem, hogy a Szirányi oktatta előadások számonkérhetőnek tűnő lényegét kiemelem, az alapján, amit a ZH-ról mondott: rövid kérdések. A rész és az egész: összefüggések
Kabos: Statisztika II. t-próba 9.1. Ha ismert a doboz szórása de nem ismerjük a
Kabos: Statisztika II. t-próba 9.1 Egymintás z-próba Ha ismert a doboz szórása de nem ismerjük a doboz várhatóértékét, akkor a H 0 : a doboz várhatóértéke = egy rögzített érték hipotézisről úgy döntünk,
x, x R, x rögzített esetén esemény. : ( ) x Valószínűségi Változó: Feltételes valószínűség: Teljes valószínűség Tétele: Bayes Tétel:
Feltételes valószínűség: Teljes valószínűség Tétele: Bayes Tétel: Valószínűségi változó általános fogalma: A : R leképezést valószínűségi változónak nevezzük, ha : ( ) x, x R, x rögzített esetén esemény.
6. Előadás. Vereb György, DE OEC BSI, október 12.
6. Előadás Visszatekintés: a normális eloszlás Becslés, mintavételezés Reprezentatív minta A statisztika, mint változó Paraméter és Statisztika Torzítatlan becslés A mintaközép eloszlása - centrális határeloszlás
A Föld középpontja felé szabadon eső test sebessége növekszik, azaz, a
a Matematika mérnököknek I. című tárgyhoz Függvények. Függvények A Föld középpontja felé szabadon eső test sebessége növekszik, azaz, a szabadon eső test sebessége az idő függvénye. Konstans hőmérsékleten
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 4 IV. MINTA, ALAPsTATIsZTIKÁK 1. MATEMATIKAI statisztika A matematikai statisztika alapfeladatát nagy általánosságban a következőképpen
Diszkréten mintavételezett függvények
Diszkréten mintavételezett függvények A függvény (jel) értéke csak rögzített pontokban ismert, de köztes pontokban is meg akarjuk becsülni időben mintavételezett jel pixelekből álló műholdkép rácson futtatott
MISKOLCI EGYETEM GÉPÉSZMÉRNÖKI ÉS INFORMATIKAI KAR
MISKOLCI EGYETEM GÉPÉSZMÉRNÖKI ÉS INFORMATIKAI KAR Korszerű információs technológiák Klaszteranalízis Tompa Tamás tanársegéd Általános Informatikai Intézeti Tanszék Miskolc, 2018. október 20. Tartalom
Konjugált gradiens módszer
Közelítő és szimbolikus számítások 12. gyakorlat Konjugált gradiens módszer Készítette: Gelle Kitti Csendes Tibor Vinkó Tamás Faragó István Horváth Róbert jegyzetei alapján 1 LINEÁRIS EGYENLETRENDSZEREK
Kettőnél több csoport vizsgálata. Makara B. Gábor
Kettőnél több csoport vizsgálata Makara B. Gábor Három gyógytápszer elemzéséből az alábbi energia tartalom adatok származtak (kilokalória/adag egységben) Három gyógytápszer elemzésébô A B C 30 5 00 10
Gépi tanulás a gyakorlatban. Bevezetés
Gépi tanulás a gyakorlatban Bevezetés Motiváció Nagyon gyakran találkozunk gépi tanuló alkalmazásokkal Spam detekció Karakter felismerés Fotó címkézés Szociális háló elemzés Piaci szegmentáció analízis
Panorámakép készítése
Panorámakép készítése Képregisztráció, 2009. Hantos Norbert Blaskovics Viktor Összefoglalás Panoráma (image stitching, planar mosaicing): átfedő képek összeillesztése Lépések: Előfeldolgozás (pl. intenzitáskorrekciók)
Régió alapú szegmentálás. Digitális képelemzés alapvető algoritmusai. 2. példa: Elfogadható eredmények. 1. példa: Jó eredmények. Csetverikov Dmitrij
Régó alapú szegmentálás Dgtáls képelemzés alapvető algortmusa Csetverkov Dmtrj Eötvös Lóránd Egyetem, Budapest csetverkov@sztak.hu http://vson.sztak.hu Informatka Kar 1 Küszöbölés példá és elemzése Küszöbölés
Matematikai alapok és valószínőségszámítás. Középértékek és szóródási mutatók
Matematikai alapok és valószínőségszámítás Középértékek és szóródási mutatók Középértékek A leíró statisztikák talán leggyakrabban használt csoportját a középértékek jelentik. Legkönnyebben mint az adathalmaz
Számítógépes döntéstámogatás. Statisztikai elemzés
SZDT-03 p. 1/22 Számítógépes döntéstámogatás Statisztikai elemzés Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu Előadás SZDT-03 p. 2/22 Rendelkezésre
PONTFELHŐ REGISZTRÁCIÓ
PONTFELHŐ REGISZTRÁCIÓ ITERATIVE CLOSEST POINT Cserteg Tamás, URLGNI, 2018.11.22. TARTALOM Röviden Alakzatrekonstrukció áttekintés ICP algoritmusok Projektfeladat Demó FORRÁSOK Cikkek Efficient Variants
Képszegmentáló eljárások. Orvosi képdiagnosztika 2018 ősz
Képszegmentáló eljárások Orvosi képdiagnosztika 2018 ősz Képszegmentálás Anatómiai részek elkülönítés: pl. csontok, szív, erek, szürkefehér állomány, stb Vizsgálandó terület körbehatárolása: pl. tüdőterület
Képfeldolgozás jól párhuzamosítható
Képfeldolgozás jól párhuzamosítható B. Wilkinson, M. Allen: Parallel Programming, Pearson Education Prentice Hall, 2nd ed., 2005. könyv 12. fejezete alapján Vázlat A képfeldolgozás olyan alkalmazási terület,
Segítség az outputok értelmezéséhez
Tanulni: 10.1-10.3, 10.5, 11.10. Hf: A honlapra feltett falco_exp.zip-ben lévő exploratív elemzések áttanulmányozása, érdekességek, észrevételek kigyűjtése. Segítség az outputok értelmezéséhez Leiro: Leíró
A KLT (Kanade Lucas Tomasi) Feature Tracker Működése (jellegzetes pontok választása és követése)
A KL (Kanade Lucas omasi) Feature racker Működése (jellegzetes pontok választása és követése) Készítette: Hajder Levente 008.11.18. 1. Feladat A rendelkezésre álló videó egy adott képkockájából minél több
Hipotézis STATISZTIKA. Kétmintás hipotézisek. Munkahipotézis (H a ) Tematika. Tudományos hipotézis. 1. Előadás. Hipotézisvizsgálatok
STATISZTIKA 1. Előadás Hipotézisvizsgálatok Tematika 1. Hipotézis vizsgálatok 2. t-próbák 3. Variancia-analízis 4. A variancia-analízis validálása, erőfüggvény 5. Korreláció számítás 6. Kétváltozós lineáris
KÖZELÍTŐ INFERENCIA II.
STATISZTIKAI TANULÁS AZ IDEGRENDSZERBEN KÖZELÍTŐ INFERENCIA II. MONTE CARLO MÓDSZEREK ISMÉTLÉS Egy valószínűségi modellben a következtetéseinket a látensek vagy a paraméterek fölötti poszterior írja le.
4. Jellemző pontok kinyerése és megfeleltetése
4. Jellemző pontok kinyerése és megfeleltetése Kató Zoltán Képfeldolgozás és Számítógépes Grafika tanszék SZTE (http://www.inf.u-szeged.hu/~kato/teaching/) 2 Jellemzők és megfeleltetésük A képfeldolgozás,
4. Lokalizáció Magyar Attila
4. Lokalizáció Magyar Attila Pannon Egyetem Műszaki Informatikai Kar Villamosmérnöki és Információs Rendszerek Tanszék magyar.attila@virt.uni-pannon.hu 2011. szeptember 23. 4. Lokalizáció 2 4. Tartalom
3D számítógépes geometria és alakzatrekonstrukció
3D számítógépes geometria és alakzatrekonstrukció 14. Digitális Alakzatrekonstrukció - Bevezetés http://cg.iit.bme.hu/portal/node/312 https://www.vik.bme.hu/kepzes/targyak/viiima01 Dr. Várady Tamás, Dr.
Képfeldolgozó eljárások áttekintés. Orvosi képdiagnosztika
Képfeldolgozó eljárások áttekintés Orvosi képdiagnosztika Tartalomjegyzék Képmanipulációs eljárások Képjavítás (kontraszt módosítás, intenzitásviszonyok módosításahisztogram módosítás, zajszűrés) Képelemzés
[Biomatematika 2] Orvosi biometria
[Biomatematika 2] Orvosi biometria 2016.02.22. Valószínűségi változó Véletlentől függő számértékeket (értékek sokasága) felvevő változókat valószínűségi változóknak nevezzük(jelölés: ξ, η, x). (pl. x =
ACM Snake. Orvosi képdiagnosztika 11. előadás első fele
ACM Snake Orvosi képdiagnosztika 11. előadás első fele ACM Snake (ismétlés) A szegmentáló kontúr egy paraméteres görbe: x Zs s X s, Y s,, s A szegmentáció energia funkcionál minimalizálása: E x Eint x
Képfeldolgozás jól párhuzamosítható
Képeldolgozás jól párhuzamosítható B. Wilkinson, M. Allen: Parallel Programming, Pearson Education Prentice Hall, nd ed., 005. könyv. ejezete alapján Vázlat A képeldolgozás olyan alkalmazási terület, amely
Németh László Matematikaverseny, Hódmezővásárhely. 2015. március 30. A 11-12. osztályosok feladatainak javítókulcsa
Németh László Matematikaverseny, Hódmezővásárhely 2015. március 30. A 11-12. osztályosok feladatainak javítókulcsa Feladatok csak szakközépiskolásoknak Sz 1. A C csúcs értelemszerűen az AB oldal felező
Matematikai geodéziai számítások 10.
Matematikai geodéziai számítások 10. Hibaellipszis, talpponti görbe és közepes ponthiba Dr. Bácsatyai, László Matematikai geodéziai számítások 10.: Hibaellipszis, talpponti görbe és Dr. Bácsatyai, László
IBM SPSS Modeler 18.2 Újdonságok
IBM SPSS Modeler 18.2 Újdonságok 1 2 Új, modern megjelenés Vizualizáció fejlesztése Újabb algoritmusok (Python, Spark alapú) View Data, t-sne, e-plot GMM, HDBSCAN, KDE, Isotonic-Regression 3 Új, modern
Infobionika ROBOTIKA. X. Előadás. Robot manipulátorok II. Direkt és inverz kinematika. Készült a HEFOP P /1.0 projekt keretében
Infobionika ROBOTIKA X. Előadás Robot manipulátorok II. Direkt és inverz kinematika Készült a HEFOP-3.3.1-P.-2004-06-0018/1.0 projekt keretében Tartalom Direkt kinematikai probléma Denavit-Hartenberg konvenció
Kutatásmódszertan és prezentációkészítés
Kutatásmódszertan és prezentációkészítés 10. rész: Az adatelemzés alapjai Szerző: Kmetty Zoltán Lektor: Fokasz Nikosz Tizedik rész Az adatelemzés alapjai Tartalomjegyzék Bevezetés Leíró statisztikák I
A lineáris programozás alapjai
A lineáris programozás alapjai A konvex analízis alapjai: konvexitás, konvex kombináció, hipersíkok, félterek, extrém pontok, Poliéderek, a Minkowski-Weyl tétel (a poliéderek reprezentációs tétele) Lineáris
Példák jellemzőkre: - minden pixelérték egy jellemző pl. neurális hálózat esetében csak kis képekre, nem invariáns sem a megvilágításra, sem a geom.
Lépések 1. tanító és teszt halmaz összeállítása / megszerzése 2. jellemzők kinyerése 3. tanító eljárás választása Sok vagy kevés adat áll-e rendelkezésünkre? Mennyi tanítási idő/memória áll rendelkezésre?
R ++ -tree: an efficient spatial access method for highly redundant point data - Martin Šumák, Peter Gurský
R ++ -tree: an efficient spatial access method for highly redundant point data - Martin Šumák, Peter Gurský Recenzió: Németh Boldizsár Térbeli indexelés Az adatszerkezetek alapvetően fontos feladata, hogy
Virtuális Egér. Horváth Zsolt, Schnádenberger Gábor, Varjas Viktor. 2011. március 20.
Számítógépes Látás Projekt Virtuális Egér Horváth Zsolt, Schnádenberger Gábor, Varjas Viktor 011. március 0. Feladat kiírás: Egy olyan rendszer megvalósítása, melyben kamera értelmezi a kéz és az ujjak
A távérzékelt felvételek tematikus kiértékelésének lépései
A távérzékelt felvételek tematikus kiértékelésének lépései Csornai Gábor László István Földmérési és Távérzékelési Intézet Mezőgazdasági és Vidékfejlesztési Igazgatóság Az előadás 2011-es átdolgozott változata
Babeş Bolyai Tudományegyetem, Kolozsvár Matematika és Informatika Kar Magyar Matematika és Informatika Intézet
/ Babeş Bolyai Tudományegyetem, Kolozsvár Matematika és Informatika Kar Magyar Matematika és Informatika Intézet / Tartalom 3/ kernelek segítségével Felügyelt és félig-felügyelt tanulás felügyelt: D =
Kétváltozós függvények differenciálszámítása
Kétváltozós függvények differenciálszámítása 13. előadás Farkas István DE ATC Gazdaságelemzési és Statisztikai Tanszék Kétváltozós függvények p. 1/1 Definíció, szemléltetés Definíció. Az f : R R R függvényt
DIGITÁLIS KÉPANALÍZIS KÉSZÍTETTE: KISS ALEXANDRA ELÉRHETŐSÉG:
DIGITÁLIS KÉPANALÍZIS KÉSZÍTETTE: KISS ALEXANDRA ELÉRHETŐSÉG: kisszandi@mailbox.unideb.hu ImageJ (Fiji) Nyílt forrás kódú, java alapú képelemző szoftver https://fiji.sc/ Számos képformátumhoz megfelelő
Descartes-féle, derékszögű koordináta-rendszer
Descartes-féle, derékszögű koordináta-rendszer A derékszögű koordináta-rendszerben a sík minden pontjához egy rendezett valós számpár rendelhető. A számpár első tagja (abszcissza) a pont y tengelytől mért
Robotika. Kinematika. Magyar Attila
Robotika Kinematika Magyar Attila amagyar@almos.vein.hu Miről lesz szó? Bevezetés Merev test pozíciója és orientációja Rotáció Euler szögek Homogén transzformációk Direkt kinematika Nyílt kinematikai lánc
Optimalizálás alapfeladata Legmeredekebb lejtő Lagrange függvény Log-barrier módszer Büntetőfüggvény módszer 2017/
Operációkutatás I. 2017/2018-2. Szegedi Tudományegyetem Informatikai Intézet Számítógépes Optimalizálás Tanszék 9. Előadás Az optimalizálás alapfeladata Keressük f függvény maximumát ahol f : R n R és
3D-s számítógépes geometria és alakzatrekonstrukció
3D-s számítógépes geometria és alakzatrekonstrukció 14. Digitális Alakzatrekonstrukció - Bevezetés http://cg.iit.bme.hu/portal/node/312 https://www.vik.bme.hu/kepzes/targyak/viiiav08 Dr. Várady Tamás,
Funkcionális konnektivitás vizsgálata fmri adatok alapján
Funkcionális konnektivitás vizsgálata fmri adatok alapján Képalkotási technikák 4 Log Resolution (mm) 3 Brain EEG & MEG fmri TMS PET Lesions 2 Column 1 0 Lamina -1 Neuron -2 Dendrite -3 Synapse -4 Mikrolesions
Matematikai alapok és valószínőségszámítás. Statisztikai becslés Statisztikák eloszlása
Matematikai alapok és valószínőségszámítás Statisztikai becslés Statisztikák eloszlása Mintavétel A statisztikában a cél, hogy az érdeklõdés tárgyát képezõ populáció bizonyos paramétereit a populációból
Egy (k) küszöb esetén [0, 1] intenzitástartományt feltételezve (v 2 v 2 ):
A kép (I) intenzitástartományt folytonos tartományokra osztjuk. Az eredményképen minden egyes tartományhoz egyetlen (egyedi) értéket rendelünk. Egy (k) küszöb esetén [0, 1] intenzitástartományt feltételezve
STATISZTIKA. A maradék független a kezelés és blokk hatástól. Maradékok leíró statisztikája. 4. A modell érvényességének ellenőrzése
4. A modell érvényességének ellenőrzése STATISZTIKA 4. Előadás Variancia-analízis Lineáris modellek 1. Függetlenség 2. Normális eloszlás 3. Azonos varianciák A maradék független a kezelés és blokk hatástól
Markov-láncok stacionárius eloszlása
Markov-láncok stacionárius eloszlása Adatbányászat és Keresés Csoport, MTA SZTAKI dms.sztaki.hu Kiss Tamás 2013. április 11. Tartalom Markov láncok definíciója, jellemzése Visszatérési idők Stacionárius
Diverzifikáció Markowitz-modell MAD modell CAPM modell 2017/ Szegedi Tudományegyetem Informatikai Intézet
Operációkutatás I. 2017/2018-2. Szegedi Tudományegyetem Informatikai Intézet Számítógépes Optimalizálás Tanszék 11. Előadás Portfólió probléma Portfólió probléma Portfólió probléma Adott részvények (kötvények,tevékenységek,
Információ megjelenítés Számítógépes ábrázolás. Dr. Iványi Péter
Információ megjelenítés Számítógépes ábrázolás Dr. Iványi Péter Raszterizáció OpenGL Mely pixelek vannak a primitíven belül fragment generálása minden ilyen pixelre Attribútumok (pl., szín) hozzárendelése
c adatpontok és az ismeretlen pont közötti kovariancia vektora
1. MELLÉKLET: Alkalmazott jelölések A mintaterület kiterjedése, területe c adatpontok és az ismeretlen pont közötti kovariancia vektora C(0) reziduális komponens varianciája C R (h) C R Cov{} d( u, X )