Képfeldolgozás Szegmentálás Osztályozás Képfelismerés Térbeli rekonstrukció
|
|
- Borbála Lakatosné
- 9 évvel ezelőtt
- Látták:
Átírás
1 Mesterséges látás
2 Miről lesz szó? objektumok
3 Bevezetés objektumok A mesterséges látás jelenlegi, technikai eszközökön alapuló világunkban gyakorlatilag azonos a számítógépes képfeldolgozással. Számítógépes képfeldolgozás alatt ma még többnyire a kétdimenziós (síkbeli), statikus (időben változatlan) képek feldolgozását értjük.
4 objektumok Roska Tamás, magyar kutató, társfeltalálója a "CNN bionikus szem"- nek. CNN (Cellular Neural Network ) chip akár egy mesterséges szem központja is lehet a továbbiakban.
5 objektumok A CNN úgy dolgozik, mint az egész agyunk, természetesen elemi szinten. A CNN egymással öszszekötött elemekből alakítja ki azt a rendszert, amely sok mindenben hasonlít például a látórendszerhez. A CNN-nek fontos szerepe van az arc ben
6 A képfeldolgozás objektumok Fizikai szint: képkorrekciók Elemzési szint: képosztályozás, szegmentálás : kapcsolatot teremt az elemzett kép és az ismeretbázis, illetve a modell-bázis között
7 Képkorrekció objektumok Képhelyreállítás: a zavaró, torzító hatásoktól való megszabadulás Képminőség javítás: vilagosságkód- transzformációk (a kontraszt növelésére használ )
8 Szegmentálás objektumok Célja: a képmegértés érdekében a kép önálló jelentésű részekre bontása. E részek a képpontoknál "magasabb szintű" alkotórészként viselkednek, összetettebb tulajdonságaik vannak, és így alkalmasabbak a kép szerkezetének leírására.
9 Szegmentálás lépései objektumok Első lépésben az összes olyan paramétert meg kell határozni, amelyek a szegmentálás sajátságkinyerési döntési tevékenységénél szerepet játsznak Egy ilyen paraméter például a sajátvektor
10 objektumok Második lépéshez tartózik az osztályozás: - kiszámítjuk a képrészekhez tartozó sajátvektorokat - az egymáshoz hasonló, a képen közvetlen szomszédságban levő képrészeket ugyanahhoz az objektumhoz soroljuk
11 objektumok A harmadik lépés az összefűzés: megkeressük az egyes osztályokba sorolt képrészek összefüggő halmazait, azaz az objektumokat alkotó tartományokat. A szegmentálással foltokhoz,illetve élek- hez jutunk
12 Sajátvektorok objektumok Rendszerint egy-két sajátság haszná-latával definiáljuk azt a vektort, amely csak a szegmentálási feladat szem-pontjából lényeges tulajdonságokat tartalmaz. A legáltalánosabban használt sajátság a világosság-, illetve színkód.
13 objektumok A sajátvektor egy nem null vektor, melynek az iránya változatlan marad az átalakítás során
14 Élkeresés objektumok Ha a szegmentálás a különbségi jellemzők alapján történik, élkeresésről beszélünk. Az éleket olyan szomszédos pontok sorozata alkotja, melyek a képen valamilyen sajátságugrás határán helyezkednek el.
15 Osztályozás objektumok Célja: képpontok, illetve összetartozó képpontokból álló (pl. szegmentált) alakzatok tulajdonságainak elemzése, s így azok e
16 Kép objektumok Célja: a 3D képtér adott időpontbeli teljes leírását akarja meghatározni
17 objektumok a látórendszernek minél pontosabb lényegi információt kell szolgáltatni a képtérről a látórendszernek azonosítania kell a képtér objektumait, s olyan leírást kell szolgáltatnia, mely a látványt összekapcsolja a felismert objektumok ismeretbázisban szereplő tulajdonságaival
18 objektumok térbeli objektumokat kell azonosítani felületük részletei alapján, függetlenül a helyzetüktől, méretüktől, sőt takartságuktól, valamint a megvilágítási körülményektől
19 Térbeli objektumok leírása objektumok A térbeli objektumokat felületük határolja, látásunkkal e felületről visszavert fénysugarakat érzékeljük Az objektumleírással szemben az elsődleges elvárás, hogy adja meg az objektum összes felületi pontját
20 Térbeli objektumok e objektumok a keresett objektumot felismertük, ha létezik olyan geometriai transzformáció, mely után annak élképe szerkezetileg megfelel a képről nyert élképnek
21 Modellbázisú kép objektumok a képtér objektumait előre "feltöltött" modellkönyvtárak felhasználásával próbálja azonosítani a modellbázisú kép igen gyakran több egyazon jelenetről különböző nézetből készített kép együttes feldolgozását teszi szükségessé
22 Arc objektumok Az alcferismeréshez az ú.n. Eigenface-eket használják Az eigenface egy standardizált arc hozzávalók" halmaza, mely több arcképből végzett statisztikai analízis eredménye Bármely emberi arc lehet ezeknek az arcoknak a kombinálása
23 Eigenface halmazának generálása objektumok Egy digitalizált képhalmazt hozunk létre amberi arcokból, amelyek ugyanolyan körülmények között készültek Mindegyik kép ugyanolyan rezolucióra lesz beállítva, mely egy mn-es vektorként lesz tekintve, a vektor elemei a pixelek értékei lesznek Kivonjuk a statisztikai eloszlas kovariánsmátrixának a sajátvekorait
24
25 Eigenface arc objektumok Két szakaszból áll: 1. Előkészítés 2. Felismerés
26 Arctér objektumok Feltételezzük, hogy egy arckép N pixelt tartalmaz ennek megfeleltethetünk egy N dimenziós vektort Legyen az előkészítő arcképek halmaza Az átlagarcot az M képből a köv. képlet adja
27 Előkészítés objektumok Minden egyed arcát leképezzük az arctérbe, így egy M dimenziós vektor, jön létre
28 Felismerés objektumok Egy új képet vetítünk az arctérbe, és egy M dimenziós vektor keletkezik
29 objektumok A két kapott vektort összehasonlítjuk, kiszámolunk egy távolságot, d1 Ugyanakkor kiszámolunk még egy távolságot, d2, ami a két kép között jön létre
30 objektumok A d1 és d2 összehasonlítjuk egy küszöbbszámmal, c: Ha d1 >c, akkor nem arckép ha d1<c és d2 >c akkor a kép tartalmaz egy ismeretlen arcképet ha d1, d2 < c akkor a kép tartalmaz egy arcképet
31 CNN alapú detektálás objektumok A CNN alapú detektálási eljárás kiindulópontja a fej megtalálása egy színes képen az emberi arc és a háttér közötti különbségek kihasználásával.
32 objektumok Az arc normalizálásához szükség van referenciapontokra, melyek közül legmegbízhatóbban a szemek határozhatóak meg. A pontok távolságát és helyzetét normálni tudjuk, így minden arc azonos méretűvé és pozíciójúvá tehető.
33 Képfeldolgozá s objektumok A kidolgozott CNN algoritmus tetszőleges fekete-fehér (greyscale) képen megtalálja a szemek lehetséges helyét. A képen néhány, a szemre illetve szemüregre jellemző területet keres.
34 Térbeli objektumok A számítógépes feldolgozás nem korlátozódik a síkbeli problémákra de ehhez több kép felhasználására van szükség.
35 Sztereó képpár objektumok két szemünkkel kissé eltérő képet érzékelünk Az agyunk felismeri a két kép közti különbségeket, ezzel megteremti a tér érzetét: távolság & térfogat
36
37 Sztereó képpár felhasználása objektumok Ahhoz, hogy 3D képet tudjunk előállítani, szükségünk van a sztereó képpárra
38 Sztereó képpár létrehozása objektumok Két, különböző szögből, képet készítünk ugyanarról az objektumról
39 A kép letrehozása ugyanakkor megvalósítható egy speciális kamerával, amely egyből elkészíti a sztereó képpárt
40 A két, 2D kép, összetevéséből létrejön egy 3D kép
41 Mozgóképek A sztereó képpárból mozgóképet is előállíthatunk
42
43 Sztereó képpár feldolgozása objektumok Ha egyazon objektum több felvételen is szerepel, egyszerű trigonometriai számításokkal megkaphatjuk térbeli elhelyezkedését. A két képen megkeressük az azonos pixeleket és így ki tudjuk számítani a kép eredeti helyét a térben.
44 Felmerülő problémák Mi történik akkor, ha a kép ismétlődő elemeket tartalmaz? A pixelek megfeleltetése nem lesz egyértelmű, így a sztereó megfeleltetés nem alkalmazható
Képfeldolgozás. 1. el adás. A képfeldolgozás alapfogalmai. Mechatronikai mérnök szak BME, 2008
Képfeldolgozás 1. el adás. A képfeldolgozás alapfogalmai BME, 2008 A digitális képfeldolgozás alapfeladata Deníció A digitális képfeldolgozás során arra törekszünk, hogy a természetes képek elemzése révén
7. Régió alapú szegmentálás
Digitális képek szegmentálása 7. Régió alapú szegmentálás Kató Zoltán http://www.cab.u-szeged.hu/~kato/segmentation/ Szegmentálási kritériumok Particionáljuk a képet az alábbi kritériumokat kielégítő régiókba
AUTOMATIKUS KÉPFELDOLGOZÁS A HADITECHNIKÁBAN A CELLULÁRIS NEURÁLIS HÁLÓZAT
Buzási Tibor AUTOMATIKUS KÉPFELDOLGOZÁS A HADITECHNIKÁBAN A CELLULÁRIS NEURÁLIS HÁLÓZAT A következő bemutató témája a Celluláris Neurális Hálózat (CNN) technológiára épülő, a hagyományos képfeldolgozási
Statisztikai eljárások a mintafelismerésben és a gépi tanulásban
Statisztikai eljárások a mintafelismerésben és a gépi tanulásban Varga Domonkos (I.évf. PhD hallgató) 2014 május A prezentáció felépítése 1) Alapfogalmak 2) A gépi tanulás, mintafelismerés alkalmazási
Miről lesz szó? Videó tartalom elemzés (VCA) leegyszerűsített működése Kültéri védelem Közúthálózat megfigyelés Emberszámlálás
Videóanalitikát mindenhova! Princz Adorján Miről lesz szó? Videó tartalom elemzés (VCA) leegyszerűsített működése Kültéri védelem Közúthálózat megfigyelés Emberszámlálás VCA alapú detektorok Videótartalom
Fotogrammetriai munkaállomások szoftvermoduljainak tervezése. Dr. habil. Jancsó Tamás Óbudai Egyetem, Alba Regia Műszaki Kar
Fotogrammetriai munkaállomások szoftvermoduljainak tervezése Dr. habil. Jancsó Tamás Óbudai Egyetem, Alba Regia Műszaki Kar Témakörök DPW szoftvermodulok Szoftverek funkciói Pár példa Mi hiányzik gyakran?
Mit látnak a robotok? Bányai Mihály Matemorfózis, 2017.
Mit látnak a robotok? Bányai Mihály Matemorfózis, 2017. Vizuális feldolgozórendszerek feladatai Mesterséges intelligencia és idegtudomány Mesterséges intelligencia és idegtudomány Párhuzamos problémák
Láthatósági kérdések
Láthatósági kérdések Láthatósági algoritmusok Adott térbeli objektum és adott nézőpont esetén el kell döntenünk, hogy mi látható az adott alakzatból a nézőpontból, vagy irányából nézve. Az algoritmusok
Számítógépes grafika
Számítógépes grafika HEFOP 3.5.1 Korszerű felnőttképzési módszerek kifejlesztése és alkalmazása EMIR azonosító: HEFOP-3.5.1-K-2004-10-0001/2.0 Tananyagfejlesztő: Máté István Lektorálta: Brückler Tamás
Lengyelné Dr. Szilágyi Szilvia április 7.
ME, Anaĺızis Tanszék 2010. április 7. , alapfogalmak 2.1. Definíció A H 1, H 2,..., H n R (ahol n 2 egész szám) nemüres valós számhalmazok H 1 H 2... H n Descartes-szorzatán a következő halmazt értjük:
EEE Kutatólaboratórium MTA-SZTAKI Magyar Tudományos Akadémia
DElosztott I S T R I B U T EEsemények D EV E N T S A NElemzé A L Y S I S se R E SKutatólaboratór E A R C H L A B O R A T Oium R Y L I D A R B a s e d S u r v e i l l a n c e Városi LIDAR adathalmaz szegmentációja
Elengedhetetlen a játékokban, mozi produkciós eszközökben Nélküle kvantum hatás lép fel. Az objektumok áthaladnak a többi objektumon
Bevezetés Ütközés detektálás Elengedhetetlen a játékokban, mozi produkciós eszközökben Nélküle kvantum hatás lép fel Az objektumok áthaladnak a többi objektumon A valósághű megjelenítés része Nem tisztán
Távérzékelés gyakorlat Fotogrammetria légifotó értelmezés
Távérzékelés gyakorlat Fotogrammetria légifotó értelmezés I. A légifotók tájolása a térkép segítségével: a). az ábrázolt terület azonosítása a térképen b). sztereoszkópos vizsgálat II. A légifotók értelmezése:
Önálló labor beszámoló Képek szegmentálása textúra analízis segítségével. MAJF21 Eisenberger András május 22. Konzulens: Dr.
Önálló labor beszámoló Képek szegmentálása textúra analízis segítségével 2011. május 22. Konzulens: Dr. Pataki Béla Tartalomjegyzék 1. Bevezetés 2 2. Források 2 3. Kiértékelő szoftver 3 4. A képek feldolgozása
Példák jellemzőkre: - minden pixelérték egy jellemző pl. neurális hálózat esetében csak kis képekre, nem invariáns sem a megvilágításra, sem a geom.
Lépések 1. tanító és teszt halmaz összeállítása / megszerzése 2. jellemzők kinyerése 3. tanító eljárás választása Sok vagy kevés adat áll-e rendelkezésünkre? Mennyi tanítási idő/memória áll rendelkezésre?
Adatelemzés és adatbányászat MSc
Adatelemzés és adatbányászat MSc 12. téma Klaszterezési módszerek Klaszterezés célja Adott az objektumok, tulajdonságaik együttese. Az objektumok között hasonlóságot és különbözőséget fedezhetünk fel.
Távérzékelés a precíziós gazdálkodás szolgálatában : látvány vagy tudomány. Verőné Dr. Wojtaszek Malgorzata
Távérzékelés a precíziós gazdálkodás szolgálatában : látvány vagy tudomány Verőné Dr. Wojtaszek Malgorzata Az előadás felépítése Trendek a Föld megfigyelésében (hol kezdődött, merre tart ) Távérzékelés
3D számítógépes geometria és alakzatrekonstrukció
3D számítógépes geometria és alakzatrekonstrukció 15. Digitális Alakzatrekonstrukció Méréstechnológia, Ponthalmazok regisztrációja http://cg.iit.bme.hu/portal/node/312 https://www.vik.bme.hu/kepzes/targyak/viiima01
Követelmény a 7. évfolyamon félévkor matematikából
Követelmény a 7. évfolyamon félévkor matematikából Gondolkodási és megismerési módszerek Elemek halmazba rendezése több szempont alapján. Halmazok ábrázolása. A nyelv logikai elemeinek helyes használata.
Minták automatikus osztályba sorolása a mintát leíró jellemzők alapján. Típusok: felügyelt és felügyelet nélküli tanuló eljárások
Minták automatikus osztályba sorolása a mintát leíró jellemzők alapján Típusok: felügyelt és felügyelet nélküli tanuló eljárások Különbség: előbbinél szükséges egy olyan tanulóhalmaz, ahol ismert a minták
A KLT (Kanade Lucas Tomasi) Feature Tracker Működése (jellegzetes pontok választása és követése)
A KL (Kanade Lucas omasi) Feature racker Működése (jellegzetes pontok választása és követése) Készítette: Hajder Levente 008.11.18. 1. Feladat A rendelkezésre álló videó egy adott képkockájából minél több
(Solid modeling, Geometric modeling) Testmodell: egy létező vagy elképzelt objektum digitális reprezentációja.
Testmodellezés Testmodellezés (Solid modeling, Geometric modeling) Testmodell: egy létező vagy elképzelt objektum digitális reprezentációja. A tervezés (modellezés) során megadjuk a objektum geometria
Grafikonok automatikus elemzése
Grafikonok automatikus elemzése MIT BSc önálló laboratórium konzulens: Orosz György 2016.05.18. A feladat elsődleges célkitűzései o eszközök adatlapján található grafikonok feldolgozása, digitalizálása
Multimédiás adatbázisok
Multimédiás adatbázisok Multimédiás adatbázis kezelő Olyan adatbázis kezelő, mely támogatja multimédiás adatok (dokumentum, kép, hang, videó) tárolását, módosítását és visszakeresését Minimális elvárás
CSAPADÉK BEFOGADÓKÉPESSÉGÉNEK TÉRKÉPEZÉSE TÁVÉRZÉKELÉSI MÓDSZEREKKEL VÁROSI KÖRNYEZETBEN
MFTTT 30. VÁNDORGYŰLÉS 2015. július 03. Szolnok CSAPADÉK BEFOGADÓKÉPESSÉGÉNEK TÉRKÉPEZÉSE TÁVÉRZÉKELÉSI MÓDSZEREKKEL VÁROSI KÖRNYEZETBEN Kovács Gergő Földmérő és földrendező szak, IV. évfolyam Verőné Dr.
3D számítógépes geometria és alakzatrekonstrukció
3D számítógépes geometria és alakzatrekonstrukció 14. Digitális Alakzatrekonstrukció - Bevezetés http://cg.iit.bme.hu/portal/node/312 https://www.vik.bme.hu/kepzes/targyak/viiima01 Dr. Várady Tamás, Dr.
Számítógépes Grafika SZIE YMÉK
Számítógépes Grafika SZIE YMÉK Analóg - digitális Analóg: a jel értelmezési tartománya (idő), és az értékkészletes is folytonos (pl. hang, fény) Diszkrét idejű: az értelmezési tartomány diszkrét (pl. a
5. 3D rekonstrukció. Kató Zoltán. Képfeldolgozás és Számítógépes Grafika tanszék SZTE (http://www.inf.u-szeged.hu/~kato/teaching/)
5. 3D rekonstrukció Kató Zoltán Képfeldolgozás és Számítógépes Grafika tanszék SZTE (http://www.inf.u-szeged.hu/~kato/teaching/) 2 PASSZÍV SZTEREÓ 3 Passzív sztereó 3D rekonstrukció egy sztereó kamera
Keresés képi jellemzők alapján. Dr. Balázs Péter SZTE, Képfeldolgozás és Számítógépes Grafika Tanszék
Keresés képi jellemzők alapján Dr. Balázs Péter SZTE, Képfeldolgozás és Számítógépes Grafika Tanszék Lusta gépi tanulási algoritmusok Osztályozás: k=1: piros k=5: kék k-legközelebbi szomszéd (k=1,3,5,7)
A mérés problémája a pedagógiában. Dr. Nyéki Lajos 2015
A mérés problémája a pedagógiában Dr. Nyéki Lajos 2015 A mérés fogalma Mérésen olyan tevékenységet értünk, amelynek eredményeként a vizsgált jelenség számszerűen jellemezhetővé, más hasonló jelenségekkel
Képfeldolgozás. 1. el adás. A képfeldolgozás m veletei. Mechatronikai mérnök szak BME, 2008
Képfeldolgozás 1. el adás. A képfeldolgozás m veletei Mechatronikai mérnök szak BME, 2008 1 / 61 Alapfogalmak transzformációk Deníció Deníció Geometriai korrekciókra akkor van szükség, ha a képr l valódi
Lineáris leképezések (előadásvázlat, szeptember 28.) Maróti Miklós, Kátai-Urbán Kamilla
Lineáris leképezések (előadásvázlat, 2012. szeptember 28.) Maróti Miklós, Kátai-Urbán Kamilla Ennek az előadásnak a megértéséhez a következő fogalmakat kell tudni: homogén lineáris egyenletrendszer és
Köszönetnyilványítás. Digitális képelemzés alapvető algoritmusai. A kurzus témái. Képelemzés és képszűrés alapfogalmai. Csetverikov Dmitrij
Köszönetnyilványítás Digitális képelemzés alapvető algoritmusai Csetverikov Dmitrij Eötvös Lóránd Egyetem, Budapest csetverikov@sztaki.hu http://vision.sztaki.hu Informatikai Kar A kurzus megírásában az
Sergyán Szabolcs szeptember 21.
Éldetektálás Sergyán Szabolcs Budapesti Műszaki Főiskola Neumann János Informatikai Kar 2009. szeptember 21. Sergyán Sz. (BMF NIK) Éldetektálás 2009. szeptember 21. 1 / 28 Mit nevezünk élnek? Intuitív
8. Pontmegfeleltetések
8. Pontmegfeleltetések Kató Zoltán Képfeldolgozás és Számítógépes Grafika tanszék SZTE (http://www.inf.u-szeged.hu/~kato/teaching/) 2 Példa: panoráma kép készítés 1. Jellemzőpontok detektálása mindkét
KONVOLÚCIÓS NEURONHÁLÓK. A tananyag az EFOP pályázat támogatásával készült.
KONVOLÚCIÓS NEURONHÁLÓK A tananyag az EFOP-3.5.1-16-2017-00004 pályázat támogatásával készült. 1. motiváció A klasszikus neuronháló struktúra a fully connected háló Két réteg között minden neuron kapcsolódik
3D - geometriai modellezés, alakzatrekonstrukció, nyomtatás
3D - geometriai modellezés, alakzatrekonstrukció, nyomtatás 15. Digitális Alakzatrekonstrukció Méréstechnológia, Ponthalmazok regisztrációja http://cg.iit.bme.hu/portal/node/312 https://www.vik.bme.hu/kepzes/targyak/viiiav54
Rendszámfelismerő rendszerek
Problémamegoldó szeminárium Témavezető: Pataki Péter ARH Zrt. ELTE-TTK 2013 Tartalomjegyzék 1 Bevezetés 2 Út a megoldás felé 3 Felmerült problémák 4 Alkalmazott matematika 5 További lehetőségek Motiváció
3D-s számítógépes geometria és alakzatrekonstrukció
3D-s számítógépes geometria és alakzatrekonstrukció 14. Digitális Alakzatrekonstrukció - Bevezetés http://cg.iit.bme.hu/portal/node/312 https://www.vik.bme.hu/kepzes/targyak/viiiav08 Dr. Várady Tamás,
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 10 X. SZIMULÁCIÓ 1. VÉLETLEN számok A véletlen számok fontos szerepet játszanak a véletlen helyzetek generálásában (pénzérme, dobókocka,
1. ábra Egy terület DTM-je (balra) és ugyanazon terület DSM-je (jobbra)
Bevezetés A digitális terepmodell (DTM) a Föld felszínének digitális, 3D-ós reprezentációja. Az automatikus DTM előállítás folyamata jelenti egyrészt távérzékelt felvételekből a magassági adatok kinyerését,
Transzformációk. Grafikus játékok fejlesztése Szécsi László 2013.02.26. t05-transform
Transzformációk Grafikus játékok fejlesztése Szécsi László 2013.02.26. t05-transform Koordinátarendszerek: modelltér Koordinátarendszerek: világtér Koordinátarendszerek: kameratér up right z eye ahead
Az intraorális lenyomatvételi eljárások matematikai, informatikai háttere. Passzív- és aktív háromszögelési módszer Időmérésen alapuló módszer
Az intraorális lenyomatvételi eljárások matematikai, informatikai háttere Passzív- és aktív háromszögelési módszer Időmérésen alapuló módszer Papp Ildikó, DE-IK, 2017 Az intraorális lenyomatvételi eljárások
1. zárthelyi,
1. zárthelyi, 2009.10.20. 1. Írjuk fel a tér P = (0,2,4) és Q = (6, 2,2) pontjait összekötő szakasz felezőmerőleges síkjának egyenletét. 2. Tekintsük az x + 2y + 3z = 14, a 2x + 6y + 10z = 24 és a 4x+2y
Vektorok, mátrixok, lineáris egyenletrendszerek
a Matematika mérnököknek I. című tárgyhoz Vektorok, mátrixok, lineáris egyenletrendszerek Vektorok A rendezett valós számpárokat kétdimenziós valós vektoroknak nevezzük. Jelölésükre latin kisbetűket használunk.
Termék modell. Definíció:
Definíció: Termék modell Összetett, többfunkciós, integrált modell (számítógépes reprezentáció) amely leír egy műszaki objektumot annak különböző életfázis szakaszaiban: tervezés, gyártás, szerelés, szervízelés,
Közösség detektálás gráfokban
Közösség detektálás gráfokban Önszervező rendszerek Hegedűs István Célkitűzés: valamilyen objektumok halmaza felett minták, csoportok detektálása csakis az egyedek közötti kapcsolatok struktúrájának a
Felügyelt önálló tanulás - Analízis III.
Felügyelt önálló tanulás - Analízis III Kormos Máté Differenciálható sokaságok Sokaságok Röviden, sokaságoknak nevezzük azokat az objektumokat, amelyek egy n dimenziós térben lokálisan k dimenziósak Definíció:
A gúla ~ projekthez 2. rész
1 A gúla ~ projekthez 2. rész Dolgozatunk 1. részében egy speciális esetre a négyzet alapú egyenes gúla esetére írtuk fel és alkalmaztuk képleteinket. Most a tetszőleges oldalszámú szabályos sokszög alakú
Kettőnél több csoport vizsgálata. Makara B. Gábor
Kettőnél több csoport vizsgálata Makara B. Gábor Három gyógytápszer elemzéséből az alábbi energia tartalom adatok származtak (kilokalória/adag egységben) Három gyógytápszer elemzésébô A B C 30 5 00 10
Diszkrét matematika 2.C szakirány
Diszkrét matematika 2.C szakirány 2017. tavasz 1. Diszkrét matematika 2.C szakirány 11. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék
Számítógépes látás alapjai
Számítógépes látás alapjai Csetverikov Dmitrij, Hajder Levente Eötvös Lóránd Egyetem, Informatikai Kar Csetverikov, Hajder (ELTE Informatikai Kar) Számítógépes látás 1 / 23 Rekonstrukció speciális hardverekkel
Papp Ferenc Barlangkutató Csoport. Barlangtérképezés. Fotómodellezés. Holl Balázs 2014. negyedik változat hatodik kiegészítés 4.6
Papp Ferenc Barlangkutató Csoport Barlangtérképezés Fotómodellezés Holl Balázs 2014 negyedik változat hatodik kiegészítés 4.6 (első változat 2011) A felszíni térképezés már egy évszázada a légifotókon
Saj at ert ek-probl em ak febru ar 26.
Sajátérték-problémák 2018. február 26. Az alapfeladat Adott a következő egyenlet: Av = λv, (1) ahol A egy ismert mátrix v ismeretlen, nem zérus vektor λ ismeretlen szám Azok a v, λ kombinációk, amikre
Térinformatika és Geoinformatika
Távérzékelés 1 Térinformatika és Geoinformatika 2 A térinformatika az informatika azon része, amely térbeli adatokat, térbeli információkat dolgoz fel A geoinformatika az informatika azon része, amely
Sztereó kamerarendszerre alapozott gyalogos felismerés Kornis János*, Szabó Zsolt**
Sztereó kamerarendszerre alapozott gyalogos felismerés Kornis János*, Szabó Zsolt** *PhD, okleveles villamosmérnök, Budapesti Műszaki és Gazdaságtudományi Egyetem Fizika Tanszék, kornis@phy.bme.hu **fizikus
Szinguláris érték felbontás Singular Value Decomposition
Szinguláris érték felbontás Singular Value Decomposition Borbély Gábor 7. április... Tétel (teljes SVD. Legyen A C m n mátrix (valósra is jó, ekkor léteznek U C m m és V C n n unitér mátrixok (valósban
Panorámakép készítése
Panorámakép készítése Képregisztráció, 2009. Hantos Norbert Blaskovics Viktor Összefoglalás Panoráma (image stitching, planar mosaicing): átfedő képek összeillesztése Lépések: Előfeldolgozás (pl. intenzitáskorrekciók)
Sztereó képfeldolgozás mobilrobot platform tájékozódásához Önálló laboratórium 2007/2008. tavaszi félév
Sztereó képfeldolgozás mobilrobot platform tájékozódásához Önálló laboratórium 007/008. tavaszi félév Józsa Csongor Konzulens: Dr. Vajda Ferenc 1/1 1. A probléma ismertetése Mobilis robotok ismeretlen
DIGITÁLIS KÉPFELDOLGOZÁS. Előadó: Póth Miklós
DIGITÁLIS KÉPFELDOLGOZÁS Előadó: Póth Miklós Kezdetek Az első alkalmazások a nyomdaiparban voltak Egy 1921-ben átvitt képet különleges karakterek nyomtatásával rekonstruáltak (halftones) 1922: egy fényképészeti
Felvétel készítése Képfeldolgozás (ábragyűjtemény) IV.
Felvétel készítése Képfeldolgozás (ábragyűjtemény) IV. Dr. Kohut József 1. felbontás (resolution) 2. látómező (field of view, FOV) 3. tárgy-távolság (working distance) 4. érzékelő (sensor) 5. tárgy/mező
Városi környezet vizsgálata távérzékelési adatok osztályozásával
Városi környezet vizsgálata távérzékelési adatok osztályozásával Verőné Dr. Wojtaszek Małgorzata Óbudai Egyetem AMK Goeinformatika Intézet 20 éves a Térinformatika Tanszék 2014. december. 15 Felvetések
6. gyakorlat. Gelle Kitti. Csendes Tibor Somogyi Viktor. London András. jegyzetei alapján
Közelítő és szimbolikus számítások 6. gyakorlat Sajátérték, Gersgorin körök Készítette: Gelle Kitti Csendes Tibor Somogyi Viktor Vinkó Tamás London András Deák Gábor jegyzetei alapján . Mátrixok sajátértékei
17. előadás: Vektorok a térben
17. előadás: Vektorok a térben Szabó Szilárd A vektor fogalma A mai előadásban n 1 tetszőleges egész szám lehet, de az egyszerűség kedvéért a képletek az n = 2 esetben szerepelnek. Vektorok: rendezett
Hipotézis STATISZTIKA. Kétmintás hipotézisek. Munkahipotézis (H a ) Tematika. Tudományos hipotézis. 1. Előadás. Hipotézisvizsgálatok
STATISZTIKA 1. Előadás Hipotézisvizsgálatok Tematika 1. Hipotézis vizsgálatok 2. t-próbák 3. Variancia-analízis 4. A variancia-analízis validálása, erőfüggvény 5. Korreláció számítás 6. Kétváltozós lineáris
Bevezetés. Kató Zoltán. Képfeldolgozás és Számítógépes Grafika tanszék SZTE (http://www.inf.u-szeged.hu/~kato/teaching/)
Bevezetés Kató Zoltán Képfeldolgozás és Számítógépes Grafika tanszék SZTE (http://www.inf.u-szeged.hu/~kato/teaching/) 2 Digitális képfeldolgozás digitális képfeldolgozás számítógépes grafika digitális
Transzformációk síkon, térben
Transzformációk síkon, térben Leképezés, transzformáció Leképezés: Ha egy A ponttér pontjaihoz egy másik B ponttér pontjait kölcsönösen egyértelműen rendeljük hozzá, akkor ezt a hozzárendelést leképezésnek
Számítógépes képelemzés 7. előadás. Dr. Balázs Péter SZTE, Képfeldolgozás és Számítógépes Grafika Tanszék
Számítógépes képelemzés 7. előadás Dr. Balázs Péter SZTE, Képfeldolgozás és Számítógépes Grafika Tanszék Momentumok Momentum-alapú jellemzők Tömegközéppont Irányultáság 1 2 tan 2 1 2,0 1,1 0, 2 Befoglaló
Matematika szóbeli érettségi témakörök 2016/2017-es tanév őszi vizsgaidőszak
Matematika szóbeli érettségi témakörök 2016/2017-es tanév őszi vizsgaidőszak Halmazok Halmazok egyenlősége Részhalmaz, valódi részhalmaz Üres halmaz Véges és végtelen halmaz Halmazműveletek (unió, metszet,
A városi vegetáció felmérése távérzékelési módszerekkel Vécsei Erzsébet
A városi vegetáció felmérése távérzékelési módszerekkel Vécsei Erzsébet Előzmények A távérzékelés az elmúlt évtizedben rohamosan fejlődésnek indult. A felhasználók részéről megjelent az igény az egyre
Matematika A1a Analízis
B U D A P E S T I M Ű S Z A K I M A T E M A T I K A É S G A Z D A S Á G T U D O M Á N Y I I N T É Z E T E G Y E T E M Matematika A1a Analízis BMETE90AX00 Vektorok StKis, EIC 2019-02-12 Wettl Ferenc ALGEBRA
Összeállította: dr. Leitold Adrien egyetemi docens
Az R 3 tér geometriája Összeállította: dr. Leitold Adrien egyetemi docens 2008.09.08. 1 Vektorok Vektor: irányított szakasz Jel.: a, a, a, AB, Jellemzői: irány, hosszúság, (abszolút érték) jel.: a Speciális
Matematika (mesterképzés)
Matematika (mesterképzés) Környezet- és Településmérnököknek Debreceni Egyetem Műszaki Kar, Műszaki Alaptárgyi Tanszék Vinczéné Varga A. Környezet- és Településmérnököknek 2016/2017/I 1 / 29 Lineáris tér,
A matematikai feladatok és megoldások konvenciói
A matematikai feladatok és megoldások konvenciói Kozárné Fazekas Anna Kántor Sándor Matematika és Informatika Didaktikai Konferencia - Szatmárnémeti 2011. január 28-30. Konvenciók Mindenki által elfogadott
CAD-CAM-CAE Példatár
CAD-CAM-CAE Példatár A példa megnevezése: A példa száma: A példa szintje: CAx rendszer: Kapcsolódó TÁMOP tananyag rész: A feladat rövid leírása: VEM befogott tartó ÓE-A15 alap közepes haladó CATIA V5 CAD,
8. Előadás. Megyesi László: Lineáris algebra, , oldal. 8. előadás Mátrix rangja, Homogén lineáris egyenletrendszer
8. Előadás Megyesi László: Lineáris algebra, 51. 56., 70. 74. oldal. Gondolkodnivalók Elemi bázistranszformáció 1. Gondolkodnivaló Most ne vegyük figyelembe, hogy az elemi bázistranszformáció során ez
Ö ná llo láboráto rium beszá molo
Ö ná llo láboráto rium beszá molo Képfeldolgozás orvosi alkalmazásai Vetítés CT felvételekből Kárász András Konzulens: Dr. Horváth Gábor Bevezetés Napjainkban a városi életmód következtében (szállópor,
I. VEKTOROK, MÁTRIXOK
217/18 1 félév I VEKTOROK, MÁTRIXOK I1 I2 Vektorok 1 A síkon derékszögű koordinátarendszerben minden v vektornak van vízszintes és van függőleges koordinátája, ezeket sorrendben v 1 és v 2 jelöli A v síkbeli
Automatikus épület-felismerés ortofotókon objektum-alapú eljárással
Automatikus épület-felismerés ortofotókon objektum-alapú eljárással Gera Dávid Ákos, Nádor Gizella, Surek György Földmérési és Távérzékelési Intézet Távérzékelési Igazgatóság 1. Bevezetés Napjainkban a
A médiatechnológia alapjai
A médiatechnológia alapjai Úgy döntöttem, hogy a Szirányi oktatta előadások számonkérhetőnek tűnő lényegét kiemelem, az alapján, amit a ZH-ról mondott: rövid kérdések. A rész és az egész: összefüggések
Transzformációk, amelyek n-dimenziós objektumokat kisebb dimenziós terekbe visznek át. Pl. 3D 2D
Vetítések Transzformációk, amelyek n-dimenziós objektumokat kisebb dimenziós terekbe visznek át. Pl. 3D 2D Vetítések fajtái - 1 perspektívikus A párhuzamos A A' B A' B A vetítés középpontja B' Vetítési
Lineáris algebra zárthelyi dolgozat javítókulcs, Informatika I. 2005.márc.11. A csoport
Lineáris algebra zárthelyi dolgozat javítókulcs, Informatika I. 2005.márc.11. A csoport 1. Egy egyenesre esnek-e az A (2, 5, 1), B (5, 17, 7) és C (3, 9, 3) pontok? 5 pont Megoldás: Nem, mert AB (3, 12,
Képfeldolgozás jól párhuzamosítható
Képfeldolgozás jól párhuzamosítható B. Wilkinson, M. Allen: Parallel Programming, Pearson Education Prentice Hall, 2nd ed., 2005. könyv 12. fejezete alapján Vázlat A képfeldolgozás olyan alkalmazási terület,
KLASZTERANALÍZIS OSZTÁLYOZÁS
L G L z eseteket homogén csoportokba (ú.n. klaszterekbe) soroljuk. csoportosítás alapja egy adott metrika szerinti közelség, illetve egy adott hasonlósági mérték szerinti hasonlóság. C z esetek egy kategóriaváltozó
Alter Róbert Báró Csaba Sensor Technologies Kft
Közúti forgalomelemzés kamerával e_traffic Alter Róbert Báró Csaba Sensor Technologies Kft Előadás témái Cégbemutató Videó analitikai eljárások Forgalomszámláló eszközök összehasonlítása e_traffic forgalomelemző
Koordináta-geometria feladatok (emelt szint)
Koordináta-geometria feladatok (emelt szint) 1. (ESZÉV Minta (2) 2004.05/7) Egy ABC háromszögben CAB = 30, az ACB = 45. A háromszög két csúcsának koordinátái: A(2; 2) és C(4; 2). Határozza meg a harmadik
Adatszerkezetek Tömb, sor, verem. Dr. Iványi Péter
Adatszerkezetek Tömb, sor, verem Dr. Iványi Péter 1 Adat Adat minden, amit a számítógépünkben tárolunk és a külvilágból jön Az adatnak két fontos tulajdonsága van: Értéke Típusa 2 Adat típusa Az adatot
Multimédia alapú fejlesztéseknél gyakran használt veszteséges képtömörítő eljárások pszichovizuális összehasonlítása
Multimédia alapú fejlesztéseknél gyakran használt veszteséges képtömörítő eljárások pszichovizuális összehasonlítása Berke József 1 - Kocsis Péter 2 - Kovács József 2 1 - Pannon Agrártudományi Egyetem,
Gauss-Seidel iteráció
Közelítő és szimbolikus számítások 5. gyakorlat Iterációs módszerek: Jacobi és Gauss-Seidel iteráció Készítette: Gelle Kitti Csendes Tibor Somogyi Viktor London András Deák Gábor jegyzetei alapján 1 ITERÁCIÓS
Gráfelmélet/Diszkrét Matematika MSc hallgatók számára. 13. Előadás
Gráfelmélet/Diszkrét Matematika MSc hallgatók számára 13. Előadás Előadó: Hajnal Péter Jegyzetelő: Hajnal Péter 2009. december 7. Gráfok sajátértékei Definíció. Egy G egyszerű gráf sajátértékei az A G
Sajátértékek és sajátvektorok. mf1n1a06- mf1n2a06 Csabai István
Sajátértékek és sajátvektorok A fizika numerikus módszerei I. mf1n1a06- mf1n2a06 Csabai István Lineáris transzformáció Vektorok lineáris transzformációja: általános esetben az x vektor iránya és nagysága
Egy feladat megoldása Geogebra segítségével
Egy feladat megoldása Geogebra segítségével A következőkben a Geogebra dinamikus geometriai szerkesztőprogram egy felhasználási lehetőségéről lesz szó, mindez bemutatva egy feladat megoldása során. A Geogebra
Transzformációk. Szécsi László
Transzformációk Szécsi László A feladat Adott a 3D modell háromszögek csúcspontjai [modellezési koordináták] Háromszögkitöltő algoritmus pixeleket színez be [viewport koordináták] A feladat: számítsuk
Kvadratikus alakok és euklideszi terek (előadásvázlat, október 5.) Maróti Miklós, Kátai-Urbán Kamilla
Kvadratikus alakok és euklideszi terek (előadásvázlat, 0. október 5.) Maróti Miklós, Kátai-Urbán Kamilla Az előadáshoz ajánlott jegyzet: Szabó László: Bevezetés a lineáris algebrába, Polygon Kiadó, Szeged,
Szakmai zárójelentés
Szakmai zárójelentés A csoporttechnológia (Group Technology = GT) elvi és módszertani alapjaihoz, valamint a kapcsolódó módszerek informatikai alkalmazásaihoz kötődő kutatómunkával a Miskolci Egyetem Alkalmazott
Az informatika kulcsfogalmai
Az informatika kulcsfogalmai Kulcsfogalmak Melyek azok a fogalmak, amelyek nagyon sok más fogalommal kapcsolatba hozhatók? Melyek azok a fogalmak, amelyek más-más környezetben újra és újra megjelennek?
Követelmény a 8. évfolyamon félévkor matematikából
Követelmény a 8. évfolyamon félévkor matematikából Gondolkodási és megismerési módszerek Halmazokkal kapcsolatos alapfogalmak ismerete, halmazok szemléltetése, halmazműveletek ismerete, eszköz jellegű
Hadházi Dániel.
Hadházi Dániel hadhazi@mit.bme.hu Orvosi képdiagnosztika: Szerepe napjaink orvoslásában Képszegmentálás orvosi kontextusban Elvárások az adekvát szegmentálásokkal szemben Verifikáció és validáció lehetséges
Vektorgeometria (2) First Prev Next Last Go Back Full Screen Close Quit
Vektorgeometria (2) First Prev Next Last Go Back Full Screen Close Quit 1. Tekintsünk a térben egy P (p 1, p 2, p 3 ) pontot és egy v = (v 1, v 2, v 3 ) = 0 vektort. Ekkor pontosan egy egyenes létezik,
Számítógépes képelemzés
Számítógépes képelemzés ANYAGMÉRNÖKI MESTERKÉPZÉS (MSc) Anyag- és szerkezetdiagnosztikai Anyaginformatikai Anyagvizsgálati kiegészítő szakirány TANTÁRGYI KOMMUNIKÁCIÓS DOSSZIÉ MISKOLCI EGYETEM MŰSZAKI