Minták automatikus osztályba sorolása a mintát leíró jellemzők alapján. Típusok: felügyelt és felügyelet nélküli tanuló eljárások
|
|
- Tamás Fábián
- 6 évvel ezelőtt
- Látták:
Átírás
1
2 Minták automatikus osztályba sorolása a mintát leíró jellemzők alapján Típusok: felügyelt és felügyelet nélküli tanuló eljárások Különbség: előbbinél szükséges egy olyan tanulóhalmaz, ahol ismert a minták besorolása utóbbi automatikus módon képezi az osztályokat Mai óra: felügyelet nélküli tanítás
3 Ideális esetben a minták olyan leírói, amelyek értékei az azonos osztályba tartozó mintákra nézve hasonlóak, a különböző osztályba tartozó mintáknál pedig nem. Alapvető kategóriák: Intenzitásérték, színezet Textúraleírók Alakleírók Előbbiek az objektumok szegmentálásra is alkalmasak lehetnek Utóbbi esetben abból indulunk ki, hogy az objektum már megvan
4 LBP (local binary pattern) + hisztogram GLCM: (graylevel co-occurrence matrix) szürkeskálás együttes előfordulási mátrixra épülő (Harlick) jellemzők HOG: Gradiens-irány hisztogram szűrőrendszer Haar jellemzők Szűrőrendszerek(ből számolt jellemzők) HOG Haar
5 Kiindulási pont: a leírni kívánt objektum Például: körvonal, maszk, maszk alatti képrész Terület: contourarea(kontúr, orientáció); Kerület: arclength(kontúr, zárt-e); Befoglaló téglalap: boundingrect(kontúr); Minimális területű befoglaló téglalap: RotatedRect minarearect(kontúr); Befoglaló ellipszis: RotatedRect fitellipse(kontúr) Befoglaló kör: minenclosingcircle(inputarray kontúr, Point2f& kp, float& sugar);
6 konvex burok kerülete konvexitás = objektum kerülete cv::convexhull(contour, convhull, false, true ); cirkularitás = terület kerület 2 vagy 4π terület kerület 2 (körre maximális) kompaktság = kerület2 terület vagy 4 terület π átmérő vagy 4π terület átmérő átmérő = max d(p, q) p,q C ekvivalensköratmerő = 2 terület π C: kontúr szálhossz = 0.25(kerület + kerület 2 16 terület) szálszelesség = 0.25(kerület kerület 2 16 terület) excentricitás = főtengely hossza melléktengely hosza Tengelyek meghatározása pl. a befoglaló ellipszis alapján vagy a leghosszabb obj-n belüli szakaszt véve főtengelynek, és arra merőleges leghosszabbat melléktengelynek.
7 OpenCV-ben Moments m = moments( kép/kontúr, bináris-e?); //bináris-e a kép (kontúrnál alap) Bináris-e: NEM I(x,y) a világosságkód érték, x, y a kép koordinátái Bináris-e: IGEN x, y csak az objektumpontok koordinátái, I (x,y) = 1-nek tekintve Jellemzők: m.mpq, ahol pq: 00, 10, 01, 11, 20, 02, 21, 12, 30, 03 A p+q-adrendű térbeli (geometriai) momentum számítása m pq = x p y q I(x, y) x y Súlypont számítása: C(x, y) = m 10 m 00, m 01 m 00 (Bináris képnél a koordináták átlaga, szürkeskálásnál az intenzitásértékkel súlyozott átlaga)
8 OpenCV-ben Moments m = moments( kép, bináris-e); //bináris-e: maszk vagy kép Bináris-e: NEM I(x,y) a világosságkód érték, x, y a kép koordinátái Bináris-e: IGEN x, y csak az objektumpontok koordinátái, I (x,y) = 1-nek tekintve Jellemzők: m.mupq, ahol pq: 11, 20, 02, 21, 12, 03, 30 A p+q-adrendű centrális momentum számítása mu pq = (x x) ҧ p (y തy) q I(x, y) x y
9 OpenCV-ben Moments m = moments( kép, bináris-e); Bináris-e: NEM I(x,y) a világosságkód érték, x, y a kép koordinátái Bináris-e: IGEN x, y csak az objektumpontok koordinátái, I (x,y) = 1-nek tekintve Jellemzők: m.nupq, ahol pq: 11, 20, 02, 21, 12, 30, 03 A p+q-adrendű normalizát centrális momentum számítása mu pq nu pq = 1 + (p + q)/2 mu pq a p+q-ad rendű centrális momentum
10 OpenCV-ben Moments m = moments( kép, bináris-e); double hu[7]; HuMoments humoments(m, hu); //bináris-e: maszk vagy kép //momentumok tárolására //HU momentumok számítása Normalizált centrális momentumokból számolhatók Affin transzformációkra invariáns (skálázás, forgatásra, ) (digitális világ: az eredeti és az elfogatott/skálázott obejektum HU momentumai különbözhetnek) A tulajdonságaiból következően hasznos pl. ha a felismerendő alakzat forgatás invariáns ne használd, ha a felismerendő alakzatnak fontos a mérete, orientációja
11 A minták besorolása automatikus módon kialakított osztályokba előre meghatározott jellemzők alapján Előfeldolgozás: minden mintának meghatározzuk a jellemzővektorát (az egyedi jellemzőkből álló n dimenziós vektor) ha szükséges szűrjük, normalizáljuk az adatokat Kmeans K darab középpontok választása ( pl. véletlenszerűen, vagy a priori ismeret alapján vektor) Ciklus, amíg van (érdemi) változás (és az iterációk száma egy határ alatt van): minták besorolása a legközelebbi klaszterbe: a klaszterközéppontot leíró vektor és a mintát leíró vektor távolsága alapján klaszterközéppontok újraszámítása
12 Olvass be egy képet színesbe Konvertáld át CV_32F-be convertto Konvertáld át CIE Lab színtérbe (lab kép) cvtcolor A képpontokat leíró jellemzők a L, a, b értékek lesznek, tehát a három csatornás, kep.rows kep.cols méretű mátrixból kell egy 1 csatornás, kep.rows*kep.cols 3-as mátrixot gyártani: Mat data = lab.reshape(1, kep.rows*kep.cols) A reshape függvénynek a csatornák (1) és a sorok számát (kep.rows*kep.cols) adatuk meg, az oszlopot automatikusan számolja.
13 Hozz létre egy kritériumot, ami megadja, hogy hány iteráció után, milyen változás alatt álljon le a K-közép eljárás. Pl: TermCriteria krit( TermCriteria::Type::EPS TermCriteria::Type::MAX_ITER, 100, 0.001); Végezd el a klaszterezést: kmeans( InputArray data, // a jellemzőmátrix int k, // a klaszterek maximális száma InputOutputArray bestlabels, // véletlen középpontnál ez sima üres Mat. TermCriteria krit, //a leállási feltétel int attempt, // kísérletek száma int flag, // inicializálási mód, pl. KmeansFlags::KMEANS_RANDOM_CENTERS, OutputArray centers=noarray() // a klaszterek középpontjai );
14 A jellemzőmátrix i. sorához a bestlabels.at<int>(i) adja meg a klaszterindexet. A klaszterindexből megkapható a klaszterközépponthoz tartozó jellemzővektor, ami jelen esetben egy CIE Lab beli színvektor (a klaszterre "jellemző" szín): center.at<vec3f>( bestlabels.at<int>(i) ) A jellemzőmátrix i. sora a kép (i / kep.cols, i % kep.cols) pontjához tartozik. ( vs. mátrix sorfolytonos ábrázolása ) Hozz létre egy CV_32FC3, az eredeti képpel azonos képet Járd be a címkéket ( for(int i = 0; i<bestlabels.rows, ++i ) Az eredménykép megfelelő pontjához rendelt hozzá a klaszterre jellemző színt. Konvertáld vissza a képet RGB-be: convertto Konvertáld vissza a képet a [0, 255] tartományra. cvtcolor
15 Használj egy olyan képet, amelyen többféle textúra látható. Pl.: Töltsd le a az alábbi kódrészletet, mely egy szűrőbankot valósít meg A MaximumResponse8 függvényét fogjuk használni: Az ábrán egy sorban lévő szűrők egymás elforgatottjai, ezek közül csak annak a szűrőnek az eredményét használjuk, amelyik a maximális választ adja. A függvény szürkeskálás képet vár és 8 képet ad vissza egy vektorban. vector<mat> dest;
16 Hozz létre egy megfelelő méretű jellemzőmátrixot: sorok száma: összes képpont száma oszlopok száma: 8 ( ha az eredeti kép színes, csatornánként végrehajtva a szűrést 24 jellemzőt is használhatsz ) típus: CV_32F Töltsd fel a mátrix sorait a pixelekhez tartozó jellemzőkkel: Az eredeti kép (x, y) pontjához tartozó jellemzővektort az MR8 által adott eredményképeken lévő (x, y) értékekből kell összeállítanod. Hívd meg a korábbihoz hasonló módon a kmeans függvényt. A klaszter középpontok jelen esetben nem érdekesek.
17 Megjelenítés Hozz létre egy eredeti képpel azonos méretű képet (CV_8UC3) Hozz létre egy legalább K méretű Vec3b tömböt és töltsd fel véletlenszerű színekkel. Járd be a kmeans által megadott címkéket (korábban bestlabels) Ha a címke értéke [0, K[ tartományba esik, akkor rendeld hozzá a megfelelő képponthoz a címkének megfelelő színt. Egyébként rendelj hozzá tiszta feketét.
18
Példák jellemzőkre: - minden pixelérték egy jellemző pl. neurális hálózat esetében csak kis képekre, nem invariáns sem a megvilágításra, sem a geom.
Lépések 1. tanító és teszt halmaz összeállítása / megszerzése 2. jellemzők kinyerése 3. tanító eljárás választása Sok vagy kevés adat áll-e rendelkezésünkre? Mennyi tanítási idő/memória áll rendelkezésre?
RészletesebbenAz objektum leírására szolgálnak. Mire jók? Sokszor maga a jellemző az érdekes: Tömörítés. Objektumok csoportosítására
Az objektum leírására szolgálnak Mire jók? Sokszor maga a jellemző az érdekes: pl.: átlagosan mekkora egy szitakötő szárnyfesztávolsága? Tömörítés pl.: ha körszerű objektumokat tartalmaz a kép, elegendő
RészletesebbenSzürke árnyalat: R=G=B. OPENCV: BGR Mátrix típus: CV_8UC3 Pont típus: img.at<vec3b>(i, j) Tartomány: R, G, B [0, 255]
Additív színmodell: piros, zöld, kék keverése RGB hullámhossz:700nm, 546nm, 435nm Elektronikai eszközök alkalmazzák: kijelzők, kamerák 16 millió szín kódolható Szürke árnyalat: R=G=B OPENCV: BGR Mátrix
RészletesebbenSzürke árnyalat: R=G=B. OPENCV: BGR Mátrix típus: CV_8UC3 Pont típus: img.at<vec3b>(i, j) Tartomány: R, G, B [0, 255]
Additív színmodell: piros, zöld, kék keverése RGB hullámhossz:700nm, 546nm, 435nm Elektronikai eszközök alkalmazzák: kijelzők, kamerák 16 millió szín kódolható Szürke árnyalat: R=G=B OPENCV: BGR Mátrix
Részletesebben11. Alakzatjellemzők. Kató Zoltán. Képfeldolgozás és Számítógépes Grafika tanszék SZTE (http://www.inf.u-szeged.hu/~kato/teaching/)
11. Alakzatjellemzők Kató Zoltán Képfeldolgozás és Számítógépes Grafika tanszék SZTE (http://www.inf.u-szeged.hu/~kato/teaching/) 2 Alakzat = pontok összefüggő rendszere példák síkbeli alakzatokra 3 Az
RészletesebbenÉl: a képfüggvény hirtelen változása. Típusai. Felvételeken zajos formában jelennek meg. Lépcsős
Él: a képfüggvény hirtelen változása Típusai Lépcsős Rámpaszerű Tetőszerű Vonalszerű él Felvételeken zajos formában jelennek meg Adott pontbeli x ill. y irányú változás jellemezhető egy f folytonos képfüggvény
RészletesebbenEgy (k) küszöb esetén [0, 1] intenzitástartományt feltételezve (v 2 v 2 ):
A kép (I) intenzitástartományt folytonos tartományokra osztjuk. Az eredményképen minden egyes tartományhoz egyetlen (egyedi) értéket rendelünk. Egy (k) küszöb esetén [0, 1] intenzitástartományt feltételezve
RészletesebbenKÉPFELDOLGOZÁS. 10. gyakorlat: Morfológiai műveletek, alakjellemzők
KÉPFELDOLGOZÁS 10. gyakorlat: Morfológiai műveletek, alakjellemzők Min-max szűrők MATLAB-ban SE = strel(alak, paraméter(ek)); szerkesztőelem generálása strel( square, w): négyzet alakú, w méretű strel(
Részletesebben6. Modell illesztés, alakzatok
6. Modell illesztés, alakzatok Kató Zoltán Képfeldolgozás és Számítógépes Grafika tanszék SZTE (http://www.inf.u-szeged.hu/~kato/teaching/) 2 ROBOSZTUS EGYENES ILLESZTÉS Egyenes illesztés Adott a síkban
RészletesebbenSzámítógépes képelemzés 7. előadás. Dr. Balázs Péter SZTE, Képfeldolgozás és Számítógépes Grafika Tanszék
Számítógépes képelemzés 7. előadás Dr. Balázs Péter SZTE, Képfeldolgozás és Számítógépes Grafika Tanszék Momentumok Momentum-alapú jellemzők Tömegközéppont Irányultáság 1 2 tan 2 1 2,0 1,1 0, 2 Befoglaló
RészletesebbenTérbeli transzformációk, a tér leképezése síkra
Térbeli transzformációk, a tér leképezése síkra Homogén koordináták bevezetése térben A tér minden P pontjához kölcsönösen egyértelműen egy valós (x, y, z) számhármast rendeltünk hozzá. (Descartes-féle
RészletesebbenLényege: valamilyen szempont szerint homogén csoportok képzése a pixelekből. Amit már ismerünk:
Lényege: valamilyen szempont szerint homogén csoportok képzése a pixelekből. Amit már ismerünk: Küszöbölés, vágás, sávkijelölés hátránya: az azonos csoportba sorolt pixelek nem feltétlenül alkotnak összefüggő
RészletesebbenGPU Lab. 14. fejezet. OpenCL textúra használat. Grafikus Processzorok Tudományos Célú Programozása. Berényi Dániel Nagy-Egri Máté Ferenc
14. fejezet OpenCL textúra használat Grafikus Processzorok Tudományos Célú Programozása Textúrák A textúrák 1, 2, vagy 3D-s tömbök kifejezetten szín információk tárolására Főbb különbségek a bufferekhez
Részletesebben8. Pontmegfeleltetések
8. Pontmegfeleltetések Kató Zoltán Képfeldolgozás és Számítógépes Grafika tanszék SZTE (http://www.inf.u-szeged.hu/~kato/teaching/) 2 Példa: panoráma kép készítés 1. Jellemzőpontok detektálása mindkét
Részletesebben7. Régió alapú szegmentálás
Digitális képek szegmentálása 7. Régió alapú szegmentálás Kató Zoltán http://www.cab.u-szeged.hu/~kato/segmentation/ Szegmentálási kritériumok Particionáljuk a képet az alábbi kritériumokat kielégítő régiókba
RészletesebbenDigitális képek szegmentálása. 5. Textúra. Kató Zoltán.
Digitális képek szegmentálása 5. Textúra Kató Zoltán http://www.cab.u-szeged.hu/~kato/segmentation/ Textúra fogalma Sklansky: Egy képen egy területnek állandó textúrája van ha a lokális statisztikák vagy
RészletesebbenLáthatósági kérdések
Láthatósági kérdések Láthatósági algoritmusok Adott térbeli objektum és adott nézőpont esetén el kell döntenünk, hogy mi látható az adott alakzatból a nézőpontból, vagy irányából nézve. Az algoritmusok
RészletesebbenGyakorló feladatok adatbányászati technikák tantárgyhoz
Gyakorló feladatok adatbányászati technikák tantárgyhoz Buza Krisztián Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem Klaszterezés kiértékelése Feladat:
RészletesebbenÉldetektálás, szegmentálás (folytatás) Orvosi képdiagnosztika 11_2 ea
Éldetektálás, szegmentálás (folytatás) Orvosi képdiagnosztika 11_2 ea Geometrikus deformálható modellek Görbe evolúció Level set módszer A görbe evolúció parametrizálástól független mindössze geometriai
RészletesebbenSzámítási feladatok a Számítógépi geometria órához
Számítási feladatok a Számítógépi geometria órához Kovács Zoltán Copyright c 2012 Last Revision Date: 2012. október 15. kovacsz@nyf.hu Technikai útmutató a jegyzet használatához A jegyzet képernyőbarát
RészletesebbenSzámítógépes Grafika SZIE YMÉK
Számítógépes Grafika SZIE YMÉK Analóg - digitális Analóg: a jel értelmezési tartománya (idő), és az értékkészletes is folytonos (pl. hang, fény) Diszkrét idejű: az értelmezési tartomány diszkrét (pl. a
RészletesebbenEgybevágósági transzformációk. A geometriai transzformációk olyan függvények, amelyek ponthoz pontot rendelnek hozzá.
Egybevágósági transzformációk A geometriai transzformációk olyan függvények, amelyek ponthoz pontot rendelnek hozzá. Egybevágósági transzformációk azok a geometriai transzformációk, amelyeknél bármely
RészletesebbenEgyenes mert nincs se kezdő se végpontja
Szakasz mert van két végpontja Egyenes mert nincs se kezdő se végpontja Tört vonal Szög mert van két szára és csúcsa Félegyenes mert van egy kezdőpontja 5 1 1 Két egyenes egymásra merőleges ha egymással
RészletesebbenKépfeldolgozás. 1. el adás. A képfeldolgozás m veletei. Mechatronikai mérnök szak BME, 2008
Képfeldolgozás 1. el adás. A képfeldolgozás m veletei Mechatronikai mérnök szak BME, 2008 1 / 61 Alapfogalmak transzformációk Deníció Deníció Geometriai korrekciókra akkor van szükség, ha a képr l valódi
RészletesebbenGépi tanulás. Féligellenőrzött tanulás. Pataki Béla (Bolgár Bence)
Gépi tanulás Féligellenőrzött tanulás Pataki Béla (Bolgár Bence) BME I.E. 414, 463-26-79 pataki@mit.bme.hu, http://www.mit.bme.hu/general/staff/pataki Féligellenőrzött tanulás Mindig kevés az adat, de
RészletesebbenINFORMATIKA javítókulcs 2016
INFORMATIKA javítókulcs 2016 ELMÉLETI TÉTEL: Járd körbe a tömb fogalmát (Pascal vagy C/C++): definíció, egy-, két-, több-dimenziós tömbök, kezdőértékadás definíciókor, tömb típusú paraméterek átadása alprogramoknak.
RészletesebbenBrósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Geometria III.
Geometria III. DEFINÍCIÓ: (Vektor) Az egyenlő hosszúságú és egyirányú irányított szakaszoknak a halmazát vektornak nevezzük. Jele: v. DEFINÍCIÓ: (Geometriai transzformáció) Geometriai transzformációnak
RészletesebbenTranszformációk síkon, térben
Transzformációk síkon, térben Leképezés, transzformáció Leképezés: Ha egy A ponttér pontjaihoz egy másik B ponttér pontjait kölcsönösen egyértelműen rendeljük hozzá, akkor ezt a hozzárendelést leképezésnek
RészletesebbenKépszegmentáló eljárások. Orvosi képdiagnosztika 2018 ősz
Képszegmentáló eljárások Orvosi képdiagnosztika 2018 ősz Képszegmentálás Anatómiai részek elkülönítés: pl. csontok, szív, erek, szürkefehér állomány, stb Vizsgálandó terület körbehatárolása: pl. tüdőterület
RészletesebbenKészítette: niethammer@freemail.hu
VLogo VRML generáló program Készítette: Niethammer Zoltán niethammer@freemail.hu 2008 Bevezetés A VLogo az általános iskolákban használt Comenius Logo logikájára épülő programozási nyelv. A végeredmény
RészletesebbenKeresés képi jellemzők alapján. Dr. Balázs Péter SZTE, Képfeldolgozás és Számítógépes Grafika Tanszék
Keresés képi jellemzők alapján Dr. Balázs Péter SZTE, Képfeldolgozás és Számítógépes Grafika Tanszék Lusta gépi tanulási algoritmusok Osztályozás: k=1: piros k=5: kék k-legközelebbi szomszéd (k=1,3,5,7)
RészletesebbenKétdimenziós alakelemzés. Digitális képelemzés alapvető algoritmusai. Alakelemzés feladatai. Kétdimenziós alakelemzés tárgyai. Csetverikov Dmitrij
Kétdimenziós alakelemzés Digitális képelemzés alapvető algoritmusai 1 Alakelemzés alapfogalmai Csetverikov Dmitrij Eötvös Lóránd Egyetem, Budapest csetverikov@sztaki.hu http://vision.sztaki.hu Informatikai
RészletesebbenKoordináta-geometria feladatgyűjtemény
Koordináta-geometria feladatgyűjtemény A feladatok megoldásai a dokumentum végén találhatók Vektorok 1. Egy négyzet két szemközti csúcsának koordinátái: A( ; 7) és C(4 ; 1). Határozd meg a másik két csúcs
RészletesebbenBrósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Megoldások
Megoldások 1. Határozd meg a szakasz hosszát, ha a végpontok koordinátái: A ( 1; ) és B (5; )! A szakasz hosszához számítsuk ki a két pont távolságát: d AB = AB = (5 ( 1)) + ( ) = 6 + 1 = 7 6,08.. Határozd
RészletesebbenKoordináta-geometria feladatok (emelt szint)
Koordináta-geometria feladatok (emelt szint) 1. (ESZÉV Minta (2) 2004.05/7) Egy ABC háromszögben CAB = 30, az ACB = 45. A háromszög két csúcsának koordinátái: A(2; 2) és C(4; 2). Határozza meg a harmadik
RészletesebbenGeometria 1 összefoglalás o konvex szögek
Geometria 1 összefoglalás Alapfogalmak: a pont, az egyenes és a sík Axiómák: 1. Bármely 2 pontra illeszkedik egy és csak egy egyenes. 2. Három nem egy egyenesre eső pontra illeszkedik egy és csak egy sík.
RészletesebbenAdatbányászati szemelvények MapReduce környezetben
Adatbányászati szemelvények MapReduce környezetben Salánki Ágnes salanki@mit.bme.hu 2014.11.10. Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs Rendszerek Tanszék Felügyelt
RészletesebbenKéprekonstrukció 9. előadás
Képrekonstrukció 9. előadás Balázs Péter Képfeldolgozás és Számítógépes Grafika Tanszék Szegedi Tudományegyetem hv-konvex összefüggő halmazok Mag-burok-szerű rekonstrukció: S. Brunetti, A. Del Lungo, F.
Részletesebben3. Szűrés képtérben. Kató Zoltán. Képfeldolgozás és Számítógépes Grafika tanszék SZTE (http://www.inf.u-szeged.hu/~kato/teaching/)
3. Szűrés képtérben Kató Zoltán Képfeldolgozás és Számítógépes Grafika tanszék SZTE http://www.inf.u-szeged.hu/~kato/teaching/ 2 Kép transzformációk típusai Kép értékkészletének radiometriai információ
RészletesebbenMatematika szóbeli érettségi témakörök 2016/2017-es tanév őszi vizsgaidőszak
Matematika szóbeli érettségi témakörök 2016/2017-es tanév őszi vizsgaidőszak Halmazok Halmazok egyenlősége Részhalmaz, valódi részhalmaz Üres halmaz Véges és végtelen halmaz Halmazműveletek (unió, metszet,
RészletesebbenLoványi István vizsgakérdései kidolgozva (béta)
Loványi István vizsgakérdései kidolgozva (béta) 1. Morfológiai képfeldolgozás elmélete 1. Alapvető halmazműveletek, tulajdonságaik Műveletek: egyesítés (unió) metszet negált összetett műveletek... Tulajdonságok:
RészletesebbenÉrettségi feladatok Koordinátageometria_rendszerezve / 5
Érettségi feladatok Koordinátageometria_rendszerezve 2005-2013 1/ 5 Vektorok 2005. május 28./12. Adottak az a (4; 3) és b ( 2; 1) vektorok. a) Adja meg az a hosszát! b) Számítsa ki az a + b koordinátáit!
RészletesebbenKözösség detektálás gráfokban
Közösség detektálás gráfokban Önszervező rendszerek Hegedűs István Célkitűzés: valamilyen objektumok halmaza felett minták, csoportok detektálása csakis az egyedek közötti kapcsolatok struktúrájának a
RészletesebbenFelvételi tematika INFORMATIKA
Felvételi tematika INFORMATIKA 2016 FEJEZETEK 1. Természetes számok feldolgozása számjegyenként. 2. Számsorozatok feldolgozása elemenként. Egydimenziós tömbök. 3. Mátrixok feldolgozása elemenként/soronként/oszloponként.
RészletesebbenRendszámfelismerő rendszerek
Problémamegoldó szeminárium Témavezető: Pataki Péter ARH Zrt. ELTE-TTK 2013 Tartalomjegyzék 1 Bevezetés 2 Út a megoldás felé 3 Felmerült problémák 4 Alkalmazott matematika 5 További lehetőségek Motiváció
RészletesebbenGépi tanulás a gyakorlatban. Bevezetés
Gépi tanulás a gyakorlatban Bevezetés Motiváció Nagyon gyakran találkozunk gépi tanuló alkalmazásokkal Spam detekció Karakter felismerés Fotó címkézés Szociális háló elemzés Piaci szegmentáció analízis
RészletesebbenBME MOGI Gépészeti informatika 18. Grafika, fájlkezelés gyakorló óra. 1. feladat Készítsen alkalmazást az = +
BME MOGI Gépészeti informatika 18. Grafika, fájlkezelés gyakorló óra 1. feladat Készítsen alkalmazást az = + függvény ábrázolására! Az értelmezési tartomány a [-6;5] intervallum, a lépésköz 0,1 legyen!
RészletesebbenMatematika 11 Koordináta geometria. matematika és fizika szakos középiskolai tanár. > o < szeptember 27.
Matematika 11 Koordináta geometria Juhász László matematika és fizika szakos középiskolai tanár > o < 2015. szeptember 27. copyright: c Juhász László Ennek a könyvnek a használatát szerzői jog védi. A
Részletesebben11. gyakorlat Sturktúrák használata. 1. Definiáljon dátum típust. Olvasson be két dátumot, és határozza meg melyik a régebbi.
11. gyakorlat Sturktúrák használata I. Új típus új műveletekkel 1. Definiáljon dátum típust. Olvasson be két dátumot, és határozza meg melyik a régebbi. typedef struct datum { int ev; int ho; int nap;
RészletesebbenÉrettségi feladatok: Koordináta-geometria 1/5
Érettségi feladatok: Koordináta-geometria 1/5 2003. Próba/ 13. Adott egy háromszög három csúcspontja a koordinátáival: A( 4; 4), B(4; 4) és C( 4; 8). Számítsa ki a C csúcsból induló súlyvonal és az A csúcsból
RészletesebbenTranszformációk. Grafikus játékok fejlesztése Szécsi László 2013.02.26. t05-transform
Transzformációk Grafikus játékok fejlesztése Szécsi László 2013.02.26. t05-transform Koordinátarendszerek: modelltér Koordinátarendszerek: világtér Koordinátarendszerek: kameratér up right z eye ahead
RészletesebbenSzámítógépes Grafika mintafeladatok
Számítógépes Grafika mintafeladatok Feladat: Forgassunk a 3D-s pontokat 45 fokkal a X tengely körül, majd nyújtsuk az eredményt minden koordinátájában kétszeresére az origóhoz képest, utána forgassunk
Részletesebben10. Koordinátageometria
I. Nulladik ZH-ban láttuk: 0. Koordinátageometria. Melyek azok a P x; y pontok, amelyek koordinátái kielégítik az Ábrázolja a megoldáshalmazt a koordináta-síkon! x y x 0 egyenlőtlenséget? ELTE 00. szeptember
Részletesebben4. Jellemző pontok kinyerése és megfeleltetése
4. Jellemző pontok kinyerése és megfeleltetése Kató Zoltán Képfeldolgozás és Számítógépes Grafika tanszék SZTE (http://www.inf.u-szeged.hu/~kato/teaching/) 2 Jellemzők és megfeleltetésük A képfeldolgozás,
RészletesebbenBabeş Bolyai Tudományegyetem, Kolozsvár Matematika és Informatika Kar Magyar Matematika és Informatika Intézet
/ Babeş Bolyai Tudományegyetem, Kolozsvár Matematika és Informatika Kar Magyar Matematika és Informatika Intézet / Tartalom 3/ kernelek segítségével Felügyelt és félig-felügyelt tanulás felügyelt: D =
RészletesebbenEgyszerű példaprogramok gyakorláshoz
Egyszerű példaprogramok gyakorláshoz Tartalom Feladatok... 2 For ciklus... 2 Szorzótábla... 2 Szorzótábla részlet... 3 Pascal háromszög... 4 Pascal háromszög szebben... 5 DO-LOOP ciklus... 6 Véletlen sorsolás...
RészletesebbenSzínes képek feldolgozása
Palágyi Kálmán Az oktató: SZTE, Képfeldolgozás és Számítógépes Grafika Tanszék 6720 Szeged Árpád tér 2. 214-es szoba (tetıtér) (62) 546 197 palagyi@inf.u-szeged.hu www.inf.u-szeged.hu/~palagyi Kurzusanyagok
RészletesebbenMATEMATIKA HETI 5 ÓRA
EURÓPAI ÉRETTSÉGI 2008 MATEMATIKA HETI 5 ÓRA IDŐPONT : 2008. június 5 (reggel) A VIZSGA IDŐTARTAMA: 4 óra (240 perc) MEGENGEDETT ESZKÖZÖK: Európai képletgyűjtemény Nem programozható, nem grafikus számológép
RészletesebbenBevezetés a programozásba. 9. Előadás: Rekordok
Bevezetés a programozásba 9. Előadás: Rekordok ISMÉTLÉS Függvényhívás #include #include #include #include using using namespace namespace std; std; double double terulet(double
Részletesebben(Solid modeling, Geometric modeling) Testmodell: egy létező vagy elképzelt objektum digitális reprezentációja.
Testmodellezés Testmodellezés (Solid modeling, Geometric modeling) Testmodell: egy létező vagy elképzelt objektum digitális reprezentációja. A tervezés (modellezés) során megadjuk a objektum geometria
RészletesebbenA médiatechnológia alapjai
A médiatechnológia alapjai Úgy döntöttem, hogy a Szirányi oktatta előadások számonkérhetőnek tűnő lényegét kiemelem, az alapján, amit a ZH-ról mondott: rövid kérdések. A rész és az egész: összefüggések
RészletesebbenAdatelemzés és adatbányászat MSc
Adatelemzés és adatbányászat MSc 12. téma Klaszterezési módszerek Klaszterezés célja Adott az objektumok, tulajdonságaik együttese. Az objektumok között hasonlóságot és különbözőséget fedezhetünk fel.
Részletesebben1. Olvassuk be két pont koordinátáit: (x1, y1) és (x2, y2). Határozzuk meg a két pont távolságát és nyomtassuk ki.
Számítás:. Olvassuk be két pont koordinátáit: (, y) és (2, y2). Határozzuk meg a két pont távolságát és nyomtassuk ki. 2. Olvassuk be két darab két dimenziós vektor komponenseit: (a, ay) és (b, by). Határozzuk
RészletesebbenBrósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Megoldások
Megoldások 1. Írd fel a K (0; 2) középpontú 7 sugarú kör egyenletét! A keresett kör egyenletét felírhatjuk a képletbe való behelyettesítéssel: x 2 + (y + 2) 2 = 49. 2. Írd fel annak a körnek az egyenletét,
Részletesebben10. gyakorlat Struktúrák, uniók, típusdefiníciók
10. gyakorlat Struktúrák, uniók, típusdefiníciók Házi - (f0218) Olvass be 5 darab maximum 99 karakter hosszú szót úgy, hogy mindegyiknek pontosan annyi helyet foglalsz, amennyi kell! A sztringeket írasd
RészletesebbenIV. Felkészítő feladatsor
IV. Felkészítő feladatsor 1. Az A halmaz elemei a (-7)-nél nagyobb, de 4-nél kisebb egész számok. B a nemnegatív egész számok halmaza. Elemeinek felsorolásával adja meg az A \ B halmazt! I. 2. Adott a
RészletesebbenKoordináta geometria III.
Koordináta geometria III. TÉTEL: A P (x; y) pont akkor és csak akkor illeszkedik a K (u; v) középpontú r sugarú körre (körvonalra), ha (x u) 2 + (y v) 2 = r 2. Ez az összefüggés a K (u; v) középpontú r
RészletesebbenDigitális képfeldolgozás gyakorlat, Nappali tagozat 2018/2019 őszi félév, Beadandó feladat
Digitális képfeldolgozás gyakorlat, Nappali tagozat 2018/2019 őszi félév, Beadandó feladat Készítsen egy Python programot a megfelelő csomagok (OpenCV, NumPy, stb.) segítségével, amely a következő feladatok
RészletesebbenHajder Levente 2017/2018. II. félév
Hajder Levente hajder@inf.elte.hu Eötvös Loránd Tudományegyetem Informatikai Kar 2017/2018. II. félév Tartalom 1 2 3 Geometriai modellezés feladata A világunkat modellezni kell a térben. Valamilyen koordinátarendszer
RészletesebbenKépfeldolgozás Szegmentálás Osztályozás Képfelismerés Térbeli rekonstrukció
Mesterséges látás Miről lesz szó? objektumok Bevezetés objektumok A mesterséges látás jelenlegi, technikai eszközökön alapuló világunkban gyakorlatilag azonos a számítógépes képfeldolgozással. Számítógépes
RészletesebbenPélda keresztmetszet másodrendű nyomatékainak számítására
Példa keresztmetszet másodrendű nyomatékainak számítására Készítette: Kossa Attila (kossa@mm.bme.hu) BME, Műszaki Mechanikai Tanszék 2011. február 22. Tekintsük az alábbi keresztmetszetet. 1. ábra. A vizsgált
RészletesebbenStatisztikai eljárások a mintafelismerésben és a gépi tanulásban
Statisztikai eljárások a mintafelismerésben és a gépi tanulásban Varga Domonkos (I.évf. PhD hallgató) 2014 május A prezentáció felépítése 1) Alapfogalmak 2) A gépi tanulás, mintafelismerés alkalmazási
RészletesebbenEredmények, objektumok grafikus megjelenítése 3D felületek rajzoló függvényei
Alkalmazott Informatikai Intézeti Tanszék MŰSZAKI INFORMATIKA Dr.Dudás László 0. MATLAB alapismeretek VII. Eredmények, objektumok grafikus megjelenítése 3D felületek rajzoló függvényei Alkalmazott Informatikai
RészletesebbenFeladatok Házi feladat. Keszeg Attila
2016.01.29. 1 2 3 4 Adott egy O pont és egy λ 0 valós szám. a tér minden egyes P pontjához rendeljünk hozzá egy P pontot, a következő módon: 1 ha P = O, akkor P = P 2 ha P O, akkor P az OP egyenes azon
RészletesebbenKoordináta-geometria feladatgyűjtemény (A feladatok megoldásai a dokumentum végén találhatók)
Koordináta-geometria feladatgyűjtemény (A feladatok megoldásai a dokumentum végén találhatók) Vektorok 1. Egy négyzet két szemközti csúcsának koordinátái: A( ; 7) és C(4 ; 1). Határozd meg a másik két
Részletesebben20. tétel A kör és a parabola a koordinátasíkon, egyenessel való kölcsönös helyzetük. Másodfokú egyenlőtlenségek.
. tétel A kör és a parabola a koordinátasíkon, egyenessel való kölcsönös helyzetük. Másodfokú egyenlőtlenségek. Először megadom a síkbeli definíciójukat, mert ez alapján vezetjük le az egyenletüket. Alakzat
Részletesebben+ 3 5 2 3 : 1 4 : 1 1 A ) B ) C ) D ) 93
. Mennyi az alábbi művelet eredménye? 4 + 4 : 5 : 5 + 8 07 9 A ) B ) C ) D ) E ) 9 9 9 9 9. Egy digitális órát (amely 4 órás üzemmódban működik) pontosan beállítottunk. Kiderült azonban, hogy egy nap átlagosan
RészletesebbenA KLT (Kanade Lucas Tomasi) Feature Tracker Működése (jellegzetes pontok választása és követése)
A KL (Kanade Lucas omasi) Feature racker Működése (jellegzetes pontok választása és követése) Készítette: Hajder Levente 008.11.18. 1. Feladat A rendelkezésre álló videó egy adott képkockájából minél több
Részletesebben5. 3D rekonstrukció. Kató Zoltán. Képfeldolgozás és Számítógépes Grafika tanszék SZTE (http://www.inf.u-szeged.hu/~kato/teaching/)
5. 3D rekonstrukció Kató Zoltán Képfeldolgozás és Számítógépes Grafika tanszék SZTE (http://www.inf.u-szeged.hu/~kato/teaching/) 2 PASSZÍV SZTEREÓ 3 Passzív sztereó 3D rekonstrukció egy sztereó kamera
Részletesebben2. ELŐADÁS. Transzformációk Egyszerű alakzatok
2. ELŐADÁS Transzformációk Egyszerű alakzatok Eltolás A tér bármely P és P pontpárjához pontosan egy olyan eltolás létezik, amely P-t P -be viszi. Bármely eltolás tetszőleges egyenest vele párhuzamos egyenesbe
RészletesebbenKoordinátageometria. , azaz ( ) a B halmazt pontosan azok a pontok alkotják, amelynek koordinátáira:
005-0XX Emelt szint Koordinátageometria 1) a) Egy derékszögű háromszög egyik oldalegyenese valamelyik koordinátatengely, egy másik oldalegyenesének egyenlete x + y = 10, egyik csúcsa az origó. Hány ilyen
RészletesebbenStatisztika - bevezetés Méréselmélet PE MIK MI_BSc VI_BSc 1
Statisztika - bevezetés 00.04.05. Méréselmélet PE MIK MI_BSc VI_BSc Bevezetés Véletlen jelenség fogalma jelenséget okok bizonyos rendszere hozza létre ha mindegyik figyelembe vehető egyértelmű leírás általában
RészletesebbenTranszformációk. Szécsi László
Transzformációk Szécsi László A feladat Adott a 3D modell háromszögek csúcspontjai [modellezési koordináták] Háromszögkitöltő algoritmus pixeleket színez be [viewport koordináták] A feladat: számítsuk
Részletesebben2. Pont operációk. Kató Zoltán. Képfeldolgozás és Számítógépes Grafika tanszék SZTE (http://www.inf.u-szeged.hu/~kato/teaching/)
2. Pont operációk Kató Zoltán Képfeldolgozás és Számítógépes Grafika tanszék SZTE (http://www.inf.u-szeged.hu/~kato/teaching/) 2 Kép transzformációk típusai Kép értékkészletének (radiometriai információ)
RészletesebbenMáté: Számítógépes grafika alapjai
Történeti áttekintés Interaktív grafikai rendszerek A számítógépes grafika osztályozása Valós és képzeletbeli objektumok (pl. tárgyak képei, függvények) szintézise számítógépes modelljeikből (pl. pontok,
RészletesebbenProgramozási technológia I. 1. beadandó feladatsor
Programozási technológia I. 1. beadandó feladatsor Közös elvárás a megoldásoknál, hogy gyűjteményben tároljuk az azonos ősosztályból származtatott osztályok objektumait. Az objektumok feldolgozása során
RészletesebbenNULLADIK MATEMATIKA ZÁRTHELYI
NULLADIK MATEMATIKA ZÁRTHELYI 08-09-07 Terem: Munkaidő: 0 perc. A dolgozat megírásához íróeszközön kívül semmilyen segédeszköz nem használható! A feladatlap kizárólag kék vagy fekete tollal tölthető ki.
RészletesebbenFotogrammetriai munkaállomások szoftvermoduljainak tervezése. Dr. habil. Jancsó Tamás Óbudai Egyetem, Alba Regia Műszaki Kar
Fotogrammetriai munkaállomások szoftvermoduljainak tervezése Dr. habil. Jancsó Tamás Óbudai Egyetem, Alba Regia Műszaki Kar Témakörök DPW szoftvermodulok Szoftverek funkciói Pár példa Mi hiányzik gyakran?
RészletesebbenÖnálló labor beszámoló Képek szegmentálása textúra analízis segítségével. MAJF21 Eisenberger András május 22. Konzulens: Dr.
Önálló labor beszámoló Képek szegmentálása textúra analízis segítségével 2011. május 22. Konzulens: Dr. Pataki Béla Tartalomjegyzék 1. Bevezetés 2 2. Források 2 3. Kiértékelő szoftver 3 4. A képek feldolgozása
Részletesebbenx = cos αx sin αy y = sin αx + cos αy 2. Mi a X/Y/Z tengely körüli forgatás transzformációs mátrixa 3D-ben?
. Mi az (x, y) koordinátákkal megadott pont elforgatás uténi két koordinátája, ha α szöggel forgatunk az origó körül? x = cos αx sin αy y = sin αx + cos αy 2. Mi a X/Y/Z tengely körüli forgatás transzformációs
RészletesebbenGrafikonok automatikus elemzése
Grafikonok automatikus elemzése MIT BSc önálló laboratórium konzulens: Orosz György 2016.05.18. A feladat elsődleges célkitűzései o eszközök adatlapján található grafikonok feldolgozása, digitalizálása
RészletesebbenBME MOGI Gépészeti informatika 6.
BME MOGI Gépészeti informatika 6. 1. feladat Készítsen Windows Forms alkalmazást véletlen adatokkal létrehozott körök kölcsönös helyzetének vizsgálatára! Hozza létre a következő struktúrákat, melynek elemei
RészletesebbenKoordináta-geometria alapozó feladatok
Koordináta-geometria alapozó feladatok 1. Határozd meg az AB szakasz felezőpontját! (1,5 ; 3,5) (0,5 ; ) (6,5 ; 8,5) (4,5 ; ) (0,5 ; 1,5) (0 ; 0) (0 ; 8,5) (1 ; 1) ( 1,5 ; ) (3,5 ; 3) (0 ; 3) ( 1 ; 1,5).
RészletesebbenKéprekonstrukció 6. előadás
Képrekonstrukció 6. előadás Balázs Péter Képfeldolgozás és Számítógépes Grafika Tanszék Szegedi Tudományegyetem Diszkrét tomográfia (DT) A CT-hez több száz vetület szükséges időigényes költséges károsíthatja
RészletesebbenMATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK EMELT SZINT Koordinátageometria
1) MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK EMELT SZINT Koordinátageometria A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek
RészletesebbenMit lássunk élnek? Hol van az él? Milyen vastag legyen? Hol
Textúra Könnyű az élt megtalálni? Mi lássunk élnek? Mit lássunk élnek? Hol van az él? Milyen vastag legyen? Mit lássunk élnek? Zaj A zajpontokat nem szabad az élpontokkal összekeverni Egy vagy két él?
RészletesebbenInfobionika ROBOTIKA. X. Előadás. Robot manipulátorok II. Direkt és inverz kinematika. Készült a HEFOP P /1.0 projekt keretében
Infobionika ROBOTIKA X. Előadás Robot manipulátorok II. Direkt és inverz kinematika Készült a HEFOP-3.3.1-P.-2004-06-0018/1.0 projekt keretében Tartalom Direkt kinematikai probléma Denavit-Hartenberg konvenció
RészletesebbenA távérzékelt felvételek tematikus kiértékelésének lépései
A távérzékelt felvételek tematikus kiértékelésének lépései Csornai Gábor László István Földmérési és Távérzékelési Intézet Mezőgazdasági és Vidékfejlesztési Igazgatóság Az előadás 2011-es átdolgozott változata
RészletesebbenKérdés Lista. A Magyarországon alkalmazott rajzlapoknál mekkora az oldalak aránya?
Kérdés Lista információ megjelenítés :: műszaki rajz T A darabjegyzék előállítása során milyen sorrendben számozzuk a tételeket? Adjon meg legalább két módszert! T A Magyarországon alkalmazott rajzlapoknál
RészletesebbenÍrjon olyan programot a standard könyvtár alkalmazásával, amely konzolról megadott valós adatokból meghatározza és kiírja a minimális értékűt!
Írjon olyan programot a standard könyvtár alkalmazásával, amely konzolról megadott valós adatokból meghatározza és kiírja a minimális értékűt! valós adatokat növekvő sorrendbe rendezi és egy sorba kiírja
Részletesebben