1. ábra Egy terület DTM-je (balra) és ugyanazon terület DSM-je (jobbra)
|
|
- Imre Rácz
- 9 évvel ezelőtt
- Látták:
Átírás
1 Bevezetés A digitális terepmodell (DTM) a Föld felszínének digitális, 3D-ós reprezentációja. Az automatikus DTM előállítás folyamata jelenti egyrészt távérzékelt felvételekből a magassági adatok kinyerését, másrészt a felszín térmodelljének előállítását. A DTM megjeleníti a felszíni topográfiát és nem tartalmazza a mesterséges (pl. épületek), valamint természetes (pl. fák) tereptárgyakat. A digitális felületmodell (DSM) megjeleníti a Föld felszínét a rajta található összes természetes és mesterséges objektummal együtt (1. ábra). 1. ábra Egy terület DTM-je (balra) és ugyanazon terület DSM-je (jobbra) A távérzékelt felvételek az elsődleges adatforrásai a DTM/DSM-ek előállításának. A modellek abban az esetben hozhatók létre, ha rendelkezésre áll az adott területről két, vagy több átfedő felvétel. Továbbá ismernünk kell a szenzor modellt (belső adatok), és a külső GPS/INS adatokat. DTM extrakció lépései 1. lépés: digitális kép-hozzárendelés a DTM mass pontok meghatározásához 2. lépés: ground pontkoordináták számítása 3. lépés: DTM felépítése 1. Lépés Közös képterülettel rendelkező (átfedő) digitális felvételek megegyező területeinek/pontjainak megtalálására gyakran alkalmazott eljárás a távérzékelésben és GIS-ben a korreláció. Az automatikus DTM generálást a korrelációs számításokon és képillesztési eljárásokon keresztül valóstják meg a digitális fotogrammetriai programok. Érdeklődési pont meghatározás Érdeklődési operátor alkalmazásával a légifotó-tömb felvételein érdeklődési pontok (feature points) sorozatát határozzuk meg. Az érdeklődési pont a középpontja egy kereső/minta ablaknak (mátrix), amely megfelelő szürkeségi intenzitással és kontraszttal rendelkezik. Az
2 érdeklődési pont ugyanakkor egy képpont is természetesen, egy jól felismerhető felszíni objektum jellemző pontja, pl. útkereszteződés, ház sarka, stb. Érdeklődési pont illesztése Amennyiben a tömb egy felvételén az érdeklődési pont meghatározása sikeresen megtörtént, a program az átfedő további felvételeken is megkeresi az adott pontot, így a vele azonosítható felszíni jellegzetességet is. A korrelációs ablak és a kereső ablak között keresztkorrelációs együttható kiszámítása a következő lépés. A korrelációs ablak a referencia képhez tartozik, a keresőablak a szomszédos átfedő kép(ek)hez. Az érdeklődési pontnak a szomszédos kép(ek)en több lehetséges illesztő-pont is megfelelhet. Minden lehetséges illeszkedő képponthalmazra kiszámítja a program a korrelációs koefficienst. A korrelációs együttható mutatja meg a hasonlóság mértékét az átfedő képterület ponthalmazai között. A magasabb érték (0.8-1) statisztikailag a hasonlóság nagyobb fokát jelenti értelemszerűen, mint az alacsonyabb érték (0.5 alatt). Startégiai paraméterek A startégiai paraméterek az illesztési eljárás sikerességét és pontosságát befolyásolják. A paraméterek közül a keresőablak és a korrelációs ablak méretének és a korrelációs együttható határértékének van legnagyobb hatása. Keresőablak mérete Miután egy érdeklődési pont meghatározásra került az első képen, a program megbecsüli a megközelítő helyét ugyanennek a pontnak a második képen. A közelítő érték alapján azután egy négyzetes keresőablakon belül határozza meg az egyező pont helyét. A keresőablak X értéke jelenti a keresési terület hosszát az epipoláris egyenes mentén; a keresőablak Y értéke jelenti a keresési terület szélességét az epipoláris egyenesen keresztül. A keresőablak X értékének nagysága függ az adott domborzat magassági változatosságától, minél élénkebb a domborzat, annál nagyobb az X érték. Az epipoláris egyenes pontosan megadható jó légiháromszögelési eredménnyel rendelkező légi keretkamerás felvételek esetén, így 1-3 pixeles Y érték a keresőablakra általában elegendő. A pushbroom technikával készült műholdfelvételeknél az epipoláris egyenes kevésbé pontos, így 3-5 pixeles Y érték ajánlott. Amennyiben a légiháromszögelés eredménye kevéssé megfelelő, az ablak méretének további növelésére lehet szükség. Ábra: kereső ablak ideális esete
3 Ebben az esetben keresőablak X értéke a következő formula alapján becsülhető: Sx = B*f/Ho*(Zmax-Zmin)/Ho Az Imagine OBPro legkisebb piramis rétege 250x250 pixeles, így itt Sx a következő összefüggés alapján számítható, ha a tömb felvételei között az átfedés értéke p: Sx = 250(Zmax-Zmin)/Ho*(1-p) Például: ha az átfedés 60%, a repülési magasság 4500 m, a magasságkülönbség 300 m, akkor a keresőablak becsült optimális X értéke: 7 pixel. Miután a gyakorlatban a felvételek egymáshoz képest elforgatott helyzetben vannak, nem ugyanabból a magasságból készülnek, az átfedés értéke is páronként változik a tömbön belül, így ajánlott a formulából kapott, kissé alábecsült értéket körüli értékkel beszorozni, tehát az előbbi példában az Sx értékének pixelt kell megadni. A korrelációs ablak mérete
4 A korrelációs ablak mérete a korrelációs koefficiens számításánál figyelembe vett ablak értékeinek számát határozza meg. Alapértéke 7x7-es, de alacsony relatív relieffel és színintenzitás-változással rendelkező felszín (mezőgazdasági parcella, gyep, homogén talaj, stb.) esetén az ablak mérete növelhető (9x9, vagy nagyobb). Amennyiben változatos a modellezett terület az ablak mérete csökkenthető (5x5). Az ablak alakja (nem szabályos) téglalap is lehet (pl. 7x9), mivel a domborzat okozta változás az epipoláris egyenes mentén (X irány) általában nagyobb, mint arra merőlegesen (Y irány). Korrelációs koefficiens határértéke A korrelációs koefficiens határértéke megadja azt a küszöbértéket, amely alapján meghatározzuk, hogy két kiválasztott pont megfeleltethető-e egymásnak, vagy sem. Amikor két felvétel két pontja között a korreláció értéke kiszámításra került, a program összehasonlítja ezt az értéket a határértékkel és amennyiben kisebbnek adódik, a két pont illesztése nem valósul meg. Nagyobb határérték pontosabb illesztést jelent, viszont kevesebb a kiválasztott pontok száma. Ha kisebbnek vesszük a küszöbértéket, akkor több illesztett pontot kapunk, viszont a figyelembe vett esetlegesen rossz pontok száma is növekedhet. Ajánlott a 0.7-es érték, viszont ha radiometrikusan jó minőségű, kis relatív reliefű felvételekkel dolgozunk, akkor a 0.8-as határérték lehet a megfelelő. Illeszkedési kikötések A képpárok geometriai és radiometrikus jellemzői meghatározzák a pontillesztési eljárások pontosságát és megbízhatóságát. A sztereopárok epipoláris geometriai tulajdonságait használjuk fel az illeszkedő pontpárok lehetséges elhelyezkedési környezeteinek megtalálásához. A 4-4. ábrán a referencia kép egy pontjának az átfedő kép epipoláris egyenesén megfeleltethető pontjait mutatja. A 4-5 ábra az epipoláris geometria alkalmazását mutatja be a pontillesztésben. Az L1PL2 az epipoláris sík és a képsíkok metszetét jelöli. A P felszíni pont, melynek koordinátái: Xp, Yp, Zp. Az epipoláris egyenes ismeretével, amelyen az összetartozó pontok elhelyezkednek, a keresési terület és a számítási idő is csökkenthető.
5 Az epipoláris geometria a komplanaritási feltételeket adja meg: a sztereopár felvételeinek vetítési centrumai, bármely felszíni pont és a neki megfelelő képpontok egy közös síkra kell, hogy illeszkedjenek. Ez a közös sík az epipoláris sík, vagy magsík. Az epipoláris sík metszi a jobb és a bal képet is, a metszésvonalat epipoláris egyenesenek (vagy magsugárnak) nevezzük. A földi pont képe az epipoláris egyenesre kell, hogy essen. A keresési és illesztési/egyeztetési eljárást így egy egyenes mentén kell végrehajtania a programnak, evvel egyszerűsítve az egyeztetési eljárást. Az epipoláris egyszerűsítések/kikötések csak tájékozott felvételek és ismert felvételi pozíciók esetén alkalmazhatók nyilvánvalóan. 2. lépés Amikor a korrelációs együttható meghatározásra került minden lehetséges illeszkedő ponthalmazra, statisztikai tesztek alapján választódik ki a földi pontnak leginkább megfelelő képi pont. A megoldáshalmaz pontjainak pixelkoordinátái tárolódnak, amelynek eredményeként a sztereopár által lefedett felszíni területet reprezentáló képpontok sor- és oszlopkoordinátáit kapjuk a jobb és a bal képre egyenként. Ezután kiszámításra kerülnek a képi pontok 3D koordinátái. Az eredmény-koordináták alkotják a DTM mass pontokat. A mass pont egy, legalább egy sztereoátfedésen megjelenő, diszkrét pont, melynek a a 3D koordinátái ismertek. A térbeli előremetszés/irányzás eljárása használatos a mass pont 3D koordinátáinak számításához. Ábra: DTM mass pontok 3D shape fájlban 3. lépés
6 Utolsó lépésként a kimeneti formátum meghatározása a feladat. Az OB PRO négyféle fájlformátumban állítja elő a DTM-et: DEM, Terramodel TIN, ESRI 3D shape, ASCII. A DEM és a Terramodell TIN a felszín mass pontokból interpolált folytonos modellje, míg a másik két formátum a 3D koordinátákkal rendelkező diszkrét mass pontokat tartalmazza. Irodalom Geoinformatika - elektronikus jegyzet Czimber Kornél, 2001 Imagine OrthoBase User s Guide
A fotogrammetria ismeretek és a szakmai tudás fontossága
Óbudai Egyetem Alba Regia Műszaki Kar Geoinformatikai Intézet A fotogrammetria ismeretek és a szakmai tudás fontossága 3. Légifotó Nap, Székesfehérvár, 2018. február 7. A fotogrammetria fogalma A fotogrammetria
Panorámakép készítése
Panorámakép készítése Képregisztráció, 2009. Hantos Norbert Blaskovics Viktor Összefoglalás Panoráma (image stitching, planar mosaicing): átfedő képek összeillesztése Lépések: Előfeldolgozás (pl. intenzitáskorrekciók)
A DIGITÁLIS TÉRKÉP ADATAINAK ELŐÁLLÍTÁSA, ADATNYERÉSI ELJÁRÁSOK
A DIGITÁLIS TÉRKÉP ADATAINAK ELŐÁLLÍTÁSA, ADATNYERÉSI ELJÁRÁSOK - két féle adatra van szükségünk: térbeli és leíró adatra - a térbeli adat előállítása a bonyolultabb. - a költségek nagyjából 80%-a - munkaigényes,
Fotogrammetriai munkaállomások szoftvermoduljainak tervezése. Dr. habil. Jancsó Tamás Óbudai Egyetem, Alba Regia Műszaki Kar
Fotogrammetriai munkaállomások szoftvermoduljainak tervezése Dr. habil. Jancsó Tamás Óbudai Egyetem, Alba Regia Műszaki Kar Témakörök DPW szoftvermodulok Szoftverek funkciói Pár példa Mi hiányzik gyakran?
Regresszió számítás. Tartalomjegyzék: GeoEasy V2.05+ Geodéziai Kommunikációs Program
Regresszió számítás GeoEasy V2.05+ Geodéziai Kommunikációs Program DigiKom Kft. 2006-2010 Tartalomjegyzék: Egyenes x változik Egyenes y változik Egyenes y és x változik Kör Sík z változik Sík y, x és z
Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Geometria III.
Geometria III. DEFINÍCIÓ: (Vektor) Az egyenlő hosszúságú és egyirányú irányított szakaszoknak a halmazát vektornak nevezzük. Jele: v. DEFINÍCIÓ: (Geometriai transzformáció) Geometriai transzformációnak
Távérzékelés Analóg felvételek feldolgozása (EENAFOTOTV, ETNATAVERV) Erdőmérnöki szak, Környezettudós szak Király Géza NyME, Erdőmérnöki Kar Geomatikai, Erdőfeltárási és Vízgazdálkodási Intézet Földmérési
Számítási feladatok a Számítógépi geometria órához
Számítási feladatok a Számítógépi geometria órához Kovács Zoltán Copyright c 2012 Last Revision Date: 2012. október 15. kovacsz@nyf.hu Technikai útmutató a jegyzet használatához A jegyzet képernyőbarát
Kis magasságban végzett légi térképészeti munkák tapasztalatai. LÉGIFOTÓ NAP Székesfehérvár GeoSite Kft Horváth Zsolt
Kis magasságban végzett légi térképészeti munkák tapasztalatai LÉGIFOTÓ NAP 2018 - Székesfehérvár GeoSite Kft Horváth Zsolt Az UAV technológiák térképészeti célú alkalmazásának lehetőségei, célterületei:
Műszaki Dokumentáció
Műszaki Dokumentáció Vállalkozási szerződés térinformatikai felmérések, feldolgozások beszerzése tárgyú közbeszerzési eljáráshoz 1. A FELADAT MEGFOGALMAZÁSA Az Árvízi veszély- és kockázati térképezés és
A tér lineáris leképezései síkra
A tér lineáris leképezései síkra Az ábrázoló geometria célja: A háromdimenziós térben elhelyezkedő alakzatok helyzeti és metrikus viszonyainak egyértelmű és egyértelműen rekonstruálható módon történő ábrázolása
Nyers légifotók feldolgozási lehetőségei ESRI platformon. CSUNDERLIK LÁSZLÓ GDi Esri
Nyers légifotók feldolgozási lehetőségei ESRI platformon CSUNDERLIK LÁSZLÓ GDi Esri Általános specifikációk Platfrom - Fix szárny, kopter Szenzorok - Képalkotó szenzor (Digitális, Multispektrális) - Lencse
Koordináta-geometria feladatok (emelt szint)
Koordináta-geometria feladatok (emelt szint) 1. (ESZÉV Minta (2) 2004.05/7) Egy ABC háromszögben CAB = 30, az ACB = 45. A háromszög két csúcsának koordinátái: A(2; 2) és C(4; 2). Határozza meg a harmadik
Távérzékelés gyakorlat Fotogrammetria légifotó értelmezés
Távérzékelés gyakorlat Fotogrammetria légifotó értelmezés I. A légifotók tájolása a térkép segítségével: a). az ábrázolt terület azonosítása a térképen b). sztereoszkópos vizsgálat II. A légifotók értelmezése:
Lakóház tervezés ADT 3.3-al. Segédlet
Lakóház tervezés ADT 3.3-al Segédlet A lakóház tervezési gyakorlathoz főleg a Tervezés és a Dokumentáció menüket fogjuk használni az AutoDesk Architectural Desktop programból. A program centiméterben dolgozik!!!
Koordinátageometria. , azaz ( ) a B halmazt pontosan azok a pontok alkotják, amelynek koordinátáira:
005-0XX Emelt szint Koordinátageometria 1) a) Egy derékszögű háromszög egyik oldalegyenese valamelyik koordinátatengely, egy másik oldalegyenesének egyenlete x + y = 10, egyik csúcsa az origó. Hány ilyen
Csoportosítás. Térinformatikai műveletek, elemzések. Csoportosítás. Csoportosítás
Csoportosítás Térinformatikai műveletek, elemzések Leíró (attribútum) adatokra vonatkozó kérdések, műveletek, elemzések, csoportosítások,... Térbeli (geometriai) adatokra vonatkozó kérdések, műveletek
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK EMELT SZINT Koordinátageometria
1) MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK EMELT SZINT Koordinátageometria A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek
(Solid modeling, Geometric modeling) Testmodell: egy létező vagy elképzelt objektum digitális reprezentációja.
Testmodellezés Testmodellezés (Solid modeling, Geometric modeling) Testmodell: egy létező vagy elképzelt objektum digitális reprezentációja. A tervezés (modellezés) során megadjuk a objektum geometria
Cölöp függőleges teherbírásának és süllyedésének CPT alapú számítása
15. számú mérnöki kézikönyv Frissítve: 2017. március Cölöp függőleges teherbírásának és süllyedésének CPT alapú számítása Program: Cölöp CPT Fájl: Demo_manual_15.gpn Ennek a mérnöki kézikönyvnek célja,
Digitális fotogrammetria
Digitális fotogrammetria I. Áttekintés Digitális fotogrammetria (DFG): digitális felvételeket használ Elıállíthatók: fotogrammetriai szkennerekkel hagyományos légifényképekbıl, vagy közvetlenül digitális
Mozgásvizsgálatok. Mérnökgeodézia II. Ágfalvi Mihály - Tóth Zoltán
Mérnökgeodézia II. Ágfalvi Mihály - Tóth Zoltán Célja: Várható elmozdulások előrejelzése (erőhatások alatt, Siógemenci árvízkapu) Már bekövetkezett mozgások okainak vizsgálata (Pl. kulcsi löszpart) Laboratóriumi
11. előadás. Konvex poliéderek
11. előadás Konvex poliéderek Konvex poliéder 1. definíció: Konvex poliédernek nevezzük a térben véges sok, nem egysíkú pont konvex burkát. 2. definíció: Konvex poliédernek nevezzük azokat a térbeli korlátos
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 8 VIII. REGREssZIÓ 1. A REGREssZIÓs EGYENEs Két valószínűségi változó kapcsolatának leírására az eddigiek alapján vagy egy numerikus
Digitális Domborzat Modellek (DTM)
Digitális Domborzat Modellek (DTM) Digitális Domborzat Modellek (DTM) Digitális Domborzat Modellek (DTM) DTM fogalma A földfelszín számítógéppel kezelhető topográfiai modellje Cél: tetszőleges pontban
3D számítógépes geometria és alakzatrekonstrukció
3D számítógépes geometria és alakzatrekonstrukció 14. Digitális Alakzatrekonstrukció - Bevezetés http://cg.iit.bme.hu/portal/node/312 https://www.vik.bme.hu/kepzes/targyak/viiima01 Dr. Várady Tamás, Dr.
Adatbázisok. és s GIS műveletek pontossága
Adatbázisok és s GIS műveletek pontossága A bizonytalansági vita résztvevői A digitális adatoktól és a létrehozott termékektől is elvárható hogy adott pontossági jellemzőkkel rendelkezzen. A pontosság
Digitális képek feldolgozása Előfeldolgozás Radiometriai korrekció Geometriai korrekció Képjavítás Szűrők Sávok közötti műveletek Képosztályozás Utófe
Távérzékelés Digitális felvételek előfeldolgozása (EENAFOTOTV, ETNATAVERV) Erdőmérnöki szak, Környezettudós szak Király Géza NyME, Erdőmérnöki Kar Geomatikai, Erdőfeltárási és Vízgazdálkodási Intézet Földmérési
Matematika szóbeli érettségi témakörök 2016/2017-es tanév őszi vizsgaidőszak
Matematika szóbeli érettségi témakörök 2016/2017-es tanév őszi vizsgaidőszak Halmazok Halmazok egyenlősége Részhalmaz, valódi részhalmaz Üres halmaz Véges és végtelen halmaz Halmazműveletek (unió, metszet,
A távérzékelt felvételek tematikus kiértékelésének lépései
A távérzékelt felvételek tematikus kiértékelésének lépései Csornai Gábor László István Földmérési és Távérzékelési Intézet Mezőgazdasági és Vidékfejlesztési Igazgatóság Az előadás 2011-es átdolgozott változata
29/2014. (III. 31.) VM rendelet az állami digitális távérzékelési adatbázisról
29/2014. (III. 31.) VM rendelet az állami digitális távérzékelési adatbázisról A földmérési és térképészeti tevékenységről szóló 2012. évi XLVI. törvény 38. (3) bekezdés b) pontjában kapott felhatalmazás
CSAPADÉK BEFOGADÓKÉPESSÉGÉNEK TÉRKÉPEZÉSE TÁVÉRZÉKELÉSI MÓDSZEREKKEL VÁROSI KÖRNYEZETBEN
MFTTT 30. VÁNDORGYŰLÉS 2015. július 03. Szolnok CSAPADÉK BEFOGADÓKÉPESSÉGÉNEK TÉRKÉPEZÉSE TÁVÉRZÉKELÉSI MÓDSZEREKKEL VÁROSI KÖRNYEZETBEN Kovács Gergő Földmérő és földrendező szak, IV. évfolyam Verőné Dr.
GEOMETRIA 1, alapszint
GEOMETRIA 1, alapszint Kiss György 4-723 Fogadóóra: péntek 8. 15-10. 00 email: kissgy@cs.elte.hu Előadás: 11. 15-13. 45, közben egyszer 15 perc szünet GEOMETRIA 1, alapszint Ajánlott irodalom: Hajós Gy.:
Minden jó válasz 4 pontot ér, hibás válasz 0 pont, ha üresen hagyja a válaszmezőt, 1 pont.
1. 1. Név: NEPTUN kód: Tanult középiskolai matematika szintje: közép, emelt szint. Munkaidő: 50 perc. A dolgozat megírásához íróeszközön kívül semmilyen segédeszköz nem használható. A feladatlap üresen
3D-s számítógépes geometria és alakzatrekonstrukció
3D-s számítógépes geometria és alakzatrekonstrukció 14. Digitális Alakzatrekonstrukció - Bevezetés http://cg.iit.bme.hu/portal/node/312 https://www.vik.bme.hu/kepzes/targyak/viiiav08 Dr. Várady Tamás,
Geometria. a. Alapfogalmak: pont, egyenes, vonal, sík, tér (Az alapfogalamakat nem definiáljuk)
1. Térelemek Geometria a. Alapfogalmak: pont, egyenes, vonal, sík, tér (Az alapfogalamakat nem definiáljuk) b. Def: félegyenes, szakasz, félsík, féltér. c. Kölcsönös helyzetük: i. pont és (egyenes vagy
Városi környezet vizsgálata távérzékelési adatok osztályozásával
Városi környezet vizsgálata távérzékelési adatok osztályozásával Verőné Dr. Wojtaszek Małgorzata Óbudai Egyetem AMK Goeinformatika Intézet 20 éves a Térinformatika Tanszék 2014. december. 15 Felvetések
QGIS gyakorló. --tulajdonságok--stílus fül--széthúzás a terjedelemre).
QGIS gyakorló Cím: A Contour-, a Point sampling tool és a Terrain profile pluginek használata. DEM letöltése: http://www.box.net/shared/1v7zq33leymq1ye64yro A következő gyakorlatban szintvonalakat fogunk
Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Megoldások
Megoldások 1. Határozd meg a szakasz hosszát, ha a végpontok koordinátái: A ( 1; ) és B (5; )! A szakasz hosszához számítsuk ki a két pont távolságát: d AB = AB = (5 ( 1)) + ( ) = 6 + 1 = 7 6,08.. Határozd
Transzformációk. Grafikus játékok fejlesztése Szécsi László 2013.02.26. t05-transform
Transzformációk Grafikus játékok fejlesztése Szécsi László 2013.02.26. t05-transform Koordinátarendszerek: modelltér Koordinátarendszerek: világtér Koordinátarendszerek: kameratér up right z eye ahead
Háromszögek, négyszögek, sokszögek 9. évfolyam
Háromszögek, négyszögek, sokszögek 9. évfolyam I. Pontok, egyenesek, síkok és ezek kölcsönös helyzetet 1) a pont, az egyenes, a sík és az illeszkedés alapfogalmak 2) két egyenes metsző, ha van közös pontjuk
Analóg felvételek Centrális leképezéssel készült felvételek Nem centrális leképezéssel készült felvételek
Monitoring távérzékeléssel Analóg felvételek feldolgozása (E130-501) Természetvédelmi MSc szak Király Géza NyME, Erdőmérnöki Kar Geomatikai, Erdőfeltárási és Vízgazdálkodási Intézet Földmérési és Távérzékelési
Rendszámfelismerő rendszerek
Problémamegoldó szeminárium Témavezető: Pataki Péter ARH Zrt. ELTE-TTK 2013 Tartalomjegyzék 1 Bevezetés 2 Út a megoldás felé 3 Felmerült problémák 4 Alkalmazott matematika 5 További lehetőségek Motiváció
Települési tetőkataszterek létrehozása a hasznosítható napenergia potenciál meghatározására a Bódva-völgyében különböző térinformatikai módszerekkel
Települési tetőkataszterek létrehozása a hasznosítható napenergia potenciál meghatározására a Bódva-völgyében különböző térinformatikai módszerekkel Szalontai Lajos Miskolci Egyetem Földrajz-Geoinformatika
Infobionika ROBOTIKA. X. Előadás. Robot manipulátorok II. Direkt és inverz kinematika. Készült a HEFOP P /1.0 projekt keretében
Infobionika ROBOTIKA X. Előadás Robot manipulátorok II. Direkt és inverz kinematika Készült a HEFOP-3.3.1-P.-2004-06-0018/1.0 projekt keretében Tartalom Direkt kinematikai probléma Denavit-Hartenberg konvenció
Termék modell. Definíció:
Definíció: Termék modell Összetett, többfunkciós, integrált modell (számítógépes reprezentáció) amely leír egy műszaki objektumot annak különböző életfázis szakaszaiban: tervezés, gyártás, szerelés, szervízelés,
Középpontos hasonlóság szerkesztések
Középpontos hasonlóság szerkesztések 1. Adott az AV B konvex szög és a belsejében egy P pont. Húzzunk a P ponton át egy egyenest úgy, hogy a szög száraiból kimetszett szeletek aránya 3 : 4 legyen. Legyen
A Vonallánc készlet parancsai lehetővé teszik vonalláncok és sokszögek rajzolását.
11. Geometriai elemek 883 11.3. Vonallánc A Vonallánc készlet parancsai lehetővé teszik vonalláncok és sokszögek rajzolását. A vonallánc egy olyan alapelem, amely szakaszok láncolatából áll. A sokszög
3D számítógépes geometria és alakzatrekonstrukció
3D számítógépes geometria és alakzatrekonstrukció 15. Digitális Alakzatrekonstrukció Méréstechnológia, Ponthalmazok regisztrációja http://cg.iit.bme.hu/portal/node/312 https://www.vik.bme.hu/kepzes/targyak/viiima01
Geometria megadása DXF fájl importálásából
30. sz. Mérnöki kézikönyv Frissítve: 2016. március Geometria megadása DXF fájl importálásából Program: GEO5 FEM GEO5 Fájl: Demo_manual_30.gmk DXF Fájlok: - model201.dxf eredeti fájl, amit bonyolultsága
DRÓNOK HASZNÁLATA A MEZŐGAZDASÁGBAN
DRÓNOK HASZNÁLATA A MEZŐGAZDASÁGBAN KÖRÖSPARTI JÁNOS NAIK Öntözési és Vízgazdálkodási Önálló Kutatási Osztály (ÖVKI) Szaktanári továbbképzés Szarvas, 2017. december 7. A drónok használata egyre elterjedtebb
Távérzékelés, a jöv ígéretes eszköze
Távérzékelés, a jöv ígéretes eszköze Ritvayné Szomolányi Mária Frombach Gabriella VITUKI CONSULT Zrt. A távérzékelés segítségével: különböz6 magasságból, tetsz6leges id6ben és a kívánt hullámhossz tartományokban
DIGITÁLIS TEREPMODELL A TÁJRENDEZÉSBEN
DIGITÁLIS TEREPMODELL A TÁJRENDEZÉSBEN DR. GIMESI LÁSZLÓ Bevezetés Pécsett és környékén végzett bányászati tevékenység felszámolása kapcsán szükségessé vált az e tevékenység során keletkezett meddők, zagytározók,
Földmérési és Távérzékelési Intézet. GISopen 2013: Jogi változások informatikai válaszok. 2013. március 13. NymE - Geoinformatikai Kar, Székesfehérvár
Az állami digitális távérzékelési adatbázisok létrehozása, kezelésének feladatai Zboray Zoltán igazgató Távérzékelési és Kozmikus Geodéziai Igazgatóság (TKGI) GISopen 2013: Jogi változások informatikai
UAS rendszerekkel végzett légi felmérés kiértékelési és pontossági kérdései
UAS rendszerekkel végzett légi felmérés kiértékelési és pontossági kérdései Dr. habil. Jancsó Tamás Óbudai Egyetem, Alba Regia Műszaki Kar, Geoinformatikai Intézet E-mail: jancso.tamas@amk.uni-obuda.hu
BAGME11NNF Munkavédelmi mérnökasszisztens Galla Jánosné, 2011.
BAGME11NNF Munkavédelmi mérnökasszisztens Galla Jánosné, 2011. 1 Mérési hibák súlya és szerepe a mérési eredményben A mérési hibák csoportosítása A hiba rendűsége Mérési bizonytalanság Standard és kiterjesztett
A mérési eredmény megadása
A mérési eredmény megadása A mérés során kapott értékek eltérnek a mérendő fizikai mennyiség valódi értékétől. Alapvetően kétféle mérési hibát különböztetünk meg: a determinisztikus és a véletlenszerű
Az intraorális lenyomatvételi eljárások matematikai, informatikai háttere. Passzív- és aktív háromszögelési módszer Időmérésen alapuló módszer
Az intraorális lenyomatvételi eljárások matematikai, informatikai háttere Passzív- és aktív háromszögelési módszer Időmérésen alapuló módszer Papp Ildikó, DE-IK, 2017 Az intraorális lenyomatvételi eljárások
[Biomatematika 2] Orvosi biometria
[Biomatematika 2] Orvosi biometria Bódis Emőke 2016. 04. 25. J J 9 Korrelációanalízis Regresszióanalízis: hogyan változik egy vizsgált változó értéke egy másik változó változásának függvényében. Korrelációs
Képfeldolgozás. 1. el adás. A képfeldolgozás alapfogalmai. Mechatronikai mérnök szak BME, 2008
Képfeldolgozás 1. el adás. A képfeldolgozás alapfogalmai BME, 2008 A digitális képfeldolgozás alapfeladata Deníció A digitális képfeldolgozás során arra törekszünk, hogy a természetes képek elemzése révén
Statisztika I. 12. előadás. Előadó: Dr. Ertsey Imre
Statisztika I. 1. előadás Előadó: Dr. Ertsey Imre Regresszió analízis A korrelációs együttható megmutatja a kapcsolat irányát és szorosságát. A kapcsolat vizsgálata során a gyakorlatban ennél messzebb
Nyugat-magyarországi Egyetem Geoinformatikai Kara. Dr. Engler Péter. Fotogrammetria 2. FOT2 modul. A fotogrammetria geometriai és matematikai alapjai
Nyugat-magyarországi Egyetem Geoinformatikai Kara Dr. Engler Péter Fotogrammetria 2. FOT2 modul A fotogrammetria geometriai és matematikai alapjai SZÉKESFEHÉRVÁR 2010 Jelen szellemi terméket a szerzői
Koordináta geometria III.
Koordináta geometria III. TÉTEL: A P (x; y) pont akkor és csak akkor illeszkedik a K (u; v) középpontú r sugarú körre (körvonalra), ha (x u) 2 + (y v) 2 = r 2. Ez az összefüggés a K (u; v) középpontú r
1. A Hilbert féle axiómarendszer
{Euklideszi geometria} 1. A Hilbert féle axiómarendszer Az axiómarendszer alapfogalmai: pont, egyenes, sík, illeszkedés (pont egyenesre, pont síkra, egyenes síkra), közte van reláció, egybevágóság (szögeké,
Digitális domborzatmodellek előállítása és alkalmazása sztereo CORONA űrfelvételek alapján
Digitális domborzatmodellek előállítása és alkalmazása sztereo CORONA űrfelvételek alapján Mészáros Minucsér 1 Szatmári József 2 Tobak Zalán 2 dr. Mucsi László 2 1 Újvidéki (Novi Sad) Természettudományi
UAS rendszerekkel végzett légi felmérés kiértékelési és pontossági kérdései
UAS rendszerekkel végzett légi felmérés kiértékelési és pontossági kérdései DR. HABIL. JANCSÓ TAMÁS ÓBUDAI EGYETEM, ALBA REGIA MŰSZAKI KAR, GEOINFORMATIKAI INTÉZET FÖLDMÉRŐK VILÁGNAPJA ÉS AZ EURÓPAI FÖLDMÉRŐK
Biomatematika 12. Szent István Egyetem Állatorvos-tudományi Kar. Fodor János
Szent István Egyetem Állatorvos-tudományi Kar Biomatematikai és Számítástechnikai Tanszék Biomatematika 12. Regresszió- és korrelációanaĺızis Fodor János Copyright c Fodor.Janos@aotk.szie.hu Last Revision
Papp Ferenc Barlangkutató Csoport. Barlangtérképezés. Fotómodellezés. Holl Balázs 2014. negyedik változat hatodik kiegészítés 4.6
Papp Ferenc Barlangkutató Csoport Barlangtérképezés Fotómodellezés Holl Balázs 2014 negyedik változat hatodik kiegészítés 4.6 (első változat 2011) A felszíni térképezés már egy évszázada a légifotókon
Koordináta-geometria feladatgyűjtemény
Koordináta-geometria feladatgyűjtemény A feladatok megoldásai a dokumentum végén találhatók Vektorok 1. Egy négyzet két szemközti csúcsának koordinátái: A( ; 7) és C(4 ; 1). Határozd meg a másik két csúcs
Képfeldolgozás Szegmentálás Osztályozás Képfelismerés Térbeli rekonstrukció
Mesterséges látás Miről lesz szó? objektumok Bevezetés objektumok A mesterséges látás jelenlegi, technikai eszközökön alapuló világunkban gyakorlatilag azonos a számítógépes képfeldolgozással. Számítógépes
A FÖLDMINŐSÍTÉS GEOMETRIAI ALAPJAI
A FÖLDMINŐSÍTÉS GEOMETRIAI ALAPJAI Detrekői Ákos Keszthely, 2003. 12. 11. TARTALOM 1 Bevezetés 2 Milyen geometriai adatok szükségesek? 3 Néhány szó a referencia rendszerekről 4 Geometriai adatok forrásai
Statisztika I. 11. előadás. Előadó: Dr. Ertsey Imre
Statisztika I. 11. előadás Előadó: Dr. Ertsey Imre Összefüggés vizsgálatok A társadalmi gazdasági élet jelenségei kölcsönhatásban állnak, összefüggnek egymással. Statisztika alapvető feladata: - tényszerűségek
Analóg-digitál átalakítók (A/D konverterek)
9. Laboratóriumi gyakorlat Analóg-digitál átalakítók (A/D konverterek) 1. A gyakorlat célja: Bemutatjuk egy sorozatos közelítés elvén működő A/D átalakító tömbvázlatát és elvi kapcsolási rajzát. Tanulmányozzuk
Ellipszis vezérgörbéjű ferde kúp felszínének meghatározásához
1 Ellipszis vezérgörbéjű ferde kúp felszínének meghatározásához Előző dolgozatunkkal melynek címe: A ferde körkúp palástfelszínének meghatározásához már mintegy megágyaztunk a jelen írásnak. Több mindent
Mobil térképezés új trendek a digitális téradatgyűjtésben
Mobil térképezés új trendek a digitális téradatgyűjtésben Építési geodézia a gyakorlatban fórum Mérnökgeodézia a tervezés és létesítményüzemeltetés támogatásában 2011. október 13-14 Geodézia Földmérőmérnöki
Vektorok összeadása, kivonása, szorzás számmal, koordináták
Vektorok összeadása, kivonása, szorzás számmal, koordináták 1. Mik lesznek a P (3, 4, 8) pont C (3, 7, 2) pontra vonatkozó tükörképének a koordinátái? 2. Egy szabályos hatszög középpontja K (4, 1, 4),
2. Hangfrekvenciás mechanikai rezgések vizsgálata jegyzőkönyv. Zsigmond Anna Fizika Bsc II. Mérés dátuma: Leadás dátuma:
2. Hangfrekvenciás mechanikai rezgések vizsgálata jegyzőkönyv Zsigmond Anna Fizika Bsc II. Mérés dátuma: 2008. 09. 24. Leadás dátuma: 2008. 10. 01. 1 1. Mérések ismertetése Az 1. ábrán látható összeállításban
KUTATÁSI JELENTÉS. Multilaterációs radarrendszer kutatása. Szüllő Ádám
KUTATÁSI JELENTÉS Multilaterációs radarrendszer kutatása Szüllő Ádám 212 Bevezetés A Mikrohullámú Távérzékelés Laboratórium jelenlegi K+F tevékenységei közül ezen jelentés a multilaterációs radarrendszerek
Földfelszín modellezés
Földfelszín modellezés A topográfia és kartográfia a digitális világban Dr. Juhász Attila 2011. Tartalom Előszó... 4 1. A digitális topográfia és kartográfia alapfogalmai... 5 1.1. A topográfiai modellezés...
Képszerkesztés elméleti kérdések
Képszerkesztés elméleti kérdések 1. A... egyedi alkotó elemek, amelyek együttesen formálnak egy képet.(pixelek) a. Pixelek b. Paletták c. Grafikák d. Gammák 2. Az alábbiak közül melyik nem színmodell?
Géprajz - gépelemek. Előadó: Németh Szabolcs mérnöktanár. Belső használatú jegyzet 2
Géprajz - gépelemek FELÜLETI ÉRDESSÉG Előadó: Németh Szabolcs mérnöktanár Belső használatú jegyzet http://gepesz-learning.shp.hu 1 Felületi érdesség Az alkatrészek elkészítéséhez a rajznak tartalmaznia
A fotogrammetria fejlődési tendenciái
A fotogrammetria fejlődési tendenciái Dr. Engler Péter Dr. Jancsó Tamás Nyugat-magyarországi Egyetem, Geoinformatikai Kar Fotogrammetria és Távérzékelés Tanszék GIS Open 2011. Fejlődési irányt befolyásoló
A VÁROSI HŐSZIGET VIZSGÁLATA MODIS ÉS ASTER MÉRÉSEK FELHASZNÁLÁSÁVAL
35. Meteorológiai Tudományos Napok, Magyar Tudományos Akadémia, 2009. november 20. A VÁROSI HŐSZIGET VIZSGÁLATA MODIS ÉS ASTER MÉRÉSEK FELHASZNÁLÁSÁVAL Dezső Zsuzsanna, Bartholy Judit, Pongrácz Rita Eötvös
Digitális terepmodell modul
Digitális terepmodell modul GeoEasy V2.05+ Geodéziai Feldolgozó Program DigiKom Kft. 2006-2010 Tartalomjegyzék Bevezetés DTM létrehozása DTM módosítása DTM betöltése, lezárása Intepoláció Szintvonalkészítés
EEE Kutatólaboratórium MTA-SZTAKI Magyar Tudományos Akadémia
DElosztott I S T R I B U T EEsemények D EV E N T S A NElemzé A L Y S I S se R E SKutatólaboratór E A R C H L A B O R A T Oium R Y L I D A R B a s e d S u r v e i l l a n c e Városi LIDAR adathalmaz szegmentációja
MATEMATIKA HETI 5 ÓRA. IDŐPONT: 2009. június 8.
EURÓPAI ÉRETTSÉGI 2009 MATEMATIKA HETI 5 ÓRA IDŐPONT: 2009. június 8. A VIZSGA IDŐTARTAMA: 4 óra (240 perc) ENGEDÉLYEZETT SEGÉDESZKÖZÖK : Európai képletgyűjtemény Nem programozható, nem grafikus kalkulátor
A mérés problémája a pedagógiában. Dr. Nyéki Lajos 2015
A mérés problémája a pedagógiában Dr. Nyéki Lajos 2015 A mérés fogalma Mérésen olyan tevékenységet értünk, amelynek eredményeként a vizsgált jelenség számszerűen jellemezhetővé, más hasonló jelenségekkel
Mérési adatok illesztése, korreláció, regresszió
Mérési adatok illesztése, korreláció, regresszió Korreláció, regresszió Két változó mennyiség közötti kapcsolatot vizsgálunk. Kérdés: van-e kapcsolat két, ugyanabban az egyénben, állatban, kísérleti mintában,
A végeselem módszer alapjai. 2. Alapvető elemtípusok
A végeselem módszer alapjai Előadás jegyzet Dr. Goda Tibor 2. Alapvető elemtípusok - A 3D-s szerkezeteket vagy szerkezeti elemeket gyakran egyszerűsített formában modellezzük rúd, gerenda, 2D-s elemek,
INFORMATIKA ÁGAZATI ALKALMAZÁSAI. Az Agrármérnöki MSc szak tananyagfejlesztése TÁMOP-4.1.2-08/1/A-2009-0010
INFORMATIKA ÁGAZATI ALKALMAZÁSAI Az Agrármérnöki MSc szak tananyagfejlesztése TÁMOP-4.1.2-08/1/A-2009-0010 7. Digitális térképezés, georeferálás, vektorizálás Digitális térkép Fogalma Jellemzői Georeferálás
Diszkréten mintavételezett függvények
Diszkréten mintavételezett függvények A függvény (jel) értéke csak rögzített pontokban ismert, de köztes pontokban is meg akarjuk becsülni időben mintavételezett jel pixelekből álló műholdkép rácson futtatott
Transzformációk, amelyek n-dimenziós objektumokat kisebb dimenziós terekbe visznek át. Pl. 3D 2D
Vetítések Transzformációk, amelyek n-dimenziós objektumokat kisebb dimenziós terekbe visznek át. Pl. 3D 2D Vetítések fajtái - 1 perspektívikus A párhuzamos A A' B A' B A vetítés középpontja B' Vetítési
Geometriai feladatok, 9. évfolyam
Geometriai feladatok, 9. évfolyam Szögek 1. Nevezzük meg az ábrán látható szögpárokat. Mekkora a nagyságuk, ha α =52 o fok? 2. Mekkora az a szög, amelyik a, az egyenesszög 1/3-ad része b, pótszögénél 32
Automatikus épület-felismerés ortofotókon objektum-alapú eljárással
Automatikus épület-felismerés ortofotókon objektum-alapú eljárással Gera Dávid Ákos, Nádor Gizella, Surek György Földmérési és Távérzékelési Intézet Távérzékelési Igazgatóság 1. Bevezetés Napjainkban a
Matematikai geodéziai számítások 6.
Matematikai geodéziai számítások 6. Lineáris regresszió számítás elektronikus távmérőkre Dr. Bácsatyai, László Matematikai geodéziai számítások 6.: Lineáris regresszió számítás elektronikus távmérőkre
Geometria 1 normál szint
Geometria 1 normál szint Naszódi Márton nmarci@math.elte.hu www.math.elte.hu/ nmarci ELTE TTK Geometriai Tsz. Budapest Geometria 1 p.1/4 Vizsga 1. Írásban, 90 perc. 2. Index nélkül nem lehet vizsgázni!
A leíró statisztikák
A leíró statisztikák A leíró statisztikák fogalma, haszna Gyakori igény az, hogy egy adathalmazt elemei egyenkénti felsorolása helyett néhány jellemző tulajdonságának megadásával jellemezzünk. Ezeket az
A brachistochron probléma megoldása
A brachistochron probléma megoldása Adott a függőleges síkban két nem egy függőleges egyenesen fekvő P 0 és P 1 pont, amelyek közül a P 1 fekszik alacsonyabban. Azt a kérdést fogjuk vizsgálni. hogy van-e
Mérési struktúrák
Mérési struktúrák 2007.02.19. 1 Mérési struktúrák A mérés művelete: a mérendő jellemző és a szimbólum halmaz közötti leképezés megvalósítása jel- és rendszerelméleti aspektus mérési folyamat: a leképezést
8. Előadás. Megyesi László: Lineáris algebra, , oldal. 8. előadás Mátrix rangja, Homogén lineáris egyenletrendszer
8. Előadás Megyesi László: Lineáris algebra, 51. 56., 70. 74. oldal. Gondolkodnivalók Elemi bázistranszformáció 1. Gondolkodnivaló Most ne vegyük figyelembe, hogy az elemi bázistranszformáció során ez