Lényege: valamilyen szempont szerint homogén csoportok képzése a pixelekből. Amit már ismerünk:
|
|
- Ida Somogyiné
- 6 évvel ezelőtt
- Látták:
Átírás
1
2 Lényege: valamilyen szempont szerint homogén csoportok képzése a pixelekből. Amit már ismerünk: Küszöbölés, vágás, sávkijelölés hátránya: az azonos csoportba sorolt pixelek nem feltétlenül alkotnak összefüggő halmazt.
3 Tekintsük a képet egy domborzati térképként.
4 Képzeljük el, hogy a (környezettől erősen eltérő) lokális minimumhelyeknél feltört a víz. Az üregek folyamatosan töltődnek fel vízzel. Ahol a különböző forrásokból származó víz összefolyna, ott gátat képzünk (szegmensek határai).
5 Töltsd le a sejteket tartalmazó képet, és olvasd be színesben. Állíts elő két maszkot, az egyiken a sötétlila, a másikon a sötétbarna sejtek legyenek sötétbarna HSV tartomány: (0, 10, 0) -tól (30, 255, 150) -ig sötétlila HSV tartomány : (80, 10, 0) -tól (170, 255, 150) -ig (javasolt a cvtconvert és az inrange használta) Hozz létre egy képet a markereknek (a "feltörő források") A kép típusa: CV_32S, mérete az eredeti képével azonos Kezdetben minden pixel fekete. A sötétbarna pixeleket állítsd be 128-as értékre. (javasolt: marker.setto( 128, barna_maszk) ) A sötétlila pixeleket állítsd be 255-ös értékre. (Más pozitív érték is lehet, de ezek jól láthatóan eltérnek, ha megjeleníted a képet 255-tel szorozva.) Hajtsd végre a watershed trf-et. watershed(színes_bemeneti_kep, marker_kep); A marker képet convertált CV_8UC1-re vagy rajzold át a 128-as, ill. 255-ös értékű pontokat egy új képre és jelenítsd meg. (javasolt az első megoldás: marker_kep.convertto( uj_kep, CV_8U, 1.0))
6 Töltsd le a következő képet és olvasd be színesben: Állítsd elő a lokális minimumhelyeket tartalmazó maszkot Alakíts szürkeskálássá a képet. Készíts egy s s méretű, CV_8U típusú mátrixot, melynek minden pontja 1, kivéve a középpontja, mely 0. ( s értéke szabályozza a lokális mininum helyek közti távolságot, kb. 5, 7) Erodáld a képet a mátrixszal: erode( a_szurkeskalas_kep, a_cel_kep, a_matrix); lokalis_minimum = a_szurkeskalas_kep < a_cel_kep; //megj: homogén részre nem reagál Hozz létre egy képet a markereknek (a "feltörő források") A kép típusa: CV_32S, mérete az eredeti képével azonos Kezdetben minden pixel fekete. Az összes lokális minimum értéket állítsd egynél nagyobb, egymástól különböző értékre. (pl. bejárod a lokalis_minimum képet, és ha találsz egy előtérpontot, akkor növelsz egy nulláról induló számlálót. A növelt számláló értékét állítod be a markerkép adott pontjában értéknek. Hajtsd végre a watershed trf-et. watershed(színes_bemeneti_kep, marker_kep);
7 Hozz létre egy szegmens struktúrát / osztályt struct Segment{ vector<cv::point> pts; float feature; //lehet több is int idx; //egy szegmens indexe ; Készíts függvényt, mely összegyűjti a watershed trf. eredményképe alapján a szegmenseket. A numlabel a lokális minimumhelyek száma (watershed trf-nél meghatároztad) void collectsegments(cv::mat_<int> markers, vector<segment>& segments, int numlabel){ A segments vektor méretezd át numlabel-re. Járd be a markerképet m jelölje az aktuális pont markerkép értékét Ha m eleme a [0, numlabel-1] tartománynak akkor a segmens vektor m. eleméhez add hozzá az aktuális pontot //segments[m].push_back( Point(aktualis_pont_koordinatai) );
8 Készíts függvényt, mely beállítja az előbb begyűjtött szegmensek jellemzőit A numlabel a lokális minimumhelyek száma (watershed trf-nél meghatároztad, ismered) Ha rgb képet akarsz majd átadni, akkor az img-t alakítsd szürkeskálásra cvtconvert( img, gray, COLOR_BGR2GRAY ); void setsegmentsfeatures(const cv::mat img, vector<segment>& segments) { //járd be a szegmens vektort (sima for ciklus) az aktuális szegmes tulajdonságait állítsd be: idx értéke legyen a vektorban elfoglalt helye (ciklusváltozó) feature értéke legyen a szegmens pontjainak átlagos szürkeségi értéke a pts vektor pontjai és az img alapján meghatározhatod
9 Készíts függvényt, mely meghatározza a hasonló szegmenseket. (ez a fajta megoldás az egymástól távol álló szegmenseket is hasonlónak tudja tekinteni) Az eredmény egy hasonlósági mátrix. 1-es áll egy mezőben, ha az adott sornak megfelelő indexű szegmens hasonlít az adott oszlopban álló szegmensre. A tárolás a felső háromszögben történjen (vagy legyen szimmetrikus) void segmentsformerge(vector<segment>& segments, cv::mat& mergemat, int threshold) { Hozd létre csupa nullával feltöltve a hasonlósági mátrixot (mergemat) mérete a segmensek számával azonos Járd be a szegmenseket ( i = 0; ) Járd be az i-től nagyobb sorszámú szegmenseket ( j = i+1; ) Ha a két szegmens feature értékének eltérése a megadott küszöbérték (threshold) alatt van, akkor a mátrix (i, j). eleme legyen 1-es értékű.
10 Ha szeretnéd, hogy egymástól távoli szegmensek ne kapcsolódhassanak közvetlenül, akkor a marker képen távolítsd el a határoló vonalakat void dilatemarkers(cv::mat_<int>& markers){ Járd be a mátrixot Ha -1-et értéket találsz, írd felül egy nem -1 értékű szomszédjával. Hozz létre egy szomszédsági mátrixot (szimmetrikus / felső háromszög), ez alapján lehet majd törölni az előző mergemat-ból a nem kívánt elemeket. void neigboursegments(mat_<int> markers, cv::mat& neigbourmat, int numseg) { neigbourmat = Mat::zeros(cv::Size(numSeg, numseg), CV_8UC1); //járd be a marker képet (vigyázz, hogy majd a szomszéd is beférjen a tartományba) //A marker értékek a szegmensek indexével azonosak a korábbi feltöltés miatt jelölje s1 az (i, j) és s2 a (i, j+1) pont markerét Ha egyik sem -1, akkor jelöld a s1. és s2. szegmenst szomszédosnak * neigbourmat.at<uchar>(s1, s2) = neigbourmat.at<uchar>(s2, s1) = 1; Ugyanezeket a lépéseket tedd meg a (i, j) és (i+1, j) pontokra is. *(a dilatemarkers-nél választott szomszédoktól függően maradhat-1-es érték) akkor
11 Szegmens összeolvasztás, ha a pontosorzatokkal nem foglalkozunk void mergesegments(vector<segment>& segments, cv::mat_<uchar> mergemat) { Járd be a mergemat mátrix FELSŐ háromszög részét ( for( i = 0; ) for (j = i+1 ) ha a mergemat aktuális eleme nem nulla, akkor a j. szegmens indexét állítsd át az i. szegmens indexére. Szegmens összeolvasztás, ha a szegmensek pontjait is meg akarjuk kapni void mergesegments(vector<segment>& segments, cv::mat_<uchar> mergemat) { //ilyenkor visszafelé haladunk (hogy a már összevontat vonjuk később össze) for (int i = mergemat.rows-1; i >=0; --i) { for (int j = mergemat.cols - 1; j >= i + 1; --j) { ha a mergemat aktuális eleme nem nulla, akkor az i. szegmens pontjaihoz (pts) add hozzá a j. szegmens pontjait. //segments[i].insert( )) majd töröld a j. szegmensből a pontokat //segments[j].cleare();
12 Az alábbi függvény kirajzolja a szegmenseket void drawsegment(cv::inputoutputarray dest, const vector<segment>& segments) { vector<cv::vec3b> lookup( segments.size()); for (int i = 0; i < segments.size(); ++i) lookup[i] = cv::vec3b(rand() % , rand() % 255, rand() % 255); cv::mat& destmat = dest.getmatref(); for (auto s : segments) { if (s.pts.size() > 0) { cv::vec3b color = lookup[s.idx]; for (auto p : s.pts) destmat.at<cv::vec3b>(p) = color;
13 És végül a függvény, ami az egészet összefogja: void hiersegment(const Mat_<cv::Vec3b> img, Mat_<int> markers, Mat& dest, int numseg, float threshold = 20.0, bool mergeonlyneighbour = false) { //körvonalak eltávolítása a marker képről (mergeonlyneighbour igaz értékénél fontos) dilatemarkers(markers); vector<segment> segments; collectsegments( markers, segments, numseg); setsegmentsfeatures(img, segments); cv::mat mergemat; segmentsformerge(segments, mergemat, threshold); if (mergeonlyneighbours) { //csak ha megcsináltad cv::mat neighbourmat; neigboursegments(markers, neighbourmat, numseg); mergemat &= neighbourmat; mergesegments(segments, mergemat); dest.create(markers.size(), CV_8UC3); drawsegment(dest, segments);
14 Eredeti Watershed (beépített) (gauss 3x3, sigma=2) markerek a lokális maximumhelyek (5x5) Hasonló szegmensek összevonása összevonás küszöbértéke 15 jellemző: átlagos intenzitás Hasonló, 4-szomszédság szerint kapcsolódó szegmensek összevonása után
15
Egy (k) küszöb esetén [0, 1] intenzitástartományt feltételezve (v 2 v 2 ):
A kép (I) intenzitástartományt folytonos tartományokra osztjuk. Az eredményképen minden egyes tartományhoz egyetlen (egyedi) értéket rendelünk. Egy (k) küszöb esetén [0, 1] intenzitástartományt feltételezve
Az objektum leírására szolgálnak. Mire jók? Sokszor maga a jellemző az érdekes: Tömörítés. Objektumok csoportosítására
Az objektum leírására szolgálnak Mire jók? Sokszor maga a jellemző az érdekes: pl.: átlagosan mekkora egy szitakötő szárnyfesztávolsága? Tömörítés pl.: ha körszerű objektumokat tartalmaz a kép, elegendő
Él: a képfüggvény hirtelen változása. Típusai. Felvételeken zajos formában jelennek meg. Lépcsős
Él: a képfüggvény hirtelen változása Típusai Lépcsős Rámpaszerű Tetőszerű Vonalszerű él Felvételeken zajos formában jelennek meg Adott pontbeli x ill. y irányú változás jellemezhető egy f folytonos képfüggvény
Szürke árnyalat: R=G=B. OPENCV: BGR Mátrix típus: CV_8UC3 Pont típus: img.at<vec3b>(i, j) Tartomány: R, G, B [0, 255]
Additív színmodell: piros, zöld, kék keverése RGB hullámhossz:700nm, 546nm, 435nm Elektronikai eszközök alkalmazzák: kijelzők, kamerák 16 millió szín kódolható Szürke árnyalat: R=G=B OPENCV: BGR Mátrix
Szürke árnyalat: R=G=B. OPENCV: BGR Mátrix típus: CV_8UC3 Pont típus: img.at<vec3b>(i, j) Tartomány: R, G, B [0, 255]
Additív színmodell: piros, zöld, kék keverése RGB hullámhossz:700nm, 546nm, 435nm Elektronikai eszközök alkalmazzák: kijelzők, kamerák 16 millió szín kódolható Szürke árnyalat: R=G=B OPENCV: BGR Mátrix
7. Régió alapú szegmentálás
Digitális képek szegmentálása 7. Régió alapú szegmentálás Kató Zoltán http://www.cab.u-szeged.hu/~kato/segmentation/ Szegmentálási kritériumok Particionáljuk a képet az alábbi kritériumokat kielégítő régiókba
Minták automatikus osztályba sorolása a mintát leíró jellemzők alapján. Típusok: felügyelt és felügyelet nélküli tanuló eljárások
Minták automatikus osztályba sorolása a mintát leíró jellemzők alapján Típusok: felügyelt és felügyelet nélküli tanuló eljárások Különbség: előbbinél szükséges egy olyan tanulóhalmaz, ahol ismert a minták
Példák jellemzőkre: - minden pixelérték egy jellemző pl. neurális hálózat esetében csak kis képekre, nem invariáns sem a megvilágításra, sem a geom.
Lépések 1. tanító és teszt halmaz összeállítása / megszerzése 2. jellemzők kinyerése 3. tanító eljárás választása Sok vagy kevés adat áll-e rendelkezésünkre? Mennyi tanítási idő/memória áll rendelkezésre?
Érdekes informatika feladatok
A keres,kkel és adatbázissal ellátott lengyel honlap számos díjat kapott: Spirit of Delphi '98, Delphi Community Award, Poland on the Internet, Golden Bagel Award stb. Az itt megtalálható komponenseket
Kiegészítő előadás. Vizsgabemutató Matlab. Dr. Kallós Gábor, Dr. Szörényi Miklós, Fehérvári Arnold. Széchenyi István Egyetem
Kiegészítő előadás Vizsgabemutató Dr. Kallós Gábor, Dr. Szörényi Miklós, Fehérvári Arnold 2016 2017 1 Virágboltos feladat Egy virágboltban négyféle virágból állítanak össze csokrokat. Az első összeállítás
end function Az A vektorban elõforduló legnagyobb és legkisebb értékek indexeinek különbségét.. (1.5 pont) Ha üres a vektor, akkor 0-t..
A Név: l 2014.04.09 Neptun kód: Gyakorlat vezető: HG BP MN l 1. Adott egy (12 nem nulla értékû elemmel rendelkezõ) 6x7 méretû ritka mátrix hiányos 4+2 soros reprezentációja. SOR: 1 1 2 2 2 3 3 4 4 5 6
A színkezelés alapjai a GIMP programban
A színkezelés alapjai a GIMP programban Alapok.Előtér és háttér színek.klikk, hogy alapbeállítás legyen ( d és x használata).hozzunk létre egy 640x400 pixeles képet! 4.Ecset eszköz választása 5.Ecset kiválasztása
10. Koordinátageometria
I. Nulladik ZH-ban láttuk: 0. Koordinátageometria. Melyek azok a P x; y pontok, amelyek koordinátái kielégítik az Ábrázolja a megoldáshalmazt a koordináta-síkon! x y x 0 egyenlőtlenséget? ELTE 00. szeptember
HORVÁTH ZSÓFIA 1. Beadandó feladat (HOZSAAI.ELTE) ápr 7. 8-as csoport
10-es Keressünk egy egész számokat tartalmazó négyzetes mátrixban olyan oszlopot, ahol a főátló alatti elemek mind nullák! Megolda si terv: Specifika cio : A = (mat: Z n m,ind: N, l: L) Ef =(mat = mat`)
BME MOGI Gépészeti informatika 15.
BME MOGI Gépészeti informatika 15. 1. feladat Készítsen alkalmazást a y=2*sin(3*x-π/4)-1 függvény ábrázolására a [-2π; 2π] intervallumban 0,1-es lépésközzel! Ezen az intervallumon a függvény értékkészlete
Képfeldolgozás haladóknak Lovag Tamás Novák Gábor 2011
Dokumentáció Küszöbölés A küszöbölés során végighaladunk a képen és minden egyes képpont intenzitásáról eldöntjük, hogy teljesül-e rá az a küszöbölési feltétel. A teljes képre vonatkozó küszöbölés esetében
8. feladatsor. Kisérettségi feladatsorok matematikából. 8. feladatsor. I. rész
Kisérettségi feladatsorok matematikából I. rész. Egy deltoid két szomszédos szöge 7 és 0. Mekkora lehet a hiányzó két szög? pont. Hozza egyszerűbb alakra a kifejezést, majd számolja ki az értékét, ha a=
Tájékoztató. Használható segédeszköz: -
A 12/2013. (III. 29.) NFM rendelet szakmai és vizsgakövetelménye alapján. Szakképesítés, azonosítószáma és megnevezése 54 481 06 Informatikai rendszerüzemeltető Tájékoztató A vizsgázó az első lapra írja
Lin.Alg.Zh.1 feladatok
LinAlgZh1 feladatok 01 3d vektorok Adott három vektor ā = (0 2 4) b = (1 1 4) c = (0 2 4) az R 3 Euklideszi vektortérben egy ortonormált bázisban 1 Mennyi az ā b skalárszorzat? 2 Mennyi az n = ā b vektoriális
Lin.Alg.Zh.1 feladatok
Lin.Alg.Zh. feladatok 0.. d vektorok Adott három vektor ā (0 b ( c (0 az R Euklideszi vektortérben egy ortonormált bázisban.. Mennyi az ā b skalárszorzat? ā b 0 + + 8. Mennyi az n ā b vektoriális szorzat?
Pontfelhő létrehozás és használat Regard3D és CloudCompare nyílt forráskódú szoftverekkel. dr. Siki Zoltán
Pontfelhő létrehozás és használat Regard3D és CloudCompare nyílt forráskódú szoftverekkel dr. Siki Zoltán siki.zoltan@epito.bme.hu Regard3D Nyílt forráskódú SfM (Structure from Motion) Fényképekből 3D
117. AA Megoldó Alfréd AA 117.
Programozás alapjai 2. (inf.) pót-pótzárthelyi 2011.05.26. gyak. hiányzás: kzhpont: MEG123 IB.028/117. NZH:0 PZH:n Minden beadandó megoldását a feladatlapra, a feladat után írja! A megoldások során feltételezheti,
Gráfelméleti feladatok. c f
Gráfelméleti feladatok d e c f a b gráf, csúcsok, élek séta: a, b, c, d, e, c, a, b, f vonal: c, d, e, c, b, a út: f, b, a, e, d (walk, lanţ) (trail, lanţ simplu) (path, lanţ elementar) 1 irányított gráf,
Struktúra nélküli adatszerkezetek
Struktúra nélküli adatszerkezetek Homogén adatszerkezetek (minden adatelem azonos típusú) osztályozása Struktúra nélküli (Nincs kapcsolat az adatelemek között.) Halmaz Multihalmaz Asszociatív 20:24 1 A
Matematika III előadás
Matematika III. - 3. előadás Vinczéné Varga Adrienn Debreceni Egyetem Műszaki Kar, Műszaki Alaptárgyi Tanszék Előadáskövető fóliák Vinczéné Varga Adrienn (DE-MK) Matematika III. 2016/2017/I 1 / 19 Skalármezők
Feladat azonosítója: webc1_01_map
Feladat azonosítója: webc1_01_map Útmutatás a feladatok kidolgozásához: - A tanuló legsikeresebb fejlődése érdekében ne olvassa el addig a következő sorszámú feladatot, amíg az adott sorszámút meg nem
4. Fuzzy relációk. Gépi intelligencia I. Fodor János NIMGI1MIEM BMF NIK IMRI
4. Fuzzy relációk Gépi intelligencia I. Fodor János BMF NIK IMRI NIMGI1MIEM Tartalomjegyzék I 1 Klasszikus relációk Halmazok Descartes-szorzata Relációk 2 Fuzzy relációk Fuzzy relációk véges alaphalmazok
Programozási segédlet
Programozási segédlet Programozási tételek Az alábbiakban leírtam néhány alap algoritmust, amit ismernie kell annak, aki programozásra adja a fejét. A lista korántsem teljes, ám ennyi elég kell legyen
Bevezetés a programozásba. 9. Előadás: Rekordok
Bevezetés a programozásba 9. Előadás: Rekordok ISMÉTLÉS Függvényhívás #include #include #include #include using using namespace namespace std; std; double double terulet(double
8. Előadás. Megyesi László: Lineáris algebra, , oldal. 8. előadás Mátrix rangja, Homogén lineáris egyenletrendszer
8. Előadás Megyesi László: Lineáris algebra, 51. 56., 70. 74. oldal. Gondolkodnivalók Elemi bázistranszformáció 1. Gondolkodnivaló Most ne vegyük figyelembe, hogy az elemi bázistranszformáció során ez
6. gyakorlat Egydimenziós numerikus tömbök kezelése, tömbi algoritmusok
6. gyakorlat Egydimenziós numerikus tömbök kezelése, tömbi algoritmusok 1. feladat: Az EURO árfolyamát egy negyedéven keresztül hetente nyilvántartjuk (HUF / EUR). Írjon C programokat az alábbi kérdések
MATLAB. 3. gyakorlat. Mátrixműveletek, címzések
MATLAB 3. gyakorlat Mátrixműveletek, címzések Menetrend Kis ZH Mátrixok, alapműveletek Vezérlő szerkezetek Virtuális műtét Statisztikai adatok vizsgálata pdf Kis ZH Mátrixok, alapműveletek mátrix létrehozása,
rank(a) == rank([a b])
Lineáris algebrai egyenletrendszerek megoldása a Matlabban Lineáris algebrai egyenletrendszerek a Matlabban igen egyszer en oldhatók meg. Legyen A az egyenletrendszer m-szer n-es együtthatómátrixa, és
Lineáris algebra. (közgazdászoknak)
Lineáris algebra (közgazdászoknak) 10A103 FELADATOK A GYAKORLATRA (3.) 2018/2019. tavaszi félév Lineáris egyenletrendszerek 3.1. Feladat. Oldjuk meg az alábbi lineáris egyenletrendszereket Gauss-eliminációval
Feladatok a Gazdasági matematika II. tárgy gyakorlataihoz
Debreceni Egyetem Közgazdaságtudományi Kar Feladatok a Gazdasági matematika II tárgy gyakorlataihoz a megoldásra ajánlott feladatokat jelöli e feladatokat a félév végére megoldottnak tekintjük a nehezebb
2. Milyen értéket határoz meg az alábbi algoritmus, ha A egy vektor?. (2 pont)
A Név: l 2017.04.06 Neptun kód: Gyakorlat vezet : HG BP l 1. Az A vektor tartalmát az alábbi KUPACOL eljárással rendezzük át maximum kupaccá. A={28, 87, 96, 65, 55, 32, 51, 69} Mi lesz az értéke az A vektor
Felügyelt önálló tanulás - Analízis III.
Felügyelt önálló tanulás - Analízis III Kormos Máté Differenciálható sokaságok Sokaságok Röviden, sokaságoknak nevezzük azokat az objektumokat, amelyek egy n dimenziós térben lokálisan k dimenziósak Definíció:
Stíluslapok használata (CSS)
2. Laboratóriumi gyakorlat Stíluslapok használata (CSS) A gyakorlat célja: Bevezetés a CSS stíluslapok használatába. Felkészüléshez szükséges anyagok: 1. A 3-as segédlet (CSS) 2. A bibliográfia HTML illetve
3. Szűrés képtérben. Kató Zoltán. Képfeldolgozás és Számítógépes Grafika tanszék SZTE (http://www.inf.u-szeged.hu/~kato/teaching/)
3. Szűrés képtérben Kató Zoltán Képfeldolgozás és Számítógépes Grafika tanszék SZTE http://www.inf.u-szeged.hu/~kato/teaching/ 2 Kép transzformációk típusai Kép értékkészletének radiometriai információ
7. fejezet: Mutatók és tömbök
7. fejezet: Mutatók és tömbök Minden komolyabb programozási nyelvben vannak tömbök, amelyek gondos kezekben komoly fegyvert jelenthetnek. Először is tanuljunk meg tömböt deklarálni! //Tömbök használata
8. OSZTÁLY ; ; ; 1; 3; ; ;.
BEM JÓZSEF Jelszó:... VÁROSI MATEMATIKAVERSENY Teremszám:... 2010. december 7-8. Hely:... 8. OSZTÁLY Tiszta versenyidő: 90 perc. A feladatokat többször is olvasd el figyelmesen! A megoldás menetét, gondolataidat
BME MOGI Gépészeti informatika 18. Grafika, fájlkezelés gyakorló óra. 1. feladat Készítsen alkalmazást az = +
BME MOGI Gépészeti informatika 18. Grafika, fájlkezelés gyakorló óra 1. feladat Készítsen alkalmazást az = + függvény ábrázolására! Az értelmezési tartomány a [-6;5] intervallum, a lépésköz 0,1 legyen!
tétel: különböző típusú adatokat csoportosít, ezeket egyetlen adatként kezeli, de hozzáférhetünk az elemeihez is
A tétel (record) tétel: különböző típusú adatokat csoportosít, ezeket egyetlen adatként kezeli, de hozzáférhetünk az elemeihez is A tétel elemei mezők. Például tétel: személy elemei: név, lakcím, születési
MEMO (Middle European Mathematical Olympiad) Szoldatics József, Dunakeszi
Szoldatics József: MEMO MEMO (Middle European Mathematical Olympiad) Szoldatics József, Dunakeszi A feladatmegoldó szemináriumon első részében egy rövid beszámolót fognak hallani a 010. szeptember 9. és
Képszegmentáló eljárások. Orvosi képdiagnosztika 2018 ősz
Képszegmentáló eljárások Orvosi képdiagnosztika 2018 ősz Képszegmentálás Anatómiai részek elkülönítés: pl. csontok, szív, erek, szürkefehér állomány, stb Vizsgálandó terület körbehatárolása: pl. tüdőterület
Adatszerkezetek Tömb, sor, verem. Dr. Iványi Péter
Adatszerkezetek Tömb, sor, verem Dr. Iványi Péter 1 Adat Adat minden, amit a számítógépünkben tárolunk és a külvilágból jön Az adatnak két fontos tulajdonsága van: Értéke Típusa 2 Adat típusa Az adatot
1. numere.txt n (1 n 10000) n növekvő kilenc a) Pascal/C++ Például: NUMERE.TXT
Az informatika érettségi harmadik tételsora tartalmaz egy feladatot, melyet hatékonyan kell megoldani. A program megírása mellett követelmény a megoldásban használt módszer rövid leírása, kitérve a módszer
Felvételi tematika INFORMATIKA
Felvételi tematika INFORMATIKA 2016 FEJEZETEK 1. Természetes számok feldolgozása számjegyenként. 2. Számsorozatok feldolgozása elemenként. Egydimenziós tömbök. 3. Mátrixok feldolgozása elemenként/soronként/oszloponként.
GPU Lab. 14. fejezet. OpenCL textúra használat. Grafikus Processzorok Tudományos Célú Programozása. Berényi Dániel Nagy-Egri Máté Ferenc
14. fejezet OpenCL textúra használat Grafikus Processzorok Tudományos Célú Programozása Textúrák A textúrák 1, 2, vagy 3D-s tömbök kifejezetten szín információk tárolására Főbb különbségek a bufferekhez
Bevezetés a programozásba I.
Elágazás Bevezetés a programozásba I. 2. gyakorlat, tömbök Surányi Márton PPKE-ITK 2010.09.14. Elágazás Elágazás Eddigi programjaink egyszer ek voltak, egy beolvasás (BE: a), esetleg valami m velet (a
Adatszerkezetek II. 1. előadás
Adatszerkezetek II. 1. előadás Gráfok A gráf fogalma: Gráf(P,E): P pontok (csúcsok) és E P P élek halmaza Fogalmak: Irányított gráf : (p 1,p 2 ) E-ből nem következik, hogy (p 2,p 1 ) E Irányítatlan gráf
Java II. I A Java programozási nyelv alapelemei
Java2 / 1 Java II. I A Java programozási nyelv alapelemei Miskolci Egyetem Általános Informatikai Tanszék Utolsó módosítás: 2009. 02. 09. Java II.: Alapelemek JAVA2 / 1 A Java formalizmusa A C, illetve
22. GRÁFOK ÁBRÁZOLÁSA
22. GRÁFOK ÁBRÁZOLÁSA A megoldandó feladatok, problémák modellezése során sokszor gráfokat alkalmazunk. A gráf fogalmát a matematikából ismertnek vehetjük. A modellezés során a gráfok több változata is
Diszkréten mintavételezett függvények
Diszkréten mintavételezett függvények A függvény (jel) értéke csak rögzített pontokban ismert, de köztes pontokban is meg akarjuk becsülni időben mintavételezett jel pixelekből álló műholdkép rácson futtatott
C# osztályok. Krizsán Zoltán
C# osztályok Krizsán Zoltán Fogalma Önálló hatáskőrrel rendelkező, absztrakt adattípus, amely több, különböző elemet tartalmazhat. Minden esetben a heap-en jön létre! A programozó hozza létre, de a GC
Programozás alapjai II. (7. ea) C++ Speciális adatszerkezetek. Tömbök. Kiegészítő anyag: speciális adatszerkezetek
Programozás alapjai II. (7. ea) C++ Kiegészítő anyag: speciális adatszerkezetek Szeberényi Imre BME IIT M Ű E G Y E T E M 1 7 8 2 C++ programozási nyelv BME-IIT Sz.I. 2016.04.05. - 1
Éldetektálás, szegmentálás (folytatás) Orvosi képdiagnosztika 11_2 ea
Éldetektálás, szegmentálás (folytatás) Orvosi képdiagnosztika 11_2 ea Geometrikus deformálható modellek Görbe evolúció Level set módszer A görbe evolúció parametrizálástól független mindössze geometriai
Algoritmizálás és adatmodellezés 2. előadás
Algoritmizálás és adatmodellezés 2 előadás Összetett típusok 1 Rekord 2 Halmaz (+multialmaz, intervallumalmaz) 3 Tömb (vektor, mátrix) 4 Szekvenciális fájl (input, output) Pap Gáborné, Zsakó László: Algoritmizálás,
First Prev Next Last Go Back Full Screen Close Quit
Többváltozós függvények (2) First Prev Next Last Go Back Full Screen Close Quit 1. Egyváltozós függvények esetén a differenciálhatóságból következett a folytonosság. Fontos tudni, hogy abból, hogy egy
Speciális adatszerkezetek. Programozás alapjai II. (8. ea) C++ Tömbök. Tömbök/2. N dimenziós tömb. Nagyméretű ritka tömbök
Programozás alapjai II. (8. ea) C++ Kiegészítő anyag: speciális adatszerkezetek Szeberényi Imre BME IIT Speciális adatszerkezetek A helyes adatábrázolás választása, a helyes adatszerkezet
Java II. I A Java programozási nyelv alapelemei
Java II. I A Java programozási nyelv alapelemei Miskolci Egyetem Általános Informatikai Tanszék Utolsó módosítás: 2008. 02. 19. Java II.: Alapelemek JAVA2 / 1 A Java formalizmusa A C, illetve az annak
Készítette: niethammer@freemail.hu
VLogo VRML generáló program Készítette: Niethammer Zoltán niethammer@freemail.hu 2008 Bevezetés A VLogo az általános iskolákban használt Comenius Logo logikájára épülő programozási nyelv. A végeredmény
Kérdés Lista. A Magyarországon alkalmazott rajzlapoknál mekkora az oldalak aránya?
Kérdés Lista információ megjelenítés :: műszaki rajz T A darabjegyzék előállítása során milyen sorrendben számozzuk a tételeket? Adjon meg legalább két módszert! T A Magyarországon alkalmazott rajzlapoknál
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Paraméter
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Paraméter A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek
Excel VIII. Visual Basic programozás alapok 2. Vektorműveletek Visual Basic nyelven
Alkalmazott Informatikai Intézeti Tanszék MŰSZAKI INFORMATIKA Dr.Dudás László 0. Excel VIII. Visual Basic programozás alapok 2 Vektorműveletek Visual Basic nyelven Alkalmazott Informatikai Intézeti Tanszék
Sergyán Szabolcs szeptember 21.
Éldetektálás Sergyán Szabolcs Budapesti Műszaki Főiskola Neumann János Informatikai Kar 2009. szeptember 21. Sergyán Sz. (BMF NIK) Éldetektálás 2009. szeptember 21. 1 / 28 Mit nevezünk élnek? Intuitív
Matematikai programok
Matematikai programok Mátrixalapú nyelvek octave Wettl Ferenc Algebra Tanszék B U D A P E S T I M Ű S Z A K I M A T E M A T I K A É S G A Z D A S Á G T U D O M Á N Y I I N T É Z E T E G Y E T E M Wettl
Programozás alapjai II. (7. ea) C++
Programozás alapjai II. (7. ea) C++ Kiegészítő anyag: speciális adatszerkezetek Szeberényi Imre BME IIT M Ű E G Y E T E M 1 7 8 2 C++ programozási nyelv BME-IIT Sz.I. 2016.04.05. - 1
Programozás alapjai C nyelv 10. gyakorlat. Standard függvények. Union
Programozás alapjai C nyelv 10. gyakorlat Szeberényi Imre BME IIT Programozás alapjai I. (C nyelv, gyakorlat) BME-IIT Sz.I. 2005.11.21. -1- Standard függvények Standard függvények amelyeket
1. Feladat: beolvas két számot úgy, hogy a-ba kerüljön a nagyobb
1. Feladat: beolvas két számot úgy, hogy a-ba kerüljön a nagyobb #include main() { int a, b; printf( "a=" ); scanf( "%d", &a ); printf( "b=" ); scanf( "%d", &b ); if( a< b ) { inttmp = a; a =
Függvények ábrázolása
Függvények ábrázolása Matematikai függvényeket analitikusan nem tudunk a matlabban megadni (tudunk, de ilyet még nem tanulunk). Ahhoz, hogy egy függvényt ábrázoljuk, hasonlóan kell eljárni, mint a házi
Programozás I. Gyakorlás egydimenziós tömbökkel Többdimenziós tömbök Gyakorló feladatok V 1.0 ÓE-NIK-AII,
Programozás I. Gyakorlás egydimenziós tömbökkel Többdimenziós tömbök Gyakorló feladatok V 1.0 ÓE-NIK-AII, 2016 1 Hallgatói Tájékoztató A jelen bemutatóban található adatok, tudnivalók és információk a
1. Parciális függvény, parciális derivált (ismétlés)
Operációkutatás NYME Gazdaságinformatikus mesterképzés El adó: Kalmár János (kalmar[kukac]inf.nyme.hu) Többváltozós széls érték számítás Parciális függvény, parciális derivált Széls érték korlátos zárt
10. gyakorlat Struktúrák, uniók, típusdefiníciók
10. gyakorlat Struktúrák, uniók, típusdefiníciók Házi - (f0218) Olvass be 5 darab maximum 99 karakter hosszú szót úgy, hogy mindegyiknek pontosan annyi helyet foglalsz, amennyi kell! A sztringeket írasd
Plakátok, részecskerendszerek. Szécsi László
Plakátok, részecskerendszerek Szécsi László Képalapú festés Montázs: képet képekből 2D grafika jellemző eszköze modell: kép [sprite] 3D 2D képével helyettesítsük a komplex geometriát Image-based rendering
KÉPFELDOLGOZÁS. 10. gyakorlat: Morfológiai műveletek, alakjellemzők
KÉPFELDOLGOZÁS 10. gyakorlat: Morfológiai műveletek, alakjellemzők Min-max szűrők MATLAB-ban SE = strel(alak, paraméter(ek)); szerkesztőelem generálása strel( square, w): négyzet alakú, w méretű strel(
Közösség detektálás gráfokban
Közösség detektálás gráfokban Önszervező rendszerek Hegedűs István Célkitűzés: valamilyen objektumok halmaza felett minták, csoportok detektálása csakis az egyedek közötti kapcsolatok struktúrájának a
Matematikai programok
Matematikai programok Mátrixalapú nyelvek MatLab Wettl Ferenc diái alapján Budapesti M szaki Egyetem Algebra Tanszék 2017.11.07 Borbély Gábor (BME Algebra Tanszék) Matematikai programok 2017.11.07 1 /
OOP #14 (referencia-elv)
OOP #14 (referencia-elv) v1.0 2003.03.19. 21:22:00 Eszterházy Károly Főiskola Információtechnológia tsz. Hernyák Zoltán adj. e-mail: aroan@ektf.hu web: http://aries.ektf.hu/~aroan OOP OOP_14-1 - E jegyzet
Kétváltozós függvények differenciálszámítása
Kétváltozós függvények differenciálszámítása 13. előadás Farkas István DE ATC Gazdaságelemzési és Statisztikai Tanszék Kétváltozós függvények p. 1/1 Definíció, szemléltetés Definíció. Az f : R R R függvényt
Láthatósági kérdések
Láthatósági kérdések Láthatósági algoritmusok Adott térbeli objektum és adott nézőpont esetén el kell döntenünk, hogy mi látható az adott alakzatból a nézőpontból, vagy irányából nézve. Az algoritmusok
A médiatechnológia alapjai
A médiatechnológia alapjai Úgy döntöttem, hogy a Szirányi oktatta előadások számonkérhetőnek tűnő lényegét kiemelem, az alapján, amit a ZH-ról mondott: rövid kérdések. A rész és az egész: összefüggések
Digitális képek szegmentálása. 5. Textúra. Kató Zoltán.
Digitális képek szegmentálása 5. Textúra Kató Zoltán http://www.cab.u-szeged.hu/~kato/segmentation/ Textúra fogalma Sklansky: Egy képen egy területnek állandó textúrája van ha a lokális statisztikák vagy
Kiegészítő előadás. Vizsgabemutató VBA. Dr. Kallós Gábor, Fehérvári Arnold, Pusztai Pál Krankovits Melinda. Széchenyi István Egyetem
Kiegészítő előadás Vizsgabemutató VBA Dr. Kallós Gábor, Fehérvári Arnold, Pusztai Pál Krankovits Melinda 2016 2017 1 VBA A Szamokat_General szubrutin segítségével generáljunk 1000 db egész számot a [0,
Bevezetés a programozásba Előadás: Objektumszintű és osztályszintű elemek, hibakezelés
Bevezetés a programozásba 2 7. Előadás: Objektumszű és osztályszű elemek, hibakezelés ISMÉTLÉS Osztály class Particle { public: Particle( X, X, Y); virtual void mozog( ); ); virtual void rajzol( ) const;
függvény grafikonja milyen transzformációkkal származtatható az f0 : R R, f0(
FÜGGVÉNYEK 1. (008. okt., 14. fel, 5+7 pont) Fogalmazza meg, hogy az f : R R, f ( x) x 1 függvény grafikonja milyen transzformációkkal származtatható az f0 : R R, f0( x) x függvény grafikonjából! Ábrázolja
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Függvények
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek
3. Gyakorlat Ismerkedés a Java nyelvvel
3. Gyakorlat Ismerkedés a Java nyelvvel Parancssori argumentumok Minden Java programnak adhatunk indításkor paraméterek, ezeket a program egy tömbben tárolja. public static void main( String[] args ) Az
Algoritmusok bonyolultsága
Algoritmusok bonyolultsága 9. előadás http://www.ms.sapientia.ro/~kasa/komplex.htm 1 / 18 Közelítő algoritmusok ládapakolás (bin packing) Adott n tárgy (s i tömeggel) és végtelen sok 1 kapacitású láda
10. gyakorlat Tömb, mint függvény argumentum
10. gyakorlat Tömb, mint függvény argumentum 1. feladat: A 6. gyakorlat 1. feladatát oldja meg a strukturált programtervezési alapelv betartásával, azaz minden végrehajtandó funkciót külön függvényben
Mintapélda1 Hányféleképpen állhatnak sorba egy bolt pénztáránál a vásárlók, ha 3-an, 4-en, 5-en, k-an vannak?
Hozzárendelési szabályok.doc 1 / 6 Mintapélda1 Hányféleképpen állhatnak sorba egy bolt pénztáránál a vásárlók, ha 3-an, 4-en, 5-en, k-an vannak? Mintapélda2 Karcsi nyáron 435 Ft-os órabérért dolgozott.
BME MOGI Gépészeti informatika 5.
BME MOGI Gépészeti informatika 5. 1. feladat Készítsen alkalmazást, mely feltölt egy egydimenziós tömböt adott tartományba eső, véletlenszerűen generált egész értékekkel! Határozza meg a legkisebb és a
Programozás C nyelven 5. ELŐADÁS. Sapientia EMTE
Programozás C nyelven. ELŐADÁS Sapientia EMTE 201-16 1 while vs. for int szam, s; cin >> szam; s = 0; while ( szam > 0 ){ s += szam%10; szam /= 10; cout szam;
Pontműveletek. Sergyán Szabolcs Óbudai Egyetem Neumann János Informatikai Kar február 20.
Pontműveletek Sergyán Szabolcs sergyan.szabolcs@nik.uni-obuda.hu Óbudai Egyetem Neumann János Informatikai Kar 2012. február 20. Sergyán (OE NIK) Pontműveletek 2012. február 20. 1 / 40 Felhasznált irodalom
BME MOGI Gépészeti informatika 7.
BME MOGI Gépészeti informatika 7. 1. feladat Írjon Windows Forms alkalmazást egy kör és egy pont kölcsönös helyzetének vizsgálatára! A feladat megoldásához hozza létre a következő osztályokat! Pont osztály:
Bevezetés a QGIS program használatába Összeálította dr. Siki Zoltán
Bevezetés Bevezetés a QGIS program használatába Összeálította dr. Siki Zoltán A QGIS program egy nyiltforrású asztali térinformatikai program, mely a http://www.qgis.org oldalról tölthető le. Ebben a kis
6. Függvények. 1. Az alábbi függvények közül melyik szigorúan monoton növekvő a 0;1 intervallumban?
6. Függvények I. Nulladik ZH-ban láttuk: 1. Az alábbi függvények közül melyik szigorúan monoton növekvő a 0;1 intervallumban? f x g x cos x h x x ( ) sin x (A) Az f és a h. (B) Mindhárom. (C) Csak az f.
Területi primitívek: Zárt görbék által határolt területek (pl. kör, ellipszis, poligon) b) Minden belső pont kirajzolásával (kitöltött)
Grafikus primitívek kitöltése Téglalap kitöltése Poligon kitöltése Kör, ellipszis kitöltése Kitöltés mintával Grafikus primitívek kitöltése Területi primitívek: Zárt görbék által határolt területek (pl.
Infobionika ROBOTIKA. X. Előadás. Robot manipulátorok II. Direkt és inverz kinematika. Készült a HEFOP P /1.0 projekt keretében
Infobionika ROBOTIKA X. Előadás Robot manipulátorok II. Direkt és inverz kinematika Készült a HEFOP-3.3.1-P.-2004-06-0018/1.0 projekt keretében Tartalom Direkt kinematikai probléma Denavit-Hartenberg konvenció
Programozás. (GKxB_INTM021) Dr. Hatwágner F. Miklós március 31. Széchenyi István Egyetem, Gy r
Programozás (GKxB_INTM021) Széchenyi István Egyetem, Gy r 2018. március 31. Városok közötti távolság Feladat: két város nevének beolvasása, városok közötti távolság megjelenítése. Kilépés azonos városok