Lényege: valamilyen szempont szerint homogén csoportok képzése a pixelekből. Amit már ismerünk:

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Lényege: valamilyen szempont szerint homogén csoportok képzése a pixelekből. Amit már ismerünk:"

Átírás

1

2 Lényege: valamilyen szempont szerint homogén csoportok képzése a pixelekből. Amit már ismerünk: Küszöbölés, vágás, sávkijelölés hátránya: az azonos csoportba sorolt pixelek nem feltétlenül alkotnak összefüggő halmazt.

3 Tekintsük a képet egy domborzati térképként.

4 Képzeljük el, hogy a (környezettől erősen eltérő) lokális minimumhelyeknél feltört a víz. Az üregek folyamatosan töltődnek fel vízzel. Ahol a különböző forrásokból származó víz összefolyna, ott gátat képzünk (szegmensek határai).

5 Töltsd le a sejteket tartalmazó képet, és olvasd be színesben. Állíts elő két maszkot, az egyiken a sötétlila, a másikon a sötétbarna sejtek legyenek sötétbarna HSV tartomány: (0, 10, 0) -tól (30, 255, 150) -ig sötétlila HSV tartomány : (80, 10, 0) -tól (170, 255, 150) -ig (javasolt a cvtconvert és az inrange használta) Hozz létre egy képet a markereknek (a "feltörő források") A kép típusa: CV_32S, mérete az eredeti képével azonos Kezdetben minden pixel fekete. A sötétbarna pixeleket állítsd be 128-as értékre. (javasolt: marker.setto( 128, barna_maszk) ) A sötétlila pixeleket állítsd be 255-ös értékre. (Más pozitív érték is lehet, de ezek jól láthatóan eltérnek, ha megjeleníted a képet 255-tel szorozva.) Hajtsd végre a watershed trf-et. watershed(színes_bemeneti_kep, marker_kep); A marker képet convertált CV_8UC1-re vagy rajzold át a 128-as, ill. 255-ös értékű pontokat egy új képre és jelenítsd meg. (javasolt az első megoldás: marker_kep.convertto( uj_kep, CV_8U, 1.0))

6 Töltsd le a következő képet és olvasd be színesben: Állítsd elő a lokális minimumhelyeket tartalmazó maszkot Alakíts szürkeskálássá a képet. Készíts egy s s méretű, CV_8U típusú mátrixot, melynek minden pontja 1, kivéve a középpontja, mely 0. ( s értéke szabályozza a lokális mininum helyek közti távolságot, kb. 5, 7) Erodáld a képet a mátrixszal: erode( a_szurkeskalas_kep, a_cel_kep, a_matrix); lokalis_minimum = a_szurkeskalas_kep < a_cel_kep; //megj: homogén részre nem reagál Hozz létre egy képet a markereknek (a "feltörő források") A kép típusa: CV_32S, mérete az eredeti képével azonos Kezdetben minden pixel fekete. Az összes lokális minimum értéket állítsd egynél nagyobb, egymástól különböző értékre. (pl. bejárod a lokalis_minimum képet, és ha találsz egy előtérpontot, akkor növelsz egy nulláról induló számlálót. A növelt számláló értékét állítod be a markerkép adott pontjában értéknek. Hajtsd végre a watershed trf-et. watershed(színes_bemeneti_kep, marker_kep);

7 Hozz létre egy szegmens struktúrát / osztályt struct Segment{ vector<cv::point> pts; float feature; //lehet több is int idx; //egy szegmens indexe ; Készíts függvényt, mely összegyűjti a watershed trf. eredményképe alapján a szegmenseket. A numlabel a lokális minimumhelyek száma (watershed trf-nél meghatároztad) void collectsegments(cv::mat_<int> markers, vector<segment>& segments, int numlabel){ A segments vektor méretezd át numlabel-re. Járd be a markerképet m jelölje az aktuális pont markerkép értékét Ha m eleme a [0, numlabel-1] tartománynak akkor a segmens vektor m. eleméhez add hozzá az aktuális pontot //segments[m].push_back( Point(aktualis_pont_koordinatai) );

8 Készíts függvényt, mely beállítja az előbb begyűjtött szegmensek jellemzőit A numlabel a lokális minimumhelyek száma (watershed trf-nél meghatároztad, ismered) Ha rgb képet akarsz majd átadni, akkor az img-t alakítsd szürkeskálásra cvtconvert( img, gray, COLOR_BGR2GRAY ); void setsegmentsfeatures(const cv::mat img, vector<segment>& segments) { //járd be a szegmens vektort (sima for ciklus) az aktuális szegmes tulajdonságait állítsd be: idx értéke legyen a vektorban elfoglalt helye (ciklusváltozó) feature értéke legyen a szegmens pontjainak átlagos szürkeségi értéke a pts vektor pontjai és az img alapján meghatározhatod

9 Készíts függvényt, mely meghatározza a hasonló szegmenseket. (ez a fajta megoldás az egymástól távol álló szegmenseket is hasonlónak tudja tekinteni) Az eredmény egy hasonlósági mátrix. 1-es áll egy mezőben, ha az adott sornak megfelelő indexű szegmens hasonlít az adott oszlopban álló szegmensre. A tárolás a felső háromszögben történjen (vagy legyen szimmetrikus) void segmentsformerge(vector<segment>& segments, cv::mat& mergemat, int threshold) { Hozd létre csupa nullával feltöltve a hasonlósági mátrixot (mergemat) mérete a segmensek számával azonos Járd be a szegmenseket ( i = 0; ) Járd be az i-től nagyobb sorszámú szegmenseket ( j = i+1; ) Ha a két szegmens feature értékének eltérése a megadott küszöbérték (threshold) alatt van, akkor a mátrix (i, j). eleme legyen 1-es értékű.

10 Ha szeretnéd, hogy egymástól távoli szegmensek ne kapcsolódhassanak közvetlenül, akkor a marker képen távolítsd el a határoló vonalakat void dilatemarkers(cv::mat_<int>& markers){ Járd be a mátrixot Ha -1-et értéket találsz, írd felül egy nem -1 értékű szomszédjával. Hozz létre egy szomszédsági mátrixot (szimmetrikus / felső háromszög), ez alapján lehet majd törölni az előző mergemat-ból a nem kívánt elemeket. void neigboursegments(mat_<int> markers, cv::mat& neigbourmat, int numseg) { neigbourmat = Mat::zeros(cv::Size(numSeg, numseg), CV_8UC1); //járd be a marker képet (vigyázz, hogy majd a szomszéd is beférjen a tartományba) //A marker értékek a szegmensek indexével azonosak a korábbi feltöltés miatt jelölje s1 az (i, j) és s2 a (i, j+1) pont markerét Ha egyik sem -1, akkor jelöld a s1. és s2. szegmenst szomszédosnak * neigbourmat.at<uchar>(s1, s2) = neigbourmat.at<uchar>(s2, s1) = 1; Ugyanezeket a lépéseket tedd meg a (i, j) és (i+1, j) pontokra is. *(a dilatemarkers-nél választott szomszédoktól függően maradhat-1-es érték) akkor

11 Szegmens összeolvasztás, ha a pontosorzatokkal nem foglalkozunk void mergesegments(vector<segment>& segments, cv::mat_<uchar> mergemat) { Járd be a mergemat mátrix FELSŐ háromszög részét ( for( i = 0; ) for (j = i+1 ) ha a mergemat aktuális eleme nem nulla, akkor a j. szegmens indexét állítsd át az i. szegmens indexére. Szegmens összeolvasztás, ha a szegmensek pontjait is meg akarjuk kapni void mergesegments(vector<segment>& segments, cv::mat_<uchar> mergemat) { //ilyenkor visszafelé haladunk (hogy a már összevontat vonjuk később össze) for (int i = mergemat.rows-1; i >=0; --i) { for (int j = mergemat.cols - 1; j >= i + 1; --j) { ha a mergemat aktuális eleme nem nulla, akkor az i. szegmens pontjaihoz (pts) add hozzá a j. szegmens pontjait. //segments[i].insert( )) majd töröld a j. szegmensből a pontokat //segments[j].cleare();

12 Az alábbi függvény kirajzolja a szegmenseket void drawsegment(cv::inputoutputarray dest, const vector<segment>& segments) { vector<cv::vec3b> lookup( segments.size()); for (int i = 0; i < segments.size(); ++i) lookup[i] = cv::vec3b(rand() % , rand() % 255, rand() % 255); cv::mat& destmat = dest.getmatref(); for (auto s : segments) { if (s.pts.size() > 0) { cv::vec3b color = lookup[s.idx]; for (auto p : s.pts) destmat.at<cv::vec3b>(p) = color;

13 És végül a függvény, ami az egészet összefogja: void hiersegment(const Mat_<cv::Vec3b> img, Mat_<int> markers, Mat& dest, int numseg, float threshold = 20.0, bool mergeonlyneighbour = false) { //körvonalak eltávolítása a marker képről (mergeonlyneighbour igaz értékénél fontos) dilatemarkers(markers); vector<segment> segments; collectsegments( markers, segments, numseg); setsegmentsfeatures(img, segments); cv::mat mergemat; segmentsformerge(segments, mergemat, threshold); if (mergeonlyneighbours) { //csak ha megcsináltad cv::mat neighbourmat; neigboursegments(markers, neighbourmat, numseg); mergemat &= neighbourmat; mergesegments(segments, mergemat); dest.create(markers.size(), CV_8UC3); drawsegment(dest, segments);

14 Eredeti Watershed (beépített) (gauss 3x3, sigma=2) markerek a lokális maximumhelyek (5x5) Hasonló szegmensek összevonása összevonás küszöbértéke 15 jellemző: átlagos intenzitás Hasonló, 4-szomszédság szerint kapcsolódó szegmensek összevonása után

15

Egy (k) küszöb esetén [0, 1] intenzitástartományt feltételezve (v 2 v 2 ):

Egy (k) küszöb esetén [0, 1] intenzitástartományt feltételezve (v 2 v 2 ): A kép (I) intenzitástartományt folytonos tartományokra osztjuk. Az eredményképen minden egyes tartományhoz egyetlen (egyedi) értéket rendelünk. Egy (k) küszöb esetén [0, 1] intenzitástartományt feltételezve

Részletesebben

Az objektum leírására szolgálnak. Mire jók? Sokszor maga a jellemző az érdekes: Tömörítés. Objektumok csoportosítására

Az objektum leírására szolgálnak. Mire jók? Sokszor maga a jellemző az érdekes: Tömörítés. Objektumok csoportosítására Az objektum leírására szolgálnak Mire jók? Sokszor maga a jellemző az érdekes: pl.: átlagosan mekkora egy szitakötő szárnyfesztávolsága? Tömörítés pl.: ha körszerű objektumokat tartalmaz a kép, elegendő

Részletesebben

Él: a képfüggvény hirtelen változása. Típusai. Felvételeken zajos formában jelennek meg. Lépcsős

Él: a képfüggvény hirtelen változása. Típusai. Felvételeken zajos formában jelennek meg. Lépcsős Él: a képfüggvény hirtelen változása Típusai Lépcsős Rámpaszerű Tetőszerű Vonalszerű él Felvételeken zajos formában jelennek meg Adott pontbeli x ill. y irányú változás jellemezhető egy f folytonos képfüggvény

Részletesebben

Szürke árnyalat: R=G=B. OPENCV: BGR Mátrix típus: CV_8UC3 Pont típus: img.at<vec3b>(i, j) Tartomány: R, G, B [0, 255]

Szürke árnyalat: R=G=B. OPENCV: BGR Mátrix típus: CV_8UC3 Pont típus: img.at<vec3b>(i, j) Tartomány: R, G, B [0, 255] Additív színmodell: piros, zöld, kék keverése RGB hullámhossz:700nm, 546nm, 435nm Elektronikai eszközök alkalmazzák: kijelzők, kamerák 16 millió szín kódolható Szürke árnyalat: R=G=B OPENCV: BGR Mátrix

Részletesebben

Szürke árnyalat: R=G=B. OPENCV: BGR Mátrix típus: CV_8UC3 Pont típus: img.at<vec3b>(i, j) Tartomány: R, G, B [0, 255]

Szürke árnyalat: R=G=B. OPENCV: BGR Mátrix típus: CV_8UC3 Pont típus: img.at<vec3b>(i, j) Tartomány: R, G, B [0, 255] Additív színmodell: piros, zöld, kék keverése RGB hullámhossz:700nm, 546nm, 435nm Elektronikai eszközök alkalmazzák: kijelzők, kamerák 16 millió szín kódolható Szürke árnyalat: R=G=B OPENCV: BGR Mátrix

Részletesebben

7. Régió alapú szegmentálás

7. Régió alapú szegmentálás Digitális képek szegmentálása 7. Régió alapú szegmentálás Kató Zoltán http://www.cab.u-szeged.hu/~kato/segmentation/ Szegmentálási kritériumok Particionáljuk a képet az alábbi kritériumokat kielégítő régiókba

Részletesebben

Minták automatikus osztályba sorolása a mintát leíró jellemzők alapján. Típusok: felügyelt és felügyelet nélküli tanuló eljárások

Minták automatikus osztályba sorolása a mintát leíró jellemzők alapján. Típusok: felügyelt és felügyelet nélküli tanuló eljárások Minták automatikus osztályba sorolása a mintát leíró jellemzők alapján Típusok: felügyelt és felügyelet nélküli tanuló eljárások Különbség: előbbinél szükséges egy olyan tanulóhalmaz, ahol ismert a minták

Részletesebben

Példák jellemzőkre: - minden pixelérték egy jellemző pl. neurális hálózat esetében csak kis képekre, nem invariáns sem a megvilágításra, sem a geom.

Példák jellemzőkre: - minden pixelérték egy jellemző pl. neurális hálózat esetében csak kis képekre, nem invariáns sem a megvilágításra, sem a geom. Lépések 1. tanító és teszt halmaz összeállítása / megszerzése 2. jellemzők kinyerése 3. tanító eljárás választása Sok vagy kevés adat áll-e rendelkezésünkre? Mennyi tanítási idő/memória áll rendelkezésre?

Részletesebben

Érdekes informatika feladatok

Érdekes informatika feladatok A keres,kkel és adatbázissal ellátott lengyel honlap számos díjat kapott: Spirit of Delphi '98, Delphi Community Award, Poland on the Internet, Golden Bagel Award stb. Az itt megtalálható komponenseket

Részletesebben

Kiegészítő előadás. Vizsgabemutató Matlab. Dr. Kallós Gábor, Dr. Szörényi Miklós, Fehérvári Arnold. Széchenyi István Egyetem

Kiegészítő előadás. Vizsgabemutató Matlab. Dr. Kallós Gábor, Dr. Szörényi Miklós, Fehérvári Arnold. Széchenyi István Egyetem Kiegészítő előadás Vizsgabemutató Dr. Kallós Gábor, Dr. Szörényi Miklós, Fehérvári Arnold 2016 2017 1 Virágboltos feladat Egy virágboltban négyféle virágból állítanak össze csokrokat. Az első összeállítás

Részletesebben

end function Az A vektorban elõforduló legnagyobb és legkisebb értékek indexeinek különbségét.. (1.5 pont) Ha üres a vektor, akkor 0-t..

end function Az A vektorban elõforduló legnagyobb és legkisebb értékek indexeinek különbségét.. (1.5 pont) Ha üres a vektor, akkor 0-t.. A Név: l 2014.04.09 Neptun kód: Gyakorlat vezető: HG BP MN l 1. Adott egy (12 nem nulla értékû elemmel rendelkezõ) 6x7 méretû ritka mátrix hiányos 4+2 soros reprezentációja. SOR: 1 1 2 2 2 3 3 4 4 5 6

Részletesebben

A színkezelés alapjai a GIMP programban

A színkezelés alapjai a GIMP programban A színkezelés alapjai a GIMP programban Alapok.Előtér és háttér színek.klikk, hogy alapbeállítás legyen ( d és x használata).hozzunk létre egy 640x400 pixeles képet! 4.Ecset eszköz választása 5.Ecset kiválasztása

Részletesebben

10. Koordinátageometria

10. Koordinátageometria I. Nulladik ZH-ban láttuk: 0. Koordinátageometria. Melyek azok a P x; y pontok, amelyek koordinátái kielégítik az Ábrázolja a megoldáshalmazt a koordináta-síkon! x y x 0 egyenlőtlenséget? ELTE 00. szeptember

Részletesebben

HORVÁTH ZSÓFIA 1. Beadandó feladat (HOZSAAI.ELTE) ápr 7. 8-as csoport

HORVÁTH ZSÓFIA 1. Beadandó feladat (HOZSAAI.ELTE) ápr 7. 8-as csoport 10-es Keressünk egy egész számokat tartalmazó négyzetes mátrixban olyan oszlopot, ahol a főátló alatti elemek mind nullák! Megolda si terv: Specifika cio : A = (mat: Z n m,ind: N, l: L) Ef =(mat = mat`)

Részletesebben

BME MOGI Gépészeti informatika 15.

BME MOGI Gépészeti informatika 15. BME MOGI Gépészeti informatika 15. 1. feladat Készítsen alkalmazást a y=2*sin(3*x-π/4)-1 függvény ábrázolására a [-2π; 2π] intervallumban 0,1-es lépésközzel! Ezen az intervallumon a függvény értékkészlete

Részletesebben

Képfeldolgozás haladóknak Lovag Tamás Novák Gábor 2011

Képfeldolgozás haladóknak Lovag Tamás Novák Gábor 2011 Dokumentáció Küszöbölés A küszöbölés során végighaladunk a képen és minden egyes képpont intenzitásáról eldöntjük, hogy teljesül-e rá az a küszöbölési feltétel. A teljes képre vonatkozó küszöbölés esetében

Részletesebben

8. feladatsor. Kisérettségi feladatsorok matematikából. 8. feladatsor. I. rész

8. feladatsor. Kisérettségi feladatsorok matematikából. 8. feladatsor. I. rész Kisérettségi feladatsorok matematikából I. rész. Egy deltoid két szomszédos szöge 7 és 0. Mekkora lehet a hiányzó két szög? pont. Hozza egyszerűbb alakra a kifejezést, majd számolja ki az értékét, ha a=

Részletesebben

Tájékoztató. Használható segédeszköz: -

Tájékoztató. Használható segédeszköz: - A 12/2013. (III. 29.) NFM rendelet szakmai és vizsgakövetelménye alapján. Szakképesítés, azonosítószáma és megnevezése 54 481 06 Informatikai rendszerüzemeltető Tájékoztató A vizsgázó az első lapra írja

Részletesebben

Lin.Alg.Zh.1 feladatok

Lin.Alg.Zh.1 feladatok LinAlgZh1 feladatok 01 3d vektorok Adott három vektor ā = (0 2 4) b = (1 1 4) c = (0 2 4) az R 3 Euklideszi vektortérben egy ortonormált bázisban 1 Mennyi az ā b skalárszorzat? 2 Mennyi az n = ā b vektoriális

Részletesebben

Lin.Alg.Zh.1 feladatok

Lin.Alg.Zh.1 feladatok Lin.Alg.Zh. feladatok 0.. d vektorok Adott három vektor ā (0 b ( c (0 az R Euklideszi vektortérben egy ortonormált bázisban.. Mennyi az ā b skalárszorzat? ā b 0 + + 8. Mennyi az n ā b vektoriális szorzat?

Részletesebben

Pontfelhő létrehozás és használat Regard3D és CloudCompare nyílt forráskódú szoftverekkel. dr. Siki Zoltán

Pontfelhő létrehozás és használat Regard3D és CloudCompare nyílt forráskódú szoftverekkel. dr. Siki Zoltán Pontfelhő létrehozás és használat Regard3D és CloudCompare nyílt forráskódú szoftverekkel dr. Siki Zoltán siki.zoltan@epito.bme.hu Regard3D Nyílt forráskódú SfM (Structure from Motion) Fényképekből 3D

Részletesebben

117. AA Megoldó Alfréd AA 117.

117. AA Megoldó Alfréd AA 117. Programozás alapjai 2. (inf.) pót-pótzárthelyi 2011.05.26. gyak. hiányzás: kzhpont: MEG123 IB.028/117. NZH:0 PZH:n Minden beadandó megoldását a feladatlapra, a feladat után írja! A megoldások során feltételezheti,

Részletesebben

Gráfelméleti feladatok. c f

Gráfelméleti feladatok. c f Gráfelméleti feladatok d e c f a b gráf, csúcsok, élek séta: a, b, c, d, e, c, a, b, f vonal: c, d, e, c, b, a út: f, b, a, e, d (walk, lanţ) (trail, lanţ simplu) (path, lanţ elementar) 1 irányított gráf,

Részletesebben

Struktúra nélküli adatszerkezetek

Struktúra nélküli adatszerkezetek Struktúra nélküli adatszerkezetek Homogén adatszerkezetek (minden adatelem azonos típusú) osztályozása Struktúra nélküli (Nincs kapcsolat az adatelemek között.) Halmaz Multihalmaz Asszociatív 20:24 1 A

Részletesebben

Matematika III előadás

Matematika III előadás Matematika III. - 3. előadás Vinczéné Varga Adrienn Debreceni Egyetem Műszaki Kar, Műszaki Alaptárgyi Tanszék Előadáskövető fóliák Vinczéné Varga Adrienn (DE-MK) Matematika III. 2016/2017/I 1 / 19 Skalármezők

Részletesebben

Feladat azonosítója: webc1_01_map

Feladat azonosítója: webc1_01_map Feladat azonosítója: webc1_01_map Útmutatás a feladatok kidolgozásához: - A tanuló legsikeresebb fejlődése érdekében ne olvassa el addig a következő sorszámú feladatot, amíg az adott sorszámút meg nem

Részletesebben

4. Fuzzy relációk. Gépi intelligencia I. Fodor János NIMGI1MIEM BMF NIK IMRI

4. Fuzzy relációk. Gépi intelligencia I. Fodor János NIMGI1MIEM BMF NIK IMRI 4. Fuzzy relációk Gépi intelligencia I. Fodor János BMF NIK IMRI NIMGI1MIEM Tartalomjegyzék I 1 Klasszikus relációk Halmazok Descartes-szorzata Relációk 2 Fuzzy relációk Fuzzy relációk véges alaphalmazok

Részletesebben

Programozási segédlet

Programozási segédlet Programozási segédlet Programozási tételek Az alábbiakban leírtam néhány alap algoritmust, amit ismernie kell annak, aki programozásra adja a fejét. A lista korántsem teljes, ám ennyi elég kell legyen

Részletesebben

Bevezetés a programozásba. 9. Előadás: Rekordok

Bevezetés a programozásba. 9. Előadás: Rekordok Bevezetés a programozásba 9. Előadás: Rekordok ISMÉTLÉS Függvényhívás #include #include #include #include using using namespace namespace std; std; double double terulet(double

Részletesebben

8. Előadás. Megyesi László: Lineáris algebra, , oldal. 8. előadás Mátrix rangja, Homogén lineáris egyenletrendszer

8. Előadás. Megyesi László: Lineáris algebra, , oldal. 8. előadás Mátrix rangja, Homogén lineáris egyenletrendszer 8. Előadás Megyesi László: Lineáris algebra, 51. 56., 70. 74. oldal. Gondolkodnivalók Elemi bázistranszformáció 1. Gondolkodnivaló Most ne vegyük figyelembe, hogy az elemi bázistranszformáció során ez

Részletesebben

6. gyakorlat Egydimenziós numerikus tömbök kezelése, tömbi algoritmusok

6. gyakorlat Egydimenziós numerikus tömbök kezelése, tömbi algoritmusok 6. gyakorlat Egydimenziós numerikus tömbök kezelése, tömbi algoritmusok 1. feladat: Az EURO árfolyamát egy negyedéven keresztül hetente nyilvántartjuk (HUF / EUR). Írjon C programokat az alábbi kérdések

Részletesebben

MATLAB. 3. gyakorlat. Mátrixműveletek, címzések

MATLAB. 3. gyakorlat. Mátrixműveletek, címzések MATLAB 3. gyakorlat Mátrixműveletek, címzések Menetrend Kis ZH Mátrixok, alapműveletek Vezérlő szerkezetek Virtuális műtét Statisztikai adatok vizsgálata pdf Kis ZH Mátrixok, alapműveletek mátrix létrehozása,

Részletesebben

rank(a) == rank([a b])

rank(a) == rank([a b]) Lineáris algebrai egyenletrendszerek megoldása a Matlabban Lineáris algebrai egyenletrendszerek a Matlabban igen egyszer en oldhatók meg. Legyen A az egyenletrendszer m-szer n-es együtthatómátrixa, és

Részletesebben

Lineáris algebra. (közgazdászoknak)

Lineáris algebra. (közgazdászoknak) Lineáris algebra (közgazdászoknak) 10A103 FELADATOK A GYAKORLATRA (3.) 2018/2019. tavaszi félév Lineáris egyenletrendszerek 3.1. Feladat. Oldjuk meg az alábbi lineáris egyenletrendszereket Gauss-eliminációval

Részletesebben

Feladatok a Gazdasági matematika II. tárgy gyakorlataihoz

Feladatok a Gazdasági matematika II. tárgy gyakorlataihoz Debreceni Egyetem Közgazdaságtudományi Kar Feladatok a Gazdasági matematika II tárgy gyakorlataihoz a megoldásra ajánlott feladatokat jelöli e feladatokat a félév végére megoldottnak tekintjük a nehezebb

Részletesebben

2. Milyen értéket határoz meg az alábbi algoritmus, ha A egy vektor?. (2 pont)

2. Milyen értéket határoz meg az alábbi algoritmus, ha A egy vektor?. (2 pont) A Név: l 2017.04.06 Neptun kód: Gyakorlat vezet : HG BP l 1. Az A vektor tartalmát az alábbi KUPACOL eljárással rendezzük át maximum kupaccá. A={28, 87, 96, 65, 55, 32, 51, 69} Mi lesz az értéke az A vektor

Részletesebben

Felügyelt önálló tanulás - Analízis III.

Felügyelt önálló tanulás - Analízis III. Felügyelt önálló tanulás - Analízis III Kormos Máté Differenciálható sokaságok Sokaságok Röviden, sokaságoknak nevezzük azokat az objektumokat, amelyek egy n dimenziós térben lokálisan k dimenziósak Definíció:

Részletesebben

Stíluslapok használata (CSS)

Stíluslapok használata (CSS) 2. Laboratóriumi gyakorlat Stíluslapok használata (CSS) A gyakorlat célja: Bevezetés a CSS stíluslapok használatába. Felkészüléshez szükséges anyagok: 1. A 3-as segédlet (CSS) 2. A bibliográfia HTML illetve

Részletesebben

3. Szűrés képtérben. Kató Zoltán. Képfeldolgozás és Számítógépes Grafika tanszék SZTE (http://www.inf.u-szeged.hu/~kato/teaching/)

3. Szűrés képtérben. Kató Zoltán. Képfeldolgozás és Számítógépes Grafika tanszék SZTE (http://www.inf.u-szeged.hu/~kato/teaching/) 3. Szűrés képtérben Kató Zoltán Képfeldolgozás és Számítógépes Grafika tanszék SZTE http://www.inf.u-szeged.hu/~kato/teaching/ 2 Kép transzformációk típusai Kép értékkészletének radiometriai információ

Részletesebben

7. fejezet: Mutatók és tömbök

7. fejezet: Mutatók és tömbök 7. fejezet: Mutatók és tömbök Minden komolyabb programozási nyelvben vannak tömbök, amelyek gondos kezekben komoly fegyvert jelenthetnek. Először is tanuljunk meg tömböt deklarálni! //Tömbök használata

Részletesebben

8. OSZTÁLY ; ; ; 1; 3; ; ;.

8. OSZTÁLY ; ; ; 1; 3; ; ;. BEM JÓZSEF Jelszó:... VÁROSI MATEMATIKAVERSENY Teremszám:... 2010. december 7-8. Hely:... 8. OSZTÁLY Tiszta versenyidő: 90 perc. A feladatokat többször is olvasd el figyelmesen! A megoldás menetét, gondolataidat

Részletesebben

BME MOGI Gépészeti informatika 18. Grafika, fájlkezelés gyakorló óra. 1. feladat Készítsen alkalmazást az = +

BME MOGI Gépészeti informatika 18. Grafika, fájlkezelés gyakorló óra. 1. feladat Készítsen alkalmazást az = + BME MOGI Gépészeti informatika 18. Grafika, fájlkezelés gyakorló óra 1. feladat Készítsen alkalmazást az = + függvény ábrázolására! Az értelmezési tartomány a [-6;5] intervallum, a lépésköz 0,1 legyen!

Részletesebben

tétel: különböző típusú adatokat csoportosít, ezeket egyetlen adatként kezeli, de hozzáférhetünk az elemeihez is

tétel: különböző típusú adatokat csoportosít, ezeket egyetlen adatként kezeli, de hozzáférhetünk az elemeihez is A tétel (record) tétel: különböző típusú adatokat csoportosít, ezeket egyetlen adatként kezeli, de hozzáférhetünk az elemeihez is A tétel elemei mezők. Például tétel: személy elemei: név, lakcím, születési

Részletesebben

MEMO (Middle European Mathematical Olympiad) Szoldatics József, Dunakeszi

MEMO (Middle European Mathematical Olympiad) Szoldatics József, Dunakeszi Szoldatics József: MEMO MEMO (Middle European Mathematical Olympiad) Szoldatics József, Dunakeszi A feladatmegoldó szemináriumon első részében egy rövid beszámolót fognak hallani a 010. szeptember 9. és

Részletesebben

Képszegmentáló eljárások. Orvosi képdiagnosztika 2018 ősz

Képszegmentáló eljárások. Orvosi képdiagnosztika 2018 ősz Képszegmentáló eljárások Orvosi képdiagnosztika 2018 ősz Képszegmentálás Anatómiai részek elkülönítés: pl. csontok, szív, erek, szürkefehér állomány, stb Vizsgálandó terület körbehatárolása: pl. tüdőterület

Részletesebben

Adatszerkezetek Tömb, sor, verem. Dr. Iványi Péter

Adatszerkezetek Tömb, sor, verem. Dr. Iványi Péter Adatszerkezetek Tömb, sor, verem Dr. Iványi Péter 1 Adat Adat minden, amit a számítógépünkben tárolunk és a külvilágból jön Az adatnak két fontos tulajdonsága van: Értéke Típusa 2 Adat típusa Az adatot

Részletesebben

1. numere.txt n (1 n 10000) n növekvő kilenc a) Pascal/C++ Például: NUMERE.TXT

1. numere.txt n (1 n 10000) n növekvő kilenc a) Pascal/C++ Például: NUMERE.TXT Az informatika érettségi harmadik tételsora tartalmaz egy feladatot, melyet hatékonyan kell megoldani. A program megírása mellett követelmény a megoldásban használt módszer rövid leírása, kitérve a módszer

Részletesebben

Felvételi tematika INFORMATIKA

Felvételi tematika INFORMATIKA Felvételi tematika INFORMATIKA 2016 FEJEZETEK 1. Természetes számok feldolgozása számjegyenként. 2. Számsorozatok feldolgozása elemenként. Egydimenziós tömbök. 3. Mátrixok feldolgozása elemenként/soronként/oszloponként.

Részletesebben

GPU Lab. 14. fejezet. OpenCL textúra használat. Grafikus Processzorok Tudományos Célú Programozása. Berényi Dániel Nagy-Egri Máté Ferenc

GPU Lab. 14. fejezet. OpenCL textúra használat. Grafikus Processzorok Tudományos Célú Programozása. Berényi Dániel Nagy-Egri Máté Ferenc 14. fejezet OpenCL textúra használat Grafikus Processzorok Tudományos Célú Programozása Textúrák A textúrák 1, 2, vagy 3D-s tömbök kifejezetten szín információk tárolására Főbb különbségek a bufferekhez

Részletesebben

Bevezetés a programozásba I.

Bevezetés a programozásba I. Elágazás Bevezetés a programozásba I. 2. gyakorlat, tömbök Surányi Márton PPKE-ITK 2010.09.14. Elágazás Elágazás Eddigi programjaink egyszer ek voltak, egy beolvasás (BE: a), esetleg valami m velet (a

Részletesebben

Adatszerkezetek II. 1. előadás

Adatszerkezetek II. 1. előadás Adatszerkezetek II. 1. előadás Gráfok A gráf fogalma: Gráf(P,E): P pontok (csúcsok) és E P P élek halmaza Fogalmak: Irányított gráf : (p 1,p 2 ) E-ből nem következik, hogy (p 2,p 1 ) E Irányítatlan gráf

Részletesebben

Java II. I A Java programozási nyelv alapelemei

Java II. I A Java programozási nyelv alapelemei Java2 / 1 Java II. I A Java programozási nyelv alapelemei Miskolci Egyetem Általános Informatikai Tanszék Utolsó módosítás: 2009. 02. 09. Java II.: Alapelemek JAVA2 / 1 A Java formalizmusa A C, illetve

Részletesebben

22. GRÁFOK ÁBRÁZOLÁSA

22. GRÁFOK ÁBRÁZOLÁSA 22. GRÁFOK ÁBRÁZOLÁSA A megoldandó feladatok, problémák modellezése során sokszor gráfokat alkalmazunk. A gráf fogalmát a matematikából ismertnek vehetjük. A modellezés során a gráfok több változata is

Részletesebben

Diszkréten mintavételezett függvények

Diszkréten mintavételezett függvények Diszkréten mintavételezett függvények A függvény (jel) értéke csak rögzített pontokban ismert, de köztes pontokban is meg akarjuk becsülni időben mintavételezett jel pixelekből álló műholdkép rácson futtatott

Részletesebben

C# osztályok. Krizsán Zoltán

C# osztályok. Krizsán Zoltán C# osztályok Krizsán Zoltán Fogalma Önálló hatáskőrrel rendelkező, absztrakt adattípus, amely több, különböző elemet tartalmazhat. Minden esetben a heap-en jön létre! A programozó hozza létre, de a GC

Részletesebben

Programozás alapjai II. (7. ea) C++ Speciális adatszerkezetek. Tömbök. Kiegészítő anyag: speciális adatszerkezetek

Programozás alapjai II. (7. ea) C++ Speciális adatszerkezetek. Tömbök. Kiegészítő anyag: speciális adatszerkezetek Programozás alapjai II. (7. ea) C++ Kiegészítő anyag: speciális adatszerkezetek Szeberényi Imre BME IIT M Ű E G Y E T E M 1 7 8 2 C++ programozási nyelv BME-IIT Sz.I. 2016.04.05. - 1

Részletesebben

Éldetektálás, szegmentálás (folytatás) Orvosi képdiagnosztika 11_2 ea

Éldetektálás, szegmentálás (folytatás) Orvosi képdiagnosztika 11_2 ea Éldetektálás, szegmentálás (folytatás) Orvosi képdiagnosztika 11_2 ea Geometrikus deformálható modellek Görbe evolúció Level set módszer A görbe evolúció parametrizálástól független mindössze geometriai

Részletesebben

Algoritmizálás és adatmodellezés 2. előadás

Algoritmizálás és adatmodellezés 2. előadás Algoritmizálás és adatmodellezés 2 előadás Összetett típusok 1 Rekord 2 Halmaz (+multialmaz, intervallumalmaz) 3 Tömb (vektor, mátrix) 4 Szekvenciális fájl (input, output) Pap Gáborné, Zsakó László: Algoritmizálás,

Részletesebben

First Prev Next Last Go Back Full Screen Close Quit

First Prev Next Last Go Back Full Screen Close Quit Többváltozós függvények (2) First Prev Next Last Go Back Full Screen Close Quit 1. Egyváltozós függvények esetén a differenciálhatóságból következett a folytonosság. Fontos tudni, hogy abból, hogy egy

Részletesebben

Speciális adatszerkezetek. Programozás alapjai II. (8. ea) C++ Tömbök. Tömbök/2. N dimenziós tömb. Nagyméretű ritka tömbök

Speciális adatszerkezetek. Programozás alapjai II. (8. ea) C++ Tömbök. Tömbök/2. N dimenziós tömb. Nagyméretű ritka tömbök Programozás alapjai II. (8. ea) C++ Kiegészítő anyag: speciális adatszerkezetek Szeberényi Imre BME IIT Speciális adatszerkezetek A helyes adatábrázolás választása, a helyes adatszerkezet

Részletesebben

Java II. I A Java programozási nyelv alapelemei

Java II. I A Java programozási nyelv alapelemei Java II. I A Java programozási nyelv alapelemei Miskolci Egyetem Általános Informatikai Tanszék Utolsó módosítás: 2008. 02. 19. Java II.: Alapelemek JAVA2 / 1 A Java formalizmusa A C, illetve az annak

Részletesebben

Készítette: niethammer@freemail.hu

Készítette: niethammer@freemail.hu VLogo VRML generáló program Készítette: Niethammer Zoltán niethammer@freemail.hu 2008 Bevezetés A VLogo az általános iskolákban használt Comenius Logo logikájára épülő programozási nyelv. A végeredmény

Részletesebben

Kérdés Lista. A Magyarországon alkalmazott rajzlapoknál mekkora az oldalak aránya?

Kérdés Lista. A Magyarországon alkalmazott rajzlapoknál mekkora az oldalak aránya? Kérdés Lista információ megjelenítés :: műszaki rajz T A darabjegyzék előállítása során milyen sorrendben számozzuk a tételeket? Adjon meg legalább két módszert! T A Magyarországon alkalmazott rajzlapoknál

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Paraméter

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Paraméter MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Paraméter A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek

Részletesebben

Excel VIII. Visual Basic programozás alapok 2. Vektorműveletek Visual Basic nyelven

Excel VIII. Visual Basic programozás alapok 2. Vektorműveletek Visual Basic nyelven Alkalmazott Informatikai Intézeti Tanszék MŰSZAKI INFORMATIKA Dr.Dudás László 0. Excel VIII. Visual Basic programozás alapok 2 Vektorműveletek Visual Basic nyelven Alkalmazott Informatikai Intézeti Tanszék

Részletesebben

Sergyán Szabolcs szeptember 21.

Sergyán Szabolcs szeptember 21. Éldetektálás Sergyán Szabolcs Budapesti Műszaki Főiskola Neumann János Informatikai Kar 2009. szeptember 21. Sergyán Sz. (BMF NIK) Éldetektálás 2009. szeptember 21. 1 / 28 Mit nevezünk élnek? Intuitív

Részletesebben

Matematikai programok

Matematikai programok Matematikai programok Mátrixalapú nyelvek octave Wettl Ferenc Algebra Tanszék B U D A P E S T I M Ű S Z A K I M A T E M A T I K A É S G A Z D A S Á G T U D O M Á N Y I I N T É Z E T E G Y E T E M Wettl

Részletesebben

Programozás alapjai II. (7. ea) C++

Programozás alapjai II. (7. ea) C++ Programozás alapjai II. (7. ea) C++ Kiegészítő anyag: speciális adatszerkezetek Szeberényi Imre BME IIT M Ű E G Y E T E M 1 7 8 2 C++ programozási nyelv BME-IIT Sz.I. 2016.04.05. - 1

Részletesebben

Programozás alapjai C nyelv 10. gyakorlat. Standard függvények. Union

Programozás alapjai C nyelv 10. gyakorlat. Standard függvények. Union Programozás alapjai C nyelv 10. gyakorlat Szeberényi Imre BME IIT Programozás alapjai I. (C nyelv, gyakorlat) BME-IIT Sz.I. 2005.11.21. -1- Standard függvények Standard függvények amelyeket

Részletesebben

1. Feladat: beolvas két számot úgy, hogy a-ba kerüljön a nagyobb

1. Feladat: beolvas két számot úgy, hogy a-ba kerüljön a nagyobb 1. Feladat: beolvas két számot úgy, hogy a-ba kerüljön a nagyobb #include main() { int a, b; printf( "a=" ); scanf( "%d", &a ); printf( "b=" ); scanf( "%d", &b ); if( a< b ) { inttmp = a; a =

Részletesebben

Függvények ábrázolása

Függvények ábrázolása Függvények ábrázolása Matematikai függvényeket analitikusan nem tudunk a matlabban megadni (tudunk, de ilyet még nem tanulunk). Ahhoz, hogy egy függvényt ábrázoljuk, hasonlóan kell eljárni, mint a házi

Részletesebben

Programozás I. Gyakorlás egydimenziós tömbökkel Többdimenziós tömbök Gyakorló feladatok V 1.0 ÓE-NIK-AII,

Programozás I. Gyakorlás egydimenziós tömbökkel Többdimenziós tömbök Gyakorló feladatok V 1.0 ÓE-NIK-AII, Programozás I. Gyakorlás egydimenziós tömbökkel Többdimenziós tömbök Gyakorló feladatok V 1.0 ÓE-NIK-AII, 2016 1 Hallgatói Tájékoztató A jelen bemutatóban található adatok, tudnivalók és információk a

Részletesebben

1. Parciális függvény, parciális derivált (ismétlés)

1. Parciális függvény, parciális derivált (ismétlés) Operációkutatás NYME Gazdaságinformatikus mesterképzés El adó: Kalmár János (kalmar[kukac]inf.nyme.hu) Többváltozós széls érték számítás Parciális függvény, parciális derivált Széls érték korlátos zárt

Részletesebben

10. gyakorlat Struktúrák, uniók, típusdefiníciók

10. gyakorlat Struktúrák, uniók, típusdefiníciók 10. gyakorlat Struktúrák, uniók, típusdefiníciók Házi - (f0218) Olvass be 5 darab maximum 99 karakter hosszú szót úgy, hogy mindegyiknek pontosan annyi helyet foglalsz, amennyi kell! A sztringeket írasd

Részletesebben

Plakátok, részecskerendszerek. Szécsi László

Plakátok, részecskerendszerek. Szécsi László Plakátok, részecskerendszerek Szécsi László Képalapú festés Montázs: képet képekből 2D grafika jellemző eszköze modell: kép [sprite] 3D 2D képével helyettesítsük a komplex geometriát Image-based rendering

Részletesebben

KÉPFELDOLGOZÁS. 10. gyakorlat: Morfológiai műveletek, alakjellemzők

KÉPFELDOLGOZÁS. 10. gyakorlat: Morfológiai műveletek, alakjellemzők KÉPFELDOLGOZÁS 10. gyakorlat: Morfológiai műveletek, alakjellemzők Min-max szűrők MATLAB-ban SE = strel(alak, paraméter(ek)); szerkesztőelem generálása strel( square, w): négyzet alakú, w méretű strel(

Részletesebben

Közösség detektálás gráfokban

Közösség detektálás gráfokban Közösség detektálás gráfokban Önszervező rendszerek Hegedűs István Célkitűzés: valamilyen objektumok halmaza felett minták, csoportok detektálása csakis az egyedek közötti kapcsolatok struktúrájának a

Részletesebben

Matematikai programok

Matematikai programok Matematikai programok Mátrixalapú nyelvek MatLab Wettl Ferenc diái alapján Budapesti M szaki Egyetem Algebra Tanszék 2017.11.07 Borbély Gábor (BME Algebra Tanszék) Matematikai programok 2017.11.07 1 /

Részletesebben

OOP #14 (referencia-elv)

OOP #14 (referencia-elv) OOP #14 (referencia-elv) v1.0 2003.03.19. 21:22:00 Eszterházy Károly Főiskola Információtechnológia tsz. Hernyák Zoltán adj. e-mail: aroan@ektf.hu web: http://aries.ektf.hu/~aroan OOP OOP_14-1 - E jegyzet

Részletesebben

Kétváltozós függvények differenciálszámítása

Kétváltozós függvények differenciálszámítása Kétváltozós függvények differenciálszámítása 13. előadás Farkas István DE ATC Gazdaságelemzési és Statisztikai Tanszék Kétváltozós függvények p. 1/1 Definíció, szemléltetés Definíció. Az f : R R R függvényt

Részletesebben

Láthatósági kérdések

Láthatósági kérdések Láthatósági kérdések Láthatósági algoritmusok Adott térbeli objektum és adott nézőpont esetén el kell döntenünk, hogy mi látható az adott alakzatból a nézőpontból, vagy irányából nézve. Az algoritmusok

Részletesebben

A médiatechnológia alapjai

A médiatechnológia alapjai A médiatechnológia alapjai Úgy döntöttem, hogy a Szirányi oktatta előadások számonkérhetőnek tűnő lényegét kiemelem, az alapján, amit a ZH-ról mondott: rövid kérdések. A rész és az egész: összefüggések

Részletesebben

Digitális képek szegmentálása. 5. Textúra. Kató Zoltán.

Digitális képek szegmentálása. 5. Textúra. Kató Zoltán. Digitális képek szegmentálása 5. Textúra Kató Zoltán http://www.cab.u-szeged.hu/~kato/segmentation/ Textúra fogalma Sklansky: Egy képen egy területnek állandó textúrája van ha a lokális statisztikák vagy

Részletesebben

Kiegészítő előadás. Vizsgabemutató VBA. Dr. Kallós Gábor, Fehérvári Arnold, Pusztai Pál Krankovits Melinda. Széchenyi István Egyetem

Kiegészítő előadás. Vizsgabemutató VBA. Dr. Kallós Gábor, Fehérvári Arnold, Pusztai Pál Krankovits Melinda. Széchenyi István Egyetem Kiegészítő előadás Vizsgabemutató VBA Dr. Kallós Gábor, Fehérvári Arnold, Pusztai Pál Krankovits Melinda 2016 2017 1 VBA A Szamokat_General szubrutin segítségével generáljunk 1000 db egész számot a [0,

Részletesebben

Bevezetés a programozásba Előadás: Objektumszintű és osztályszintű elemek, hibakezelés

Bevezetés a programozásba Előadás: Objektumszintű és osztályszintű elemek, hibakezelés Bevezetés a programozásba 2 7. Előadás: Objektumszű és osztályszű elemek, hibakezelés ISMÉTLÉS Osztály class Particle { public: Particle( X, X, Y); virtual void mozog( ); ); virtual void rajzol( ) const;

Részletesebben

függvény grafikonja milyen transzformációkkal származtatható az f0 : R R, f0(

függvény grafikonja milyen transzformációkkal származtatható az f0 : R R, f0( FÜGGVÉNYEK 1. (008. okt., 14. fel, 5+7 pont) Fogalmazza meg, hogy az f : R R, f ( x) x 1 függvény grafikonja milyen transzformációkkal származtatható az f0 : R R, f0( x) x függvény grafikonjából! Ábrázolja

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Függvények

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Függvények MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek

Részletesebben

3. Gyakorlat Ismerkedés a Java nyelvvel

3. Gyakorlat Ismerkedés a Java nyelvvel 3. Gyakorlat Ismerkedés a Java nyelvvel Parancssori argumentumok Minden Java programnak adhatunk indításkor paraméterek, ezeket a program egy tömbben tárolja. public static void main( String[] args ) Az

Részletesebben

Algoritmusok bonyolultsága

Algoritmusok bonyolultsága Algoritmusok bonyolultsága 9. előadás http://www.ms.sapientia.ro/~kasa/komplex.htm 1 / 18 Közelítő algoritmusok ládapakolás (bin packing) Adott n tárgy (s i tömeggel) és végtelen sok 1 kapacitású láda

Részletesebben

10. gyakorlat Tömb, mint függvény argumentum

10. gyakorlat Tömb, mint függvény argumentum 10. gyakorlat Tömb, mint függvény argumentum 1. feladat: A 6. gyakorlat 1. feladatát oldja meg a strukturált programtervezési alapelv betartásával, azaz minden végrehajtandó funkciót külön függvényben

Részletesebben

Mintapélda1 Hányféleképpen állhatnak sorba egy bolt pénztáránál a vásárlók, ha 3-an, 4-en, 5-en, k-an vannak?

Mintapélda1 Hányféleképpen állhatnak sorba egy bolt pénztáránál a vásárlók, ha 3-an, 4-en, 5-en, k-an vannak? Hozzárendelési szabályok.doc 1 / 6 Mintapélda1 Hányféleképpen állhatnak sorba egy bolt pénztáránál a vásárlók, ha 3-an, 4-en, 5-en, k-an vannak? Mintapélda2 Karcsi nyáron 435 Ft-os órabérért dolgozott.

Részletesebben

BME MOGI Gépészeti informatika 5.

BME MOGI Gépészeti informatika 5. BME MOGI Gépészeti informatika 5. 1. feladat Készítsen alkalmazást, mely feltölt egy egydimenziós tömböt adott tartományba eső, véletlenszerűen generált egész értékekkel! Határozza meg a legkisebb és a

Részletesebben

Programozás C nyelven 5. ELŐADÁS. Sapientia EMTE

Programozás C nyelven 5. ELŐADÁS. Sapientia EMTE Programozás C nyelven. ELŐADÁS Sapientia EMTE 201-16 1 while vs. for int szam, s; cin >> szam; s = 0; while ( szam > 0 ){ s += szam%10; szam /= 10; cout szam;

Részletesebben

Pontműveletek. Sergyán Szabolcs Óbudai Egyetem Neumann János Informatikai Kar február 20.

Pontműveletek. Sergyán Szabolcs Óbudai Egyetem Neumann János Informatikai Kar február 20. Pontműveletek Sergyán Szabolcs sergyan.szabolcs@nik.uni-obuda.hu Óbudai Egyetem Neumann János Informatikai Kar 2012. február 20. Sergyán (OE NIK) Pontműveletek 2012. február 20. 1 / 40 Felhasznált irodalom

Részletesebben

BME MOGI Gépészeti informatika 7.

BME MOGI Gépészeti informatika 7. BME MOGI Gépészeti informatika 7. 1. feladat Írjon Windows Forms alkalmazást egy kör és egy pont kölcsönös helyzetének vizsgálatára! A feladat megoldásához hozza létre a következő osztályokat! Pont osztály:

Részletesebben

Bevezetés a QGIS program használatába Összeálította dr. Siki Zoltán

Bevezetés a QGIS program használatába Összeálította dr. Siki Zoltán Bevezetés Bevezetés a QGIS program használatába Összeálította dr. Siki Zoltán A QGIS program egy nyiltforrású asztali térinformatikai program, mely a http://www.qgis.org oldalról tölthető le. Ebben a kis

Részletesebben

6. Függvények. 1. Az alábbi függvények közül melyik szigorúan monoton növekvő a 0;1 intervallumban?

6. Függvények. 1. Az alábbi függvények közül melyik szigorúan monoton növekvő a 0;1 intervallumban? 6. Függvények I. Nulladik ZH-ban láttuk: 1. Az alábbi függvények közül melyik szigorúan monoton növekvő a 0;1 intervallumban? f x g x cos x h x x ( ) sin x (A) Az f és a h. (B) Mindhárom. (C) Csak az f.

Részletesebben

Területi primitívek: Zárt görbék által határolt területek (pl. kör, ellipszis, poligon) b) Minden belső pont kirajzolásával (kitöltött)

Területi primitívek: Zárt görbék által határolt területek (pl. kör, ellipszis, poligon) b) Minden belső pont kirajzolásával (kitöltött) Grafikus primitívek kitöltése Téglalap kitöltése Poligon kitöltése Kör, ellipszis kitöltése Kitöltés mintával Grafikus primitívek kitöltése Területi primitívek: Zárt görbék által határolt területek (pl.

Részletesebben

Infobionika ROBOTIKA. X. Előadás. Robot manipulátorok II. Direkt és inverz kinematika. Készült a HEFOP P /1.0 projekt keretében

Infobionika ROBOTIKA. X. Előadás. Robot manipulátorok II. Direkt és inverz kinematika. Készült a HEFOP P /1.0 projekt keretében Infobionika ROBOTIKA X. Előadás Robot manipulátorok II. Direkt és inverz kinematika Készült a HEFOP-3.3.1-P.-2004-06-0018/1.0 projekt keretében Tartalom Direkt kinematikai probléma Denavit-Hartenberg konvenció

Részletesebben

Programozás. (GKxB_INTM021) Dr. Hatwágner F. Miklós március 31. Széchenyi István Egyetem, Gy r

Programozás. (GKxB_INTM021) Dr. Hatwágner F. Miklós március 31. Széchenyi István Egyetem, Gy r Programozás (GKxB_INTM021) Széchenyi István Egyetem, Gy r 2018. március 31. Városok közötti távolság Feladat: két város nevének beolvasása, városok közötti távolság megjelenítése. Kilépés azonos városok

Részletesebben