KÉPFELDOLGOZÁS. 10. gyakorlat: Morfológiai műveletek, alakjellemzők

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "KÉPFELDOLGOZÁS. 10. gyakorlat: Morfológiai műveletek, alakjellemzők"

Átírás

1 KÉPFELDOLGOZÁS 10. gyakorlat: Morfológiai műveletek, alakjellemzők

2 Min-max szűrők MATLAB-ban SE = strel(alak, paraméter(ek)); szerkesztőelem generálása strel( square, w): négyzet alakú, w méretű strel( rectangle, [m n]): téglalap alakú, m n méretű strel( disk, r): kör alakú, r sugarú strel( line, len, deg): vonal alakú, len hosszú, deg irányú imdilate(img, SE): dilatáció az SE szerkesztőelemmel imerode(img, SE): erózió az SE szerkesztőelemmel

3 Nyitás és zárás MATLAB-ban imopen(img, SE): morfológiai nyitás, azaz erózió és dilatáció egymásutánja az SE szerkesztőelemmel imclose(img, SE): morfológiai zárás, azaz dilatáció és erózió egymásutánja az SE szerkesztőelemmel

4 Morfológiai műveletek (példa) img = imread('binimg.png ); img = img / 255; se = strel('disk', 3); img_erode = imerode(img, se); img_dilate = imdilate(img, se); img_open = imopen(img, se); img_close = imclose(img, se);

5 Morfológiai műveletek (példa) img = imread('binimage.png ); img = img / 255; se = strel('disk', 3); img_open = imopen(img, se); img_open_close = imclose(img_open, se);

6 Váz Az objektum általános, egyszerűsített formája A meghatározandó struktúra vékony (1 pixel vastag szegmensekből áll), topológiailag ekvivalens a kiindulási képpel, az objektumok közepén helyezkedik el.

7 A váz egy lehetséges meghatározása

8 Vékonyítás A front-terjedés modellezése: topológia- és alakmegőrző iteratív redukció

9 Vázkijelölés MATLAB-ban Kétféle beépített vékonyító algoritmus: bwmorph(bw, skel, Inf); bwmorph(bw, thin, Inf); 3. paraméter: hány iterációig menjen, Inf esetén addig fut, amíg a vázhoz nem jutunk A vázon kijelölhető speciális pontok: bwmorph(skel, endpoints ): végpontok bwmorph(skel, branchpoints ): elágazási pontok

10 Váz (példa) skeleton1 = bwmorph(img_open_close, 'skel', Inf); skeleton2 = bwmorph(img_open_close, 'thin', Inf); figure('name', 'Kétféle váz', 'NumberTitle', 'off'); imshow([skeleton1, skeleton2]);

11 Elágazási pontok, végpontok (példa) branch = bwmorph(skeleton2, 'branchpoints'); ends = bwmorph(skeleton2, 'endpoints'); figure('name', 'A váz elágagási pontjai és végpontjai',... 'NumberTitle', 'off'); imshow([branch,ends]);

12 Határvonal Olyan objektumpontok (fehér pontok, 1 -esek) halmaza, amelyeknek legalább az egyik 4- szomszédjuk háttérpont (fekete pont, 0 -ás). N W p E N==0 or E==0 or S==0 or W==0 S Határvonal-generálás MATLAB-ban: bwmorph(bw, remove );

13 Határvonal (példa) border = bwmorph(img_open_close, 'remove'); figure('name', 'Határvonal', 'NumberTitle', 'off'); imshow(border);

14 A struct típus MATLAB-ban Struktúratömb: különböző nevű elemekkel (mezőkkel) rendelkezhet, a mezők különböző adattípusúak lehetnek. objektum(1).nev = 'első'; objektum(1).vektor = [ ]; objektum(2).nev = 'második'; objektum(2).vektor = [10 20]; objektum(3).nev = 'harmadik'; objektum(3).vektor = [ ];

15 A regionprops függvény stats = regionprops(bw,properties): BW: bináris kép, properties: egy vagy több alakleíró neve (sztringek vesszővel elválasztva) stats: az alakleírókat tartalmazó struktúratömb a mezők neve az alakleírók nevével egyezik Az n-edik objektum X nevű jellemzője: stats(n).x A cat függvénnyel mátrixra konvertálható: M = cat(1, stats.x) M mátrix n-edik sorába kerül a stats(n).x

16 Terület és kerület Terület: objektumpixelek száma regionprops(bw, area ); Kerület: a határ hossza (közelítő érték) regionprops(bw, perimeter );

17 Terület és kerület (példa) prop = regionprops(img_open_close, 'Perimeter'); P = cat(1, prop.perimeter) prop = regionprops(img_open_close, 'Area'); A = cat(1, prop.area) P = A =

18 Befoglaló téglalap Az objektumot tartalmazó minimális területű téglalap Vízszintes helyzetű befoglaló téglalapok paramétereinek számítása: regionprops(bw, BoundingBox ); Négyelemű vektorként tárolódnak: [ bal felső sarok y koordinátája, bal felső sarok x koordinátája, szélesség (oszlopok száma), magasság (sorok száma) ]

19 Befoglaló téglalap prop = regionprops(img_open_close, 'BoundingBox'); BB = cat(1, prop.boundingbox); figure imshow(img_open_close); for i=1:size(bb,1) rectangle('position', BB(i,:),'EdgeColor','g', 'LineWidth', 2, 'LineStyle', '-'); Az i-edik objektum befoglaló téglalapjának rárajzolása az ábrára zöld színnel, 2 pixel vastagon, folytonos vonallal

20 Befoglaló téglalap imcrop(img, [y x w h]): külön mátrixba kinyeri az img azon w széles és h magas téglalap által határolt részét, melynek bal felső sarka az (x,y) pontban van prop = regionprops(img_open_close, 'BoundingBox'); BB = cat(1, prop.boundingbox); cropped = imcrop(img_open_close, BB(1,:)); figure, imshow(cropped); Az első objektum befoglaló téglalapja által határolt rész kinyerése

21 Súlypont (vagy centroid) Az objektumpixelek y és x koordinátáinak átlagaként kapjuk regionprops(bw, Centroid ) [y,x] alakú vektorként tárolódik az (x,y) koordinátájú centroid

22 Súlypont (példa) prop = regionprops(img_open_close,'centroid'); C = cat(1, prop.centroid); figure, imshow(img_open_close); hold on; plot(c(:,1),c(:,2), 'b*'); Súlypontok rárajzolása az ábrára kék csillagokként

23 Konvex burok Az alakzatot tartalmazó minimális konvex alakzat: bwconvhull(bw, method) BW: bináris kép method: union vagy objects union : az objektumok együttesének konvex burkát számolja (egyetlen konvex burok) objects : objektumonként külön-külön konvex burkot számol

24 Konvex burok CH1 = bwconvhull(img_open_close, 'objects'); CH2 = bwconvhull(img_open_close, 'union'); imshow([ch1,ch2]);

25 Objektumok címkézése L = bwlabel(bw) BW kép mindegyik objektuma egy sorszámot kap, az n-edik objektum pixelei n intenzitásúak az L képen

26 Címkézés (példa) labelled = bwlabel(img_open_close); imshow(labelled, []); display('objektumok száma:'); display(max(max(labelled))); figure, imshow(labelled == 3); Objektumok száma: ans = 8

27 Erózió implementációja kereszt alakú szerk. elemre p function result = bwerode(img) [height,width] = size(img); padimg = false(height+2, width+2); padimg(2:height+1,2:width+1) = img; result = padimg; for i=2:height+1 for j=2:width+1 if padimg(i-1,j)==0 padimg(i+1,j)==0... padimg(i,j-1)==0 padimg(i,j+1)==0 result(i,j) = 0; end end end result = result(2:height+1, 2:width+1); end Megjegyés: ugyanilyen szerkesztőelemű dilatáció hasonlóképpen implementálható, csak a 0-ákat 1-esekre kell lecserélni

28 Határvonal implementációja p function result = bwborder(img) [height,width] = size(img); padimg = false(height+2, width+2); padimg(2:height+1,2:width+1) = img; result = padimg; for i=2:height+1 for j=2:width+1 if padimg(i,j)==1 &... padimg(i-1,j)==1 & padimg(i+1,j)==1 &... padimg(i,j-1)==1 & padimg(i,j+1)==1 result(i,j) = 0; end end end result = result(2:height+1, 2:width+1); end

Példák jellemzőkre: - minden pixelérték egy jellemző pl. neurális hálózat esetében csak kis képekre, nem invariáns sem a megvilágításra, sem a geom.

Példák jellemzőkre: - minden pixelérték egy jellemző pl. neurális hálózat esetében csak kis képekre, nem invariáns sem a megvilágításra, sem a geom. Lépések 1. tanító és teszt halmaz összeállítása / megszerzése 2. jellemzők kinyerése 3. tanító eljárás választása Sok vagy kevés adat áll-e rendelkezésünkre? Mennyi tanítási idő/memória áll rendelkezésre?

Részletesebben

Minták automatikus osztályba sorolása a mintát leíró jellemzők alapján. Típusok: felügyelt és felügyelet nélküli tanuló eljárások

Minták automatikus osztályba sorolása a mintát leíró jellemzők alapján. Típusok: felügyelt és felügyelet nélküli tanuló eljárások Minták automatikus osztályba sorolása a mintát leíró jellemzők alapján Típusok: felügyelt és felügyelet nélküli tanuló eljárások Különbség: előbbinél szükséges egy olyan tanulóhalmaz, ahol ismert a minták

Részletesebben

11. Alakzatjellemzők. Kató Zoltán. Képfeldolgozás és Számítógépes Grafika tanszék SZTE (http://www.inf.u-szeged.hu/~kato/teaching/)

11. Alakzatjellemzők. Kató Zoltán. Képfeldolgozás és Számítógépes Grafika tanszék SZTE (http://www.inf.u-szeged.hu/~kato/teaching/) 11. Alakzatjellemzők Kató Zoltán Képfeldolgozás és Számítógépes Grafika tanszék SZTE (http://www.inf.u-szeged.hu/~kato/teaching/) 2 Alakzat = pontok összefüggő rendszere példák síkbeli alakzatokra 3 Az

Részletesebben

Morfológia. Sergyán Szabolcs Óbudai Egyetem Neumann János Informatikai Kar Szoftvertechnológia Intézet

Morfológia. Sergyán Szabolcs Óbudai Egyetem Neumann János Informatikai Kar Szoftvertechnológia Intézet Morfológia Sergyán Szabolcs sergyan.szabolcs@nik.uni-obuda.hu Óbudai Egyetem Neumann János Informatikai Kar Szoftvertechnológia Intézet 2013. szeptember 15. Sergyán (OE NIK) Morfológia 2013. szeptember

Részletesebben

Koordinátageometria. , azaz ( ) a B halmazt pontosan azok a pontok alkotják, amelynek koordinátáira:

Koordinátageometria. , azaz ( ) a B halmazt pontosan azok a pontok alkotják, amelynek koordinátáira: 005-0XX Emelt szint Koordinátageometria 1) a) Egy derékszögű háromszög egyik oldalegyenese valamelyik koordinátatengely, egy másik oldalegyenesének egyenlete x + y = 10, egyik csúcsa az origó. Hány ilyen

Részletesebben

MATLAB Image Processing Toolbox

MATLAB Image Processing Toolbox Budapesti Műszaki Főiskola Neumann János Informatikai Kar 2007. november 12. Kép átméretezése imresize(a,m,method) Az A képet m-szeresére méretezi át. method értéke lehet: nearest (alapértelmezett) bilinear

Részletesebben

Az objektum leírására szolgálnak. Mire jók? Sokszor maga a jellemző az érdekes: Tömörítés. Objektumok csoportosítására

Az objektum leírására szolgálnak. Mire jók? Sokszor maga a jellemző az érdekes: Tömörítés. Objektumok csoportosítására Az objektum leírására szolgálnak Mire jók? Sokszor maga a jellemző az érdekes: pl.: átlagosan mekkora egy szitakötő szárnyfesztávolsága? Tömörítés pl.: ha körszerű objektumokat tartalmaz a kép, elegendő

Részletesebben

Baran Ágnes. Gyakorlat Függvények, Matlab alapok

Baran Ágnes. Gyakorlat Függvények, Matlab alapok Matematika Mérnököknek 1. Baran Ágnes Gyakorlat Függvények, Matlab alapok Matematika Mérnököknek 1. A gyakorlatok fóliái: https://arato.inf.unideb.hu/baran.agnes/oktatas.html Feladatsorok: https://arato.inf.unideb.hu/baran.agnes/oktatas.html

Részletesebben

Baran Ágnes, Burai Pál, Noszály Csaba. Gyakorlat Differenciálegyenletek numerikus megoldása

Baran Ágnes, Burai Pál, Noszály Csaba. Gyakorlat Differenciálegyenletek numerikus megoldása Matematika Mérnököknek 2. Baran Ágnes, Burai Pál, Noszály Csaba Gyakorlat Differenciálegyenletek numerikus megoldása Baran Ágnes, Burai Pál, Noszály Csaba Matematika Mérnököknek 2. Gyakorlat 1 / 18 Fokozatos

Részletesebben

Ujjszámlálás Matlab segítségével

Ujjszámlálás Matlab segítségével Ujjszámlálás Matlab segítségével Griechisch Erika, Juhász Miklós és Földi Antal 2008. november Tartalomjegyzék 1. Bevezetés 1 2. Vizsgált módszerek 1 3. Az algoritmus 1 4. Megvalósítás 2 4.1. Szegmentálás,

Részletesebben

Bináris képek feldolgozása. Digitális képelemzés alapvető algoritmusai. Bináris képek. Bináris képfeldolgozás témái. Csetverikov Dmitrij

Bináris képek feldolgozása. Digitális képelemzés alapvető algoritmusai. Bináris képek. Bináris képfeldolgozás témái. Csetverikov Dmitrij Bináris képek feldolgozása Digitális képelemzés alapvető algoritmusai Csetverikov Dmitrij 1 Alapok Még egy kis digitális geometria Futam-hossz kód és komponens-analízis Eötvös Lóránd Egyetem, Budapest

Részletesebben

Függvények ábrázolása

Függvények ábrázolása Függvények ábrázolása Matematikai függvényeket analitikusan nem tudunk a matlabban megadni (tudunk, de ilyet még nem tanulunk). Ahhoz, hogy egy függvényt ábrázoljuk, hasonlóan kell eljárni, mint a házi

Részletesebben

Morfológia. Sergyán Szabolcs Óbudai Egyetem Neumann János Informatikai Kar Szoftvertechnológia Intézet

Morfológia. Sergyán Szabolcs Óbudai Egyetem Neumann János Informatikai Kar Szoftvertechnológia Intézet Morfológia Sergyán Szabolcs sergyan.szabolcs@nik.uni-obuda.hu Óbudai Egyetem Neumann János Informatikai Kar Szoftvertechnológia Intézet 2012. október 9. Sergyán (OE NIK) Morfológia 2012. október 9. 1 /

Részletesebben

Koordináta-geometria feladatok (emelt szint)

Koordináta-geometria feladatok (emelt szint) Koordináta-geometria feladatok (emelt szint) 1. (ESZÉV Minta (2) 2004.05/7) Egy ABC háromszögben CAB = 30, az ACB = 45. A háromszög két csúcsának koordinátái: A(2; 2) és C(4; 2). Határozza meg a harmadik

Részletesebben

Objektumok és osztályok. Az objektumorientált programozás alapjai. Rajzolás tollal, festés ecsettel. A koordinátarendszer

Objektumok és osztályok. Az objektumorientált programozás alapjai. Rajzolás tollal, festés ecsettel. A koordinátarendszer Objektumok és osztályok Az objektumorientált programozás alapjai Rajzolás tollal, festés ecsettel A koordinátarendszer A vektorgrafikában az egyes grafikus elemeket (pontokat, szakaszokat, köröket, stb.)

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK EMELT SZINT Koordinátageometria

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK EMELT SZINT Koordinátageometria 1) MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK EMELT SZINT Koordinátageometria A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek

Részletesebben

Mechatronika segédlet 3. gyakorlat

Mechatronika segédlet 3. gyakorlat Mechatronika segédlet 3. gyakorlat 2017. február 20. Tartalom Vadai Gergely, Faragó Dénes Feladatleírás... 2 Fogaskerék... 2 Nézetváltás 3D modellezéshez... 2 Könnyítés megvalósítása... 2 A fogaskerék

Részletesebben

Láthatósági kérdések

Láthatósági kérdések Láthatósági kérdések Láthatósági algoritmusok Adott térbeli objektum és adott nézőpont esetén el kell döntenünk, hogy mi látható az adott alakzatból a nézőpontból, vagy irányából nézve. Az algoritmusok

Részletesebben

KOORDINÁTA-GEOMETRIA

KOORDINÁTA-GEOMETRIA XIV. Témakör: feladatok 1 Huszk@ Jenő XIV.TÉMAKÖR Téma A pont koordinátageometriája A kör koordinátageometriája KOORDINÁTA-GEOMETRIA A projekt típus ú feladatok tartalmi szintézise A feladat sorszáma Oldal

Részletesebben

A MATLAB alapjai. Kezdő lépések. Változók. Aktuális mappa Parancs ablak. Előzmények. Részei. Atomerőművek üzemtana

A MATLAB alapjai. Kezdő lépések. Változók. Aktuális mappa Parancs ablak. Előzmények. Részei. Atomerőművek üzemtana A MATLAB alapjai Kezdő lépések - Matlab Promt: >> - Help: >> help sqrt >> doc sqrt - Kilépés: >> quit >> exit >> Futó script leállítása: >> ctrl+c - Változók listásása >> who >> whos - Változók törlése

Részletesebben

Területi primitívek: Zárt görbék által határolt területek (pl. kör, ellipszis, poligon) b) Minden belső pont kirajzolásával (kitöltött)

Területi primitívek: Zárt görbék által határolt területek (pl. kör, ellipszis, poligon) b) Minden belső pont kirajzolásával (kitöltött) Grafikus primitívek kitöltése Téglalap kitöltése Poligon kitöltése Kör, ellipszis kitöltése Kitöltés mintával Grafikus primitívek kitöltése Területi primitívek: Zárt görbék által határolt területek (pl.

Részletesebben

Érettségi feladatok: Koordináta-geometria 1/5

Érettségi feladatok: Koordináta-geometria 1/5 Érettségi feladatok: Koordináta-geometria 1/5 2003. Próba/ 13. Adott egy háromszög három csúcspontja a koordinátáival: A( 4; 4), B(4; 4) és C( 4; 8). Számítsa ki a C csúcsból induló súlyvonal és az A csúcsból

Részletesebben

MATLAB alapismeretek IV. Eredmények grafikus megjelenítése: vonalgrafikonok

MATLAB alapismeretek IV. Eredmények grafikus megjelenítése: vonalgrafikonok Alkalmazott Informatikai Intézeti Tanszék MŰSZAKI INFORMATIKA Dr.Dudás László 0. MATLAB alapismeretek IV. Eredmények grafikus megjelenítése: vonalgrafikonok Forrás: İ.Yücel Özbek: Introduction to Matlab

Részletesebben

Transzformációk. Grafikus játékok fejlesztése Szécsi László 2013.02.26. t05-transform

Transzformációk. Grafikus játékok fejlesztése Szécsi László 2013.02.26. t05-transform Transzformációk Grafikus játékok fejlesztése Szécsi László 2013.02.26. t05-transform Koordinátarendszerek: modelltér Koordinátarendszerek: világtér Koordinátarendszerek: kameratér up right z eye ahead

Részletesebben

Mozgatható térlefedő szerkezetek

Mozgatható térlefedő szerkezetek Mozgatható térlefedő szerkezetek TDK Konferencia 2010 Szilárdságtani és tartószerkezeti szekció Tartalomjegyzék 1 Absztrakt 2 Bevezetés 3 Az alakzat mozgásának görbületre gyakorolt hatása 4 Teljes összenyomódás

Részletesebben

Érettségi feladatok Koordinátageometria_rendszerezve / 5

Érettségi feladatok Koordinátageometria_rendszerezve / 5 Érettségi feladatok Koordinátageometria_rendszerezve 2005-2013 1/ 5 Vektorok 2005. május 28./12. Adottak az a (4; 3) és b ( 2; 1) vektorok. a) Adja meg az a hosszát! b) Számítsa ki az a + b koordinátáit!

Részletesebben

1 = 1x1 1+3 = 2x2 1+3+5 = 3x3 1+3+5+7 = 4x4

1 = 1x1 1+3 = 2x2 1+3+5 = 3x3 1+3+5+7 = 4x4 . Orchidea Iskola VI. Matematika verseny 0/0 II. forduló = x + = x ++ = x +++ = x Ennek ismeretében mennyivel egyenlő ++++...+9+99=? A ) 0. D ) 0 000 6 C ) 0 D ) A Földközi-tengerben a só-víz aránya :

Részletesebben

Multimédiás adatbázisok

Multimédiás adatbázisok Multimédiás adatbázisok Multimédiás adatbázis kezelő Olyan adatbázis kezelő, mely támogatja multimédiás adatok (dokumentum, kép, hang, videó) tárolását, módosítását és visszakeresését Minimális elvárás

Részletesebben

SCILAB programcsomag segítségével

SCILAB programcsomag segítségével Felhasználói függvények de niálása és függvények 3D ábrázolása SCILAB programcsomag segítségével 1. Felhasználói függvények de niálása A Scilab programcsomag rengeteg matematikai függvényt biztosít a számítások

Részletesebben

Transzformációk. Szécsi László

Transzformációk. Szécsi László Transzformációk Szécsi László A feladat Adott a 3D modell háromszögek csúcspontjai [modellezési koordináták] Háromszögkitöltő algoritmus pixeleket színez be [viewport koordináták] A feladat: számítsuk

Részletesebben

Képrekonstrukció 9. előadás

Képrekonstrukció 9. előadás Képrekonstrukció 9. előadás Balázs Péter Képfeldolgozás és Számítógépes Grafika Tanszék Szegedi Tudományegyetem hv-konvex összefüggő halmazok Mag-burok-szerű rekonstrukció: S. Brunetti, A. Del Lungo, F.

Részletesebben

Matlab alapok. Baran Ágnes. Grafika. Baran Ágnes Matlab alapok Grafika 1 / 21

Matlab alapok. Baran Ágnes. Grafika. Baran Ágnes Matlab alapok Grafika 1 / 21 Matlab alapok Baran Ágnes Grafika Baran Ágnes Matlab alapok Grafika / 2 Vonalak, pontok síkon figure nyit egy új grafikus ablakot plot(x,y) ahol x és y ugyanolyan méretű vektorok, ábrázolja az (x i,y i

Részletesebben

A médiatechnológia alapjai

A médiatechnológia alapjai A médiatechnológia alapjai Úgy döntöttem, hogy a Szirányi oktatta előadások számonkérhetőnek tűnő lényegét kiemelem, az alapján, amit a ZH-ról mondott: rövid kérdések. A rész és az egész: összefüggések

Részletesebben

Önálló labor beszámoló Képek szegmentálása textúra analízis segítségével. MAJF21 Eisenberger András május 22. Konzulens: Dr.

Önálló labor beszámoló Képek szegmentálása textúra analízis segítségével. MAJF21 Eisenberger András május 22. Konzulens: Dr. Önálló labor beszámoló Képek szegmentálása textúra analízis segítségével 2011. május 22. Konzulens: Dr. Pataki Béla Tartalomjegyzék 1. Bevezetés 2 2. Források 2 3. Kiértékelő szoftver 3 4. A képek feldolgozása

Részletesebben

3. Szűrés képtérben. Kató Zoltán. Képfeldolgozás és Számítógépes Grafika tanszék SZTE (http://www.inf.u-szeged.hu/~kato/teaching/)

3. Szűrés képtérben. Kató Zoltán. Képfeldolgozás és Számítógépes Grafika tanszék SZTE (http://www.inf.u-szeged.hu/~kato/teaching/) 3. Szűrés képtérben Kató Zoltán Képfeldolgozás és Számítógépes Grafika tanszék SZTE http://www.inf.u-szeged.hu/~kato/teaching/ 2 Kép transzformációk típusai Kép értékkészletének radiometriai információ

Részletesebben

Széchenyi István Egyetem

Széchenyi István Egyetem polár 3D gömbi Széchenyi István Egyetem Téglalapon vett integrál polár 3D gömbi Legyenek [a, b], [c, d] R véges intervallumok, és jelölje T az [a, b] [c, d] = {(x, y) R : a x b, c y d } téglalapot. Legyen

Részletesebben

Cohen-Sutherland vágóalgoritmus

Cohen-Sutherland vágóalgoritmus Vágási algoritmusok Alapprobléma Van egy alakzatunk (szakaszokból felépítve) és van egy "ablakunk" (lehet a monitor, vagy egy téglalap alakú tartomány, vagy ennél szabálytalanabb poligon által határolt

Részletesebben

48. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY Megyei forduló HETEDIK OSZTÁLY MEGOLDÁSOK = = 2019.

48. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY Megyei forduló HETEDIK OSZTÁLY MEGOLDÁSOK = = 2019. 8. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY Megyei forduló HETEDIK OSZTÁLY MEGOLDÁSOK 1. Bizonyítsd be, hogy 019 db egymást követő pozitív egész szám közül mindig kiválasztható 19 db úgy, hogy az összegük

Részletesebben

Számítógépes Grafika mintafeladatok

Számítógépes Grafika mintafeladatok Számítógépes Grafika mintafeladatok Feladat: Forgassunk a 3D-s pontokat 45 fokkal a X tengely körül, majd nyújtsuk az eredményt minden koordinátájában kétszeresére az origóhoz képest, utána forgassunk

Részletesebben

Szerkezetvizsgálat II. c. gyakorlat

Szerkezetvizsgálat II. c. gyakorlat Szerkezetvizsgálat II. c. gyakorlat Miskolci Egyetem, Műszaki Anyagtudományi Kar 2011. szeptember 14. Dr. Gergely Gréta gergelygreta@freemail.hu BEVEZETÉS-SZÖVETSZERKEZET, MORFOLÓGIA Anyagtudomány: az

Részletesebben

BME MOGI Gépészeti informatika 6.

BME MOGI Gépészeti informatika 6. BME MOGI Gépészeti informatika 6. 1. feladat Készítsen Windows Forms alkalmazást véletlen adatokkal létrehozott körök kölcsönös helyzetének vizsgálatára! Hozza létre a következő struktúrákat, melynek elemei

Részletesebben

Szemidenit optimalizálás és az S-lemma

Szemidenit optimalizálás és az S-lemma Szemidenit optimalizálás és az S-lemma Pólik Imre SAS Institute, USA BME Optimalizálás szeminárium 2011. október 6. Outline 1 Egyenl tlenségrendszerek megoldhatósága 2 Az S-lemma 3 Szemidenit kapcsolatok

Részletesebben

Regresszió számítás. Tartalomjegyzék: GeoEasy V2.05+ Geodéziai Kommunikációs Program

Regresszió számítás. Tartalomjegyzék: GeoEasy V2.05+ Geodéziai Kommunikációs Program Regresszió számítás GeoEasy V2.05+ Geodéziai Kommunikációs Program DigiKom Kft. 2006-2010 Tartalomjegyzék: Egyenes x változik Egyenes y változik Egyenes y és x változik Kör Sík z változik Sík y, x és z

Részletesebben

Vektorok és koordinátageometria

Vektorok és koordinátageometria Vektorok és koordinátageometria Vektorral kapcsolatos alapfogalmak http://zanza.tv/matematika/geometria/vektorok-bevezetese Definíció: Ha egy szakasz két végpontját megkülönböztetjük egymástól oly módon,

Részletesebben

Számítógépes képelemzés 7. előadás. Dr. Balázs Péter SZTE, Képfeldolgozás és Számítógépes Grafika Tanszék

Számítógépes képelemzés 7. előadás. Dr. Balázs Péter SZTE, Képfeldolgozás és Számítógépes Grafika Tanszék Számítógépes képelemzés 7. előadás Dr. Balázs Péter SZTE, Képfeldolgozás és Számítógépes Grafika Tanszék Momentumok Momentum-alapú jellemzők Tömegközéppont Irányultáság 1 2 tan 2 1 2,0 1,1 0, 2 Befoglaló

Részletesebben

Bevezetés a Programozásba II 2. előadás. Adattípusok megvalósítása egységbe zárással. Adattípusok megvalósítása egységbe zárással

Bevezetés a Programozásba II 2. előadás. Adattípusok megvalósítása egységbe zárással. Adattípusok megvalósítása egységbe zárással Pázmány Péter Katolikus Egyetem Információs Technológiai és Bionikai Kar Bevezetés a Programozásba II 2. előadás Adattípusok megvalósítása egységbe zárással 2014.02.17. Giachetta Roberto groberto@inf.elte.hu

Részletesebben

EGY ABLAK - GEOMETRIAI PROBLÉMA

EGY ABLAK - GEOMETRIAI PROBLÉMA EGY ABLAK - GEOMETRIAI PROBLÉMA Írta: Hajdu Endre A számítógépemhez tartozó két hangfal egy-egy négyzet keresztmetszetű hasáb hely - szűke miatt az ablakpárkányon van elhelyezve (. ábra).. ábra Hogy az

Részletesebben

mintásfal 60 40 2 2 mintásfal :m :sz :dbjobbra :dbfel

mintásfal 60 40 2 2 mintásfal :m :sz :dbjobbra :dbfel 6.osztály 1.foglalkozás 6.osztály 2.foglalkozás kocka kockafal :db minta Készítsd el ezt a mintát! A minta hosszú oldala 60 a rövid oldala 40 egység hosszú. A hosszú oldal harmada a négyzet oldala! A háromszög

Részletesebben

Információ megjelenítés Számítógépes ábrázolás. Dr. Iványi Péter

Információ megjelenítés Számítógépes ábrázolás. Dr. Iványi Péter Információ megjelenítés Számítógépes ábrázolás Dr. Iványi Péter Raszterizáció OpenGL Mely pixelek vannak a primitíven belül fragment generálása minden ilyen pixelre Attribútumok (pl., szín) hozzárendelése

Részletesebben

A Quantimet 570C képelemző működése

A Quantimet 570C képelemző működése MISKOLCI EGYETEM GYAKORLATI ÚTMUTATÓ ANYAG- ÉS KOHÓMÉRNÖKI KAR PHARE HU 9705-0201-0006 FÉMTANI TANSZÉK ÖSSZEÁLLÍTOTTA: KOVÁCS JENŐ LEKTORÁLTA: DR. GÁCSI ZOLTÁN A Quantimet 570C képelemző működése 1. A

Részletesebben

TÉRINFORMATIKAI MODELLEZÉS TÉRINFORMATIKAI MODELLEZÉS ALAPFOGALMAI A VALÓSÁG MODELLEZÉSE

TÉRINFORMATIKAI MODELLEZÉS TÉRINFORMATIKAI MODELLEZÉS ALAPFOGALMAI A VALÓSÁG MODELLEZÉSE TÉRINFORMATIKAI MODELLEZÉS ALAPFOGALMAI TÉRINFORMATIKAI MODELLEZÉS A VALÓSÁG MODELLEZÉSE a valóság elemei entitásosztályok: települések utak, folyók domborzat, növényzet az entitás digitális megjelenítése

Részletesebben

BÖLCS BAGOLY LEVELEZŐS MATEMATIKAVERSENY III. forduló MEGOLDÁSOK

BÖLCS BAGOLY LEVELEZŐS MATEMATIKAVERSENY III. forduló MEGOLDÁSOK 1. Gondoltam egy négyjegyű számot. Az első két számjegy 3, az utolsó kettőé pedig 7, és a középső két számjegyből alkotott szám osztható 4-gyel. Melyik számra gondolhattam? Határozd meg az összes lehetőséget!

Részletesebben

Termék modell. Definíció:

Termék modell. Definíció: Definíció: Termék modell Összetett, többfunkciós, integrált modell (számítógépes reprezentáció) amely leír egy műszaki objektumot annak különböző életfázis szakaszaiban: tervezés, gyártás, szerelés, szervízelés,

Részletesebben

Grafikonok automatikus elemzése

Grafikonok automatikus elemzése Grafikonok automatikus elemzése MIT BSc önálló laboratórium konzulens: Orosz György 2016.05.18. A feladat elsődleges célkitűzései o eszközök adatlapján található grafikonok feldolgozása, digitalizálása

Részletesebben

Kép mátrix. Feladat: Pap Gáborné-Zsakó László: Algoritmizálás, adatmodellezés 2/35

Kép mátrix. Feladat: Pap Gáborné-Zsakó László: Algoritmizálás, adatmodellezés 2/35 Grafika I. Kép mátrix Feladat: Egy N*M-es raszterképet nagyítsunk a két-szeresére pontsokszorozással: minden régi pont helyébe 2*2 azonos színű pontot rajzolunk a nagyított képen. Pap Gáborné-Zsakó László:

Részletesebben

end function Az A vektorban elõforduló legnagyobb és legkisebb értékek indexeinek különbségét.. (1.5 pont) Ha üres a vektor, akkor 0-t..

end function Az A vektorban elõforduló legnagyobb és legkisebb értékek indexeinek különbségét.. (1.5 pont) Ha üres a vektor, akkor 0-t.. A Név: l 2014.04.09 Neptun kód: Gyakorlat vezető: HG BP MN l 1. Adott egy (12 nem nulla értékû elemmel rendelkezõ) 6x7 méretû ritka mátrix hiányos 4+2 soros reprezentációja. SOR: 1 1 2 2 2 3 3 4 4 5 6

Részletesebben

I. VEKTOROK, MÁTRIXOK

I. VEKTOROK, MÁTRIXOK 217/18 1 félév I VEKTOROK, MÁTRIXOK I1 I2 Vektorok 1 A síkon derékszögű koordinátarendszerben minden v vektornak van vízszintes és van függőleges koordinátája, ezeket sorrendben v 1 és v 2 jelöli A v síkbeli

Részletesebben

Mechatronika segédlet 10. gyakorlat

Mechatronika segédlet 10. gyakorlat Mechatronika segédlet 10. gyakorlat 2017. április 21. Tartalom Vadai Gergely, Faragó Dénes Feladatleírás... 1 simrobot... 2 Paraméterei... 2 Visszatérési értéke... 2 Kód... 2 simrobotmdl... 3 robotsen.mdl...

Részletesebben

Speciális szükségletű felhasználók navigációjának vizsgálata különböző multimédiás alkalmazásokban

Speciális szükségletű felhasználók navigációjának vizsgálata különböző multimédiás alkalmazásokban Speciális szükségletű felhasználók navigációjának vizsgálata különböző multimédiás alkalmazásokban MÁTRAI RITA1, KOSZTYÁN ZSOLT TIBOR2, SIKNÉ DR. LÁNYI CECÍLIA3 1,3 Veszprémi Egyetem, Képfeldolgozás és

Részletesebben

Baran Ágnes. Gyakorlat Halmazok, függvények, Matlab alapok. Baran Ágnes Matematika Mérnököknek Gyakorlat 1 / 34

Baran Ágnes. Gyakorlat Halmazok, függvények, Matlab alapok. Baran Ágnes Matematika Mérnököknek Gyakorlat 1 / 34 Matematika Mérnököknek 1. Baran Ágnes Gyakorlat Halmazok, függvények, Matlab alapok Baran Ágnes Matematika Mérnököknek 1. 1.-2. Gyakorlat 1 / 34 Matematika Mérnököknek 1. A gyakorlatok fóliái: https://arato.inf.unideb.hu/baran.agnes/oktatas.html

Részletesebben

Bevezetés a Programozásba II 5. előadás. Objektumorientált programozás és tervezés

Bevezetés a Programozásba II 5. előadás. Objektumorientált programozás és tervezés Pázmány Péter Katolikus Egyetem Információs Technológiai és Bionikai Kar Bevezetés a Programozásba II 5. előadás Objektumorientált programozás és tervezés 2014.03.10. Giachetta Roberto groberto@inf.elte.hu

Részletesebben

Térinformatika. j informáci. ciós s rendszerek funkciói. Kereső nyelvek (Query Languages) Az adatok feldolgozását (leválogat

Térinformatika. j informáci. ciós s rendszerek funkciói. Kereső nyelvek (Query Languages) Az adatok feldolgozását (leválogat Térinformatika Elemzék 2. Az informáci ciós s rendszerek funkciói adatnyerés s (input) adatkezelés s (management) adatelemzés s (analysis) adatmegjelenítés s (prentation) Összeállította: Dr. Szűcs LászlL

Részletesebben

Fuzzy halmazok jellemzői

Fuzzy halmazok jellemzői A Fuzzy rendszerek, számítási intelligencia gyakorló feladatok megoldása Fuzzy halmazok jellemzői A fuzzy halmaz tartója az alaphalmaz azon elemeket tartalmazó részhalmaza, melyek tagsági értéke 0-nál

Részletesebben

Időjárási csúcsok. Bemenet. Kimenet. Példa. Korlátok. Nemes Tihamér Nemzetközi Informatikai Tanulmányi Verseny, 2-3. korcsoport

Időjárási csúcsok. Bemenet. Kimenet. Példa. Korlátok. Nemes Tihamér Nemzetközi Informatikai Tanulmányi Verseny, 2-3. korcsoport Időjárási csúcsok Ismerjük N napra a déli hőmérséklet értékét. Lokálisan melegnek nevezünk egy napot (az első és az utolsó kivételével), ha az aznap mért érték nagyobb volt a két szomszédjánál, lokálisan

Részletesebben

Egyszerű példaprogramok gyakorláshoz

Egyszerű példaprogramok gyakorláshoz Egyszerű példaprogramok gyakorláshoz Tartalom Feladatok... 2 For ciklus... 2 Szorzótábla... 2 Szorzótábla részlet... 3 Pascal háromszög... 4 Pascal háromszög szebben... 5 DO-LOOP ciklus... 6 Véletlen sorsolás...

Részletesebben

Neumann János Számítógép-tudományi Társaság Programozás, robotprogramozás szakkör Három félév 3 * 8 foglalkozás

Neumann János Számítógép-tudományi Társaság Programozás, robotprogramozás szakkör Három félév 3 * 8 foglalkozás Neumann János Számítógép-tudományi Társaság Programozás, robotprogramozás szakkör Három félév 3 * 8 foglalkozás Első félév A modul időtartama: A modul célja: A modul tartalma: 8 foglalkozás, alkalmanként

Részletesebben

Matlab alapok. Baran Ágnes. Baran Ágnes Matlab alapok Elágazások, függvények 1 / 15

Matlab alapok. Baran Ágnes. Baran Ágnes Matlab alapok Elágazások, függvények 1 / 15 Matlab alapok Baran Ágnes Elágazások, függvények Baran Ágnes Matlab alapok Elágazások, függvények 1 / 15 Logikai kifejezések =, ==, = (két mátrixra is alkalmazhatóak, ilyenkor elemenként történik

Részletesebben

Komputeralgebra Rendszerek

Komputeralgebra Rendszerek Komputeralgebra Rendszerek Összetett adatszerkezetek a MAPLE -ben Czirbusz Sándor ELTE IK, Komputeralgebra Tanszék 2014. március 11. TARTALOMJEGYZÉK 1 of 66 TARTALOMJEGYZÉK I 1 TARTALOMJEGYZÉK 2 Kifejezéssorozatok

Részletesebben

van neve lehetnek bemeneti paraméterei (argumentumai) lehet visszatérési értéke a függvényt úgy használjuk, hogy meghívjuk

van neve lehetnek bemeneti paraméterei (argumentumai) lehet visszatérési értéke a függvényt úgy használjuk, hogy meghívjuk függvények ismétlése lista fogalma, használata Game of Life program (listák használatának gyakorlása) listák másolása (alap szintű, teljes körű) Reversi 2 Emlékeztető a függvények lényegében mini-programok,

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Síkgeometria

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Síkgeometria MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Síkgeometria 1) Döntse el, hogy a következő állítások közül melyik igaz és melyik hamis! a) A háromszög köré írható kör középpontja mindig valamelyik súlyvonalra

Részletesebben

Képfeldolgozás haladóknak Lovag Tamás Novák Gábor 2011

Képfeldolgozás haladóknak Lovag Tamás Novák Gábor 2011 Dokumentáció Küszöbölés A küszöbölés során végighaladunk a képen és minden egyes képpont intenzitásáról eldöntjük, hogy teljesül-e rá az a küszöbölési feltétel. A teljes képre vonatkozó küszöbölés esetében

Részletesebben

835 + 835 + 835 + 835 + 835 5

835 + 835 + 835 + 835 + 835 5 Orchidea Iskola VI. Matematika verseny 20/20 II. forduló. A macska és az egér jobbra indulnak el. Ha az egér négyzetet ugrik, akkor a macska 2 négyzetet lép előre. Melyik négyzetnél éri utol a macska az

Részletesebben

A felmérési egység kódja:

A felmérési egység kódja: A felmérési egység lajstromszáma: 0199 A felmérési egység adatai A felmérési egység kódja: Szipkül//30/Ksz/Ált/b A kódrészletek jelentése: Szakipari kül szakképesítés-csoportban, a célzott, 30- as szintű

Részletesebben

GPU Lab. 14. fejezet. OpenCL textúra használat. Grafikus Processzorok Tudományos Célú Programozása. Berényi Dániel Nagy-Egri Máté Ferenc

GPU Lab. 14. fejezet. OpenCL textúra használat. Grafikus Processzorok Tudományos Célú Programozása. Berényi Dániel Nagy-Egri Máté Ferenc 14. fejezet OpenCL textúra használat Grafikus Processzorok Tudományos Célú Programozása Textúrák A textúrák 1, 2, vagy 3D-s tömbök kifejezetten szín információk tárolására Főbb különbségek a bufferekhez

Részletesebben

SZÁMÍTÓGÉPI GRAFIKA VÁGÁS

SZÁMÍTÓGÉPI GRAFIKA VÁGÁS SZÁMÍTÓGÉPI GRAFIKA VÁGÁS FELADAT: Ha az alakzat nagyobb, mint a képtartomány, amelyben megjelenítendő, akkor a kívül eső részeket el kell hagyni, azaz az alakzatról le kell vágni, röviden szólva: az alakzatot

Részletesebben

6. Modell illesztés, alakzatok

6. Modell illesztés, alakzatok 6. Modell illesztés, alakzatok Kató Zoltán Képfeldolgozás és Számítógépes Grafika tanszék SZTE (http://www.inf.u-szeged.hu/~kato/teaching/) 2 ROBOSZTUS EGYENES ILLESZTÉS Egyenes illesztés Adott a síkban

Részletesebben

Utolsó módosítás: Feladat egy kétváltozós valós függvény kirajzolása különféle megjelenítési módszerekkel.

Utolsó módosítás: Feladat egy kétváltozós valós függvény kirajzolása különféle megjelenítési módszerekkel. Utolsó módosítás: 2008.09.04. Kétváltozós függvények ábrázolása 1 Bevezetés Feladat egy kétváltozós valós függvény kirajzolása különféle megjelenítési módszerekkel. Például: szintvonalakkal, pontfelhővel,

Részletesebben

Érettségi feladatok: Trigonometria 1 /6

Érettségi feladatok: Trigonometria 1 /6 Érettségi feladatok: Trigonometria 1 /6 2003. Próba 14. Egy hajó a Csendes-óceán egy szigetéről elindulva 40 perc alatt 24 km-t haladt észak felé, majd az eredeti haladási irányhoz képest 65 -ot nyugat

Részletesebben

OKTV 2007/2008 Informatika II. kategória döntő forduló Feladatlap. Oktatási Hivatal

OKTV 2007/2008 Informatika II. kategória döntő forduló Feladatlap. Oktatási Hivatal Feladatlap Kedves Versenyző! A megoldások értékelésénél csak a programok futási eredményeit vesszük tekintetbe. Ezért igen fontos a specifikáció pontos betartása. Ha például a feladat szövege adatok valamilyen

Részletesebben

Navigáci. stervezés. Algoritmusok és alkalmazásaik. Osváth Róbert Sorbán Sámuel

Navigáci. stervezés. Algoritmusok és alkalmazásaik. Osváth Róbert Sorbán Sámuel Navigáci ció és s mozgástervez stervezés Algoritmusok és alkalmazásaik Osváth Róbert Sorbán Sámuel Feladat Adottak: pálya (C), játékos, játékos ismerethalmaza, kezdőpont, célpont. Pálya szerkezete: akadályokkal

Részletesebben

A MATLAB alapjai. Kezdő lépések. Változók. Aktuális mappa Parancs ablak. Előzmények. Részei

A MATLAB alapjai. Kezdő lépések. Változók. Aktuális mappa Parancs ablak. Előzmények. Részei A MATLAB alapjai Atomerőművek üzemtanának fizikai alapjai - 2016. 03. 04. Papp Ildikó Kezdő lépések - Matlab Promt: >> - Help: >> help sqrt >> doc sqrt - Kilépés: >> quit >> exit - Változók listásása >>

Részletesebben

Hálózat hidraulikai modell integrálása a Soproni Vízmű Zrt. térinformatikai rendszerébe

Hálózat hidraulikai modell integrálása a Soproni Vízmű Zrt. térinformatikai rendszerébe Hálózat hidraulikai modell integrálása a térinformatikai rendszerébe Hálózathidraulikai modellezés - Szakmai nap MHT Vízellátási Szakosztály 2015. április 9. Térinformatikai rendszer bemutatása Működési

Részletesebben

Programozási nyelvek 2. előadás

Programozási nyelvek 2. előadás Programozási nyelvek 2. előadás Logo forgatás tétel Forgatás tétel Ha az ismétlendő rész T fok fordulatot végez és a kezdőhelyére visszatér, akkor az ismétlések által rajzolt ábrák egymás T fokkal elforgatottjai

Részletesebben

A 2010/2011 tanévi Országos Középiskolai Tanulmányi Verseny második fordulójának megoldása. II. (programozás) kategória

A 2010/2011 tanévi Országos Középiskolai Tanulmányi Verseny második fordulójának megoldása. II. (programozás) kategória Oktatási Hivatal A 20/2011 tanévi Országos Középiskolai Tanulmányi Verseny második fordulójának megoldása II. (programozás) kategória Kérjük a tisztelt kollégákat, hogy az egységes értékelés érdekében

Részletesebben

Digitális képfeldolgozás gyakorlat, Nappali tagozat 2018/2019 őszi félév, Beadandó feladat

Digitális képfeldolgozás gyakorlat, Nappali tagozat 2018/2019 őszi félév, Beadandó feladat Digitális képfeldolgozás gyakorlat, Nappali tagozat 2018/2019 őszi félév, Beadandó feladat Készítsen egy Python programot a megfelelő csomagok (OpenCV, NumPy, stb.) segítségével, amely a következő feladatok

Részletesebben

Topológia-meg rz képm veletek és a vékonyítás új módszerei

Topológia-meg rz képm veletek és a vékonyítás új módszerei SZEGEDI TUDOMÁNYEGYETEM Természettudományi- és Informatikai Kar Informatika Doktori Iskola Képfeldolgozás és Számítógépes Graka Tanszék Topológia-meg rz képm veletek és a vékonyítás új módszerei doktori

Részletesebben

Készítette: niethammer@freemail.hu

Készítette: niethammer@freemail.hu VLogo VRML generáló program Készítette: Niethammer Zoltán niethammer@freemail.hu 2008 Bevezetés A VLogo az általános iskolákban használt Comenius Logo logikájára épülő programozási nyelv. A végeredmény

Részletesebben

Pénzügyi algoritmusok

Pénzügyi algoritmusok Pénzügyi algoritmusok A C++ programozás alapjai Sztringek Osztályok alapjai Sztringek Szöveges adatok kezelése Sztring Karakterlánc (string): Szöveges adat Karaktertömbként tárolva A szöveg végét a speciális

Részletesebben

MATLAB. 5. gyakorlat. Polinomok, deriválás, integrálás

MATLAB. 5. gyakorlat. Polinomok, deriválás, integrálás MATLAB 5. gyakorlat Polinomok, deriválás, integrálás Menetrend Kis ZH Polinomok Numerikus deriválás Numerikus integrálás (+ anonim függvények) pdf Kis ZH Polinomok Sok függvény és valós folyamat leírható

Részletesebben

Programozás 7.o Az algoritmus fogalma (ismétlés)

Programozás 7.o Az algoritmus fogalma (ismétlés) Programozás 7.o Az algoritmus fogalma (étlés) Az algoritmus olyan leírás, felsorolás, amely az adott feladat megoldásához szükséges jól definiált utasítások s számú sorozata. Egy probléma megoldására kidolgozott

Részletesebben

Mesh generálás. IványiPéter

Mesh generálás. IványiPéter Mesh generálás IványiPéter drview Grafikus program MDF file-ok szerkesztéséhez. A mesh generáló program bemenetét itt szerkesztjük meg. http://www.hexahedron.hu/personal/peteri/sx/index.html Pont létrehozásához

Részletesebben

Matematika szigorlat június 17. Neptun kód:

Matematika szigorlat június 17. Neptun kód: Név Matematika szigorlat 014. június 17. Neptun kód: 1.. 3. 4. 5. Elm. Fel. Össz. Oszt. Az eredményes szigorlat feltétele elméletből legalább 0 pont, feladatokból pedig legalább 30 pont elérése. A szigorlat

Részletesebben

Numerikus Matematika

Numerikus Matematika Numerikus Matematika Baran Ágnes Gyakorlat Interpoláció Baran Ágnes Numerikus Matematika 6.-7. Gyakorlat 1 / 40 Lagrange-interpoláció Példa Határozzuk meg a ( 2, 5), ( 1, 3), (0, 1), (2, 15) pontokra illeszkedő

Részletesebben

Koordináta-geometria feladatgyűjtemény

Koordináta-geometria feladatgyűjtemény Koordináta-geometria feladatgyűjtemény A feladatok megoldásai a dokumentum végén találhatók Vektorok 1. Egy négyzet két szemközti csúcsának koordinátái: A( ; 7) és C(4 ; 1). Határozd meg a másik két csúcs

Részletesebben

Konjugált gradiens módszer

Konjugált gradiens módszer Közelítő és szimbolikus számítások 12. gyakorlat Konjugált gradiens módszer Készítette: Gelle Kitti Csendes Tibor Vinkó Tamás Faragó István Horváth Róbert jegyzetei alapján 1 LINEÁRIS EGYENLETRENDSZEREK

Részletesebben

Gyakorló feladatok 9.évf. halmaznak, írd fel az öt elemű részhalmazokat!. Add meg a következő halmazokat és ábrázold Venn-diagrammal:

Gyakorló feladatok 9.évf. halmaznak, írd fel az öt elemű részhalmazokat!. Add meg a következő halmazokat és ábrázold Venn-diagrammal: Gyakorló feladatok 9.évf.. Mennyi az összes részhalmaza az A a c; d; e; f halmaznak, írd fel az öt elemű részhalmazokat!. Legyen U ;;;;;6;7;8;9, A ;;6;7; és B ;;8. Add meg a következő halmazokat és ábrázold

Részletesebben

BME MOGI Gépészeti informatika 15.

BME MOGI Gépészeti informatika 15. BME MOGI Gépészeti informatika 15. 1. feladat Készítsen alkalmazást a y=2*sin(3*x-π/4)-1 függvény ábrázolására a [-2π; 2π] intervallumban 0,1-es lépésközzel! Ezen az intervallumon a függvény értékkészlete

Részletesebben

Kölcsönhatás diagramok

Kölcsönhatás diagramok Kölcsönhatás diagramok Célkitűzés Olvasni tudják az alap UML kölcsönhatás diagramok (kommunikáció és szekvencia) diagramok jelöléseit. 2 Bevezetés Miért léteznek az objektumok? Azért, hogy a rendszer valamilyen

Részletesebben

Nagy Gábor: Mapinfo. Tartalomjegyzék

Nagy Gábor: Mapinfo. Tartalomjegyzék Nagy Gábor: Mapinfo Jelen segédletet abból a célból kezdtem el írni, hogy a Jáky József Műszaki Szakközépiskola ötödéves térinformatikai technikus tanulóinak segítséget nyújtson a MapInfo megismerésében.

Részletesebben

+ 3 5 2 3 : 1 4 : 1 1 A ) B ) C ) D ) 93

+ 3 5 2 3 : 1 4 : 1 1 A ) B ) C ) D ) 93 . Mennyi az alábbi művelet eredménye? 4 + 4 : 5 : 5 + 8 07 9 A ) B ) C ) D ) E ) 9 9 9 9 9. Egy digitális órát (amely 4 órás üzemmódban működik) pontosan beállítottunk. Kiderült azonban, hogy egy nap átlagosan

Részletesebben