Méret: px
Mutatás kezdődik a ... oldaltól:

Download ""

Átírás

1 Távérzékelés Analóg felvételek feldolgozása (EENAFOTOTV, ETNATAVERV) Erdőmérnöki szak, Környezettudós szak Király Géza NyME, Erdőmérnöki Kar Geomatikai, Erdőfeltárási és Vízgazdálkodási Intézet Földmérési és Távérzékelési Tanszék

2 Analóg felvételek feldolgozása Geometria Centrális leképezéssel készült felvételek Nem centrális leképezéssel készült felvételek Tematika Vizuális interpretáció

3 Centrális ortogonális vetítés

4 Centrális vetítés törvényszerűségei egyenes egyenes Iránypont (I ) Eltűnési pont (E) Nyomvonal (tt) Irányvonal (hh) Hasonlóság Párhuzamos terepés képsík esetén

5 Nadírpont Képnadírpont (N ) Terepnadírpont (N)

6 Kettősviszony Háromszögek kétszeres területe Arányok ε = Bármely m-re, csak a szögek függvénye AC AC AD m = BC BD OA OC sin = sin sin ( ) AOC ( AOC) sin( BOC) ( AOD) sin( BOD)

7 Nevezetes pontok és vonalak Repülési magasság (h, h T ) Képfőpont (F) Kameraállandó (c) Képközéppont (K) Nadírszög (ν) Szögtartó pont (Sz )

8 Légifénykép torzulásai magassági torzulás képdőlés miatti torzulás objektív elrajzolás hibája refrakció hatása földgörbület hatása

9 Magassági torzulás

10 Képdőlés miatti torzulás

11 Centrális vetítésű felvételek feldolgozása Eredeti felvételi helyzet visszaállítása Tájékozás Belső (F, c, r) Külső (X 0, Y 0, Z 0, ω, φ, κ) Kölcsönös (5 paraméter: ω 1, φ 1, φ 2, κ 1, κ 2 ) Abszolút (7 paraméter: X, Y, Z, ω, φ, κ, m)

12 Kiértékelés csoportosítása Egyképes, síkfotogrammetria Kétképes, sztereófotogrammetria

13 Centrális vetítésű felvételek feldolgozása (Mérőasztal-fotogrammetria) - analóg (Sztereó-fotogrammetria) - analitikus Analóg fotogrammetria Analitikus fotogrammetria Digitális fotogrammetria

14 Mérőasztal-fotogrammetria A P tárgypont azonosítása mindkét képen Grafikus irányszerkesztés a mérőképeken: kiértékelés pontonként vízszintesen és magasságilag

15 Sztereó-fotogrammetria Alapja: a sztereoszkópikus látás és mérés A tárgy két perspektív képéből térmodellt állítunk elő Két síkbeli mérőjel -> térbeli mérőjel Megszűnnek a mérőasztal-fotogrammetria azonosítási problémái: tetszőleges tárgypontok mérése 1901: Pulfrich-féle sztereokomparátor képkoordináták -> tárgykordináták (numerikusan)

16 Analóg fotogrammetria Analóg felvételek analóg kiértékelése Vetítési sugár visszaállítása optikai és/vagy mechanikai eszközökkel Egyképes Kétképes

17 Egyképes analóg fotogrammetria Képátalakítás Képdőlés miatti torzulások kiküszöbölése 4 illesztőpont

18 Képátalakítás Grafikus képátalakítás Papírcsík-eljárás Optikai képátalakítás Virtuális vetítésselzeiss-féle légifényképátrajzoló (LUZ Luftbildumzeichner) Valós vetítéssel -

19 Optikai képátalakítás Virtuális Zeiss-féle légifényképátrajzoló (LUZ Luftbildumzeichner) Valós Zeiss SEG-1 képtranszformátor

20 Analóg fotogrammetria 1908: Orel-féle sztereoautográf: mechanikus kiértékelő, a tárgypontok helyzetének visszaállítása csuklókkal, mechanikusan történik. Előnyök: nincs szükség számításra, sík- és domborzatrajz vonalasan kiértékelhető. Alkalmazás: földi fotogrammetriában, a légi fotogrammetriában a repülés fejlődésével: automatikus légifénykép készítés (Messter, 1915), a felvevő kamera tájékozása ismeretlen tájékozási eljárásokra és univerzális kiértékelő készülékekre van szükség, Módszertani fejlődés: légi háromszögelés, Gruber, Scheimpflug: egyképes optikai képátalakítás

21 Természetes sztereoszkópikus látás Nagy látómező Független képek Távolság felmérése Térbeli látás

22 Sztereoszkópikus látás és mérés Egy szem = térérzékelés az agyban tárolt tapasztalatok alapján: perspektíva ismert tárgyak méretviszonyai tárgyak részbeni átfedése Két szem: egyértelmű térérzékelés

23 Emberi térlátás Szembázis (~65 mm) Parallaxisok Konvergenciaszög (γ) ~2-5 < γ < 1,2 Akkomodáció A konvergencia és akkomodáció együtt Magsík (epipoláris sík)

24 Mesterséges sztereoszkópikus látás feltételei Két különböző álláspontból felvett és ezért bázisirányú parallaxisokat tartalmazó sztereoszkópikus képpár A képpár tájékozása oly módon, hogy a képpár sztereoszkópikus szemlélése zavartalan legyen A képek szétválasztása oly módon, hogy mindkét szemünk csak a neki megfelelő képet lássa Nehézség: konvergencia és akkomodáció szétválasztása (segédeszközök: pl. sztereoszkóp)

25 Képpár tájékozása (kölcsönös) Áttekintő tájékozás Magsík szerinti tájékozás

26 Szétválasztás térben Sztereoszkópok Lencsés Egyszerű Korlátozott képméret Tükrös Bonyolultabb Bázis növelése

27 Szétválasztás térben Maszkolás Tényleges maszk Fényerő csökken Optikai maszk (Mikroprizmák)

28 Szétválasztás spektrálisan Anaglif eljárás Komplementer színek alkalmazása vörös-cián; zöld-bíbor; kék-sárga Vetítés / nyomtatás komplementer színnel Szemlélés komplementer szemüveggel Térmodell ~ fekete-fehér

29 Szétválasztás spektrálisan Anaglif eljárás

30 Szétválasztás polarizációval Polarizációs eljárás Fény polarizációjának alkalmazása Vetítés egymásra merőleges polarizációval Szemlélés egymásra merőleges polárszűrővel Térmodell színes

31 Szétválasztás időben Folyadékkristályos szemüveg Jobb és bal kép váltakozva vetítése 120 Hz Szemlélés folyadékkristályos szemüveggel Szinkronizáció Drót Infravörös jel Térmodell színes

32 Magyar technológiák Hologramm HoloVízió Leonar3Do

33 Sztereó mérés Tényleges mérőjel Virtuális mérőjel Sztereókomparátor mód Sztereókiértékelő mód

34 Analóg fotogrammetria Optikai vetítés Optikai-mechanikai vetítés Mechanikai vetítés

35 Analóg kölcsönös tájékozás 6 kapcsolópont (Gruber-pont)

36 Analóg abszolút tájékozás méretarány-meghatározás, a modell döntése, a modell illesztése a térképi alaphoz.

37 Analóg hozzátájékozás

38 Optikai vetítésű műszerek

39 Analóg sztereófotogrammetria

40 Optikai-mechanikai vetítésű műszerek

41 Mechanikai vetítésű műszerek

42 Wild Sztereóautograf A db

43 Analitikus fotogrammetria Képi koordináták mérése Mért képi koordináták -> terepi koordináták számítással Mérőmikroszkópok (komparátor) Monokomparátor Sztereókomparátor

44 Sztereókomparátor (Pulfrich)

45 Analitikus belső tájékozás Műszerkoordináta -> képi koordináta x kép = a 0 + a 1 x műszer + a 2 y műszer y kép = b 0 + b 1 x műszer + b 2 y műszer

46 Analitikus kölcsönös tájékozás Koplanaritás

47 Analitikus abszolút tájékozás r X g = t + m R r x

48 Analitikus fotogrammetria ~ 1900 Finsterwalder: a fényképi és a tárgypontok közötti numerikus összefüggések felállítása, a gyakorlati alkalmazás a számítástechnika fejletlensége miatt még nem volt lehetséges 1941 Zuse: a számítástechnika fejlődése kezdi lehetővé tenni a gyakorlati alkalmazást 1953 Schmidt: kiegyenlítés a tömbháromszögelésben, Analitikus kiértékelők (analóg fénykép, digitális kiértékelés): 1957 Helava: analitikus sztereokiértékelők, 1976 Wild-gyár: analitikus ortoprejektor: tetszőleges tárgy centrális vetületű képe optikai képátalakítás méretarányhelyes ortogonális vetületté Az analitikus kiértékelés még mindig gyakori

49 Differenciális képátalakítás

Analóg felvételek Centrális leképezéssel készült felvételek Nem centrális leképezéssel készült felvételek

Analóg felvételek Centrális leképezéssel készült felvételek Nem centrális leképezéssel készült felvételek Monitoring távérzékeléssel Analóg felvételek feldolgozása (E130-501) Természetvédelmi MSc szak Király Géza NyME, Erdőmérnöki Kar Geomatikai, Erdőfeltárási és Vízgazdálkodási Intézet Földmérési és Távérzékelési

Részletesebben

Digitális képek feldolgozása Előfeldolgozás Radiometriai korrekció Geometriai korrekció Képjavítás Szűrők Sávok közötti műveletek Képosztályozás Utófe

Digitális képek feldolgozása Előfeldolgozás Radiometriai korrekció Geometriai korrekció Képjavítás Szűrők Sávok közötti műveletek Képosztályozás Utófe Távérzékelés Digitális felvételek előfeldolgozása (EENAFOTOTV, ETNATAVERV) Erdőmérnöki szak, Környezettudós szak Király Géza NyME, Erdőmérnöki Kar Geomatikai, Erdőfeltárási és Vízgazdálkodási Intézet Földmérési

Részletesebben

A fotogrammetria ismeretek és a szakmai tudás fontossága

A fotogrammetria ismeretek és a szakmai tudás fontossága Óbudai Egyetem Alba Regia Műszaki Kar Geoinformatikai Intézet A fotogrammetria ismeretek és a szakmai tudás fontossága 3. Légifotó Nap, Székesfehérvár, 2018. február 7. A fotogrammetria fogalma A fotogrammetria

Részletesebben

A felmérési egység kódja:

A felmérési egység kódja: A felmérési egység lajstromszáma: 0153 A felmérési egység adatai A felmérési egység kódja: A kódrészletek jelentése: Földmér//50/Ism/Rok Földmérő-térképész szakképesítés-csoportban, a célzott 50-es szintű

Részletesebben

MUNKAANYAG. Dr. Engler Péter. A térlátás és a térfotogrammetria alapjai. A követelménymodul megnevezése: Fotogrammetria feladatai

MUNKAANYAG. Dr. Engler Péter. A térlátás és a térfotogrammetria alapjai. A követelménymodul megnevezése: Fotogrammetria feladatai Dr. Engler Péter A térlátás és a térfotogrammetria alapjai A követelménymodul megnevezése: Fotogrammetria feladatai A követelménymodul száma: 2241-06 A tartalomelem azonosító száma és célcsoportja: SzT-010-50

Részletesebben

Ingatlan felmérési technológiák

Ingatlan felmérési technológiák Ingatlan felmérési technológiák Fekete Attila okl. földmérő és térinformatikai mérnök Photo.metric Kft. www.photometric.hu geodézia. épületfelmérés. térinformatika Áttekintés Mérési módszerek, technológiák

Részletesebben

Nyugat-magyarországi Egyetem Geoinformatikai Kara. Balázsik Valéria. Fotogrammetria 9. FOT9 modul. A térfotogrammetria alapjai, alapképletek

Nyugat-magyarországi Egyetem Geoinformatikai Kara. Balázsik Valéria. Fotogrammetria 9. FOT9 modul. A térfotogrammetria alapjai, alapképletek Nyugat-magyarországi Egyetem Geoinformatikai Kara Balázsik Valéria Fotogrammetria 9. FOT9 modul A térfotogrammetria alapjai, alapképletek SZÉKESFEHÉRVÁR 2010 Jelen szellemi terméket a szerzői jogról szóló

Részletesebben

Fotogrammetria 11. Térfotogrammetriai műszerek Dr. Engler, Péter

Fotogrammetria 11. Térfotogrammetriai műszerek Dr. Engler, Péter Fotogrammetria 11. Térfotogrammetriai műszerek Dr. Engler, Péter Fotogrammetria 11.: Térfotogrammetriai műszerek Dr. Engler, Péter Lektor: Dr. Barsi, Árpád Ez a modul a TÁMOP - 4.1.2-08/1/A-2009-0027 Tananyagfejlesztéssel

Részletesebben

Térképismeret ELTE TTK BSc. 2007 11. Terepi adatgyűjt. ció. (Kartográfiai informáci GPS-adatgy. tematikus térkt gia) http://lazarus.elte.

Térképismeret ELTE TTK BSc. 2007 11. Terepi adatgyűjt. ció. (Kartográfiai informáci GPS-adatgy. tematikus térkt gia) http://lazarus.elte. Térképismeret ELTE TTK Földtudományi és s Földrajz F BSc. 2007 11. Török k Zsolt, Draskovits Zsuzsa ELTE IK TérkT rképtudományi és Geoinformatikai Tanszék http://lazarus.elte.hu Terepi adatgyűjt jtés s

Részletesebben

UAS rendszerekkel végzett légi felmérés kiértékelési és pontossági kérdései

UAS rendszerekkel végzett légi felmérés kiértékelési és pontossági kérdései UAS rendszerekkel végzett légi felmérés kiértékelési és pontossági kérdései Dr. habil. Jancsó Tamás Óbudai Egyetem, Alba Regia Műszaki Kar, Geoinformatikai Intézet E-mail: jancso.tamas@amk.uni-obuda.hu

Részletesebben

Fotogrammetria 6. A földi fotogrammetria Dr. Engler, Péter

Fotogrammetria 6. A földi fotogrammetria Dr. Engler, Péter Fotogrammetria 6. A földi fotogrammetria Dr. Engler, Péter Fotogrammetria 6.: A földi fotogrammetria Dr. Engler, Péter Lektor: Dr. Barsi Árpád Ez a modul a TÁMOP - 4.1.2-08/1/A-2009-0027 Tananyagfejlesztéssel

Részletesebben

Hordozó réteg: a légi fotogrammetriában film, a földi fotogrammetriában film, vagy üveglemez.

Hordozó réteg: a légi fotogrammetriában film, a földi fotogrammetriában film, vagy üveglemez. Távérzékelés Fényképészeti felvevőrendszerek (EENAFOTOTV, ETNATAVERV) Erdőmérnöki szak, Környezettudós szak Király Géza NyME, Erdőmérnöki Kar Geomatikai, Erdőfeltárási és Vízgazdálkodási Intézet Földmérési

Részletesebben

Általános nemzeti projektek Magyar Topográfiai Program (MTP) - Magyarország Digitális Ortofotó Programja (MADOP) CORINE Land Cover (CLC) projektek Mez

Általános nemzeti projektek Magyar Topográfiai Program (MTP) - Magyarország Digitális Ortofotó Programja (MADOP) CORINE Land Cover (CLC) projektek Mez Távérzékelés Országos távérzékelési projektek (EENAFOTOTV, ETNATAVERV) Erdőmérnöki szak, Környezettudós szak Király Géza NyME, Erdőmérnöki Kar Geomatikai, Erdőfeltárási és Vízgazdálkodási Intézet Földmérési

Részletesebben

UAS rendszerekkel végzett légi felmérés kiértékelési és pontossági kérdései

UAS rendszerekkel végzett légi felmérés kiértékelési és pontossági kérdései UAS rendszerekkel végzett légi felmérés kiértékelési és pontossági kérdései DR. HABIL. JANCSÓ TAMÁS ÓBUDAI EGYETEM, ALBA REGIA MŰSZAKI KAR, GEOINFORMATIKAI INTÉZET FÖLDMÉRŐK VILÁGNAPJA ÉS AZ EURÓPAI FÖLDMÉRŐK

Részletesebben

A FIR-ek alkotóelemei: < hardver (bemeneti, kimeneti eszközök és a számítógép), < szoftver (ARC/INFO, ArcView, MapInfo), < adatok, < felhasználók.

A FIR-ek alkotóelemei: < hardver (bemeneti, kimeneti eszközök és a számítógép), < szoftver (ARC/INFO, ArcView, MapInfo), < adatok, < felhasználók. Leíró adatok vagy attribútumok: az egyes objektumok sajátságait, tulajdonságait írják le számítógépek számára feldolgozható módon. A FIR- ek által megválaszolható kérdések: < 1. Mi van egy adott helyen?

Részletesebben

Hordozó réteg: a légi fotogrammetriában film, a földi fotogrammetriában film, vagy üveglemez.

Hordozó réteg: a légi fotogrammetriában film, a földi fotogrammetriában film, vagy üveglemez. Monitoring távérzékeléssel - Fényképészeti felvevőrendszerek (E130-501) Természetvédelmi MSc szak Király Géza NyME, Erdőmérnöki Kar Geomatikai, Erdőfeltárási és Vízgazdálkodási Intézet Földmérési és Távérzékelési

Részletesebben

Fotogrammetriai munkaállomások szoftvermoduljainak tervezése. Dr. habil. Jancsó Tamás Óbudai Egyetem, Alba Regia Műszaki Kar

Fotogrammetriai munkaállomások szoftvermoduljainak tervezése. Dr. habil. Jancsó Tamás Óbudai Egyetem, Alba Regia Műszaki Kar Fotogrammetriai munkaállomások szoftvermoduljainak tervezése Dr. habil. Jancsó Tamás Óbudai Egyetem, Alba Regia Műszaki Kar Témakörök DPW szoftvermodulok Szoftverek funkciói Pár példa Mi hiányzik gyakran?

Részletesebben

Távérzékelés Távérzékelt felvételek értelmezése (EENAFOTOTV, ETNATAVERV) Erdőmérnöki szak, Környezettudós szak Király Géza NyME, Erdőmérnöki Kar Geomatikai, Erdőfeltárási és Vízgazdálkodási Intézet Földmérési

Részletesebben

Földméréstan és vízgazdálkodás

Földméréstan és vízgazdálkodás Földméréstan és vízgazdálkodás Földméréstani ismeretek Előadó: Dr. Varga Csaba 1 A FÖLDMÉRÉSTAN FOGALMA, TÁRGYA A földméréstan (geodézia) a föld fizikai felszínén, illetve a földfelszín alatt lévő természetes

Részletesebben

Térbeli transzformációk, a tér leképezése síkra

Térbeli transzformációk, a tér leképezése síkra Térbeli transzformációk, a tér leképezése síkra Homogén koordináták bevezetése térben A tér minden P pontjához kölcsönösen egyértelműen egy valós (x, y, z) számhármast rendeltünk hozzá. (Descartes-féle

Részletesebben

3D számítógépes geometria és alakzatrekonstrukció

3D számítógépes geometria és alakzatrekonstrukció 3D számítógépes geometria és alakzatrekonstrukció 15. Digitális Alakzatrekonstrukció Méréstechnológia, Ponthalmazok regisztrációja http://cg.iit.bme.hu/portal/node/312 https://www.vik.bme.hu/kepzes/targyak/viiima01

Részletesebben

Regresszió számítás. Tartalomjegyzék: GeoEasy V2.05+ Geodéziai Kommunikációs Program

Regresszió számítás. Tartalomjegyzék: GeoEasy V2.05+ Geodéziai Kommunikációs Program Regresszió számítás GeoEasy V2.05+ Geodéziai Kommunikációs Program DigiKom Kft. 2006-2010 Tartalomjegyzék: Egyenes x változik Egyenes y változik Egyenes y és x változik Kör Sík z változik Sík y, x és z

Részletesebben

A tér lineáris leképezései síkra

A tér lineáris leképezései síkra A tér lineáris leképezései síkra Az ábrázoló geometria célja: A háromdimenziós térben elhelyezkedő alakzatok helyzeti és metrikus viszonyainak egyértelmű és egyértelműen rekonstruálható módon történő ábrázolása

Részletesebben

GeoCalc 3 Bemutatása

GeoCalc 3 Bemutatása 3 Bemutatása Gyenes Róbert & Kulcsár Attila 1 A 3 egy geodéziai programcsomag, ami a terepen felmért, manuálisan és/vagy adatrögzítővel tárolt adatok feldolgozására szolgál. Adatrögzítő A modul a felmérési

Részletesebben

1. ábra Egy terület DTM-je (balra) és ugyanazon terület DSM-je (jobbra)

1. ábra Egy terület DTM-je (balra) és ugyanazon terület DSM-je (jobbra) Bevezetés A digitális terepmodell (DTM) a Föld felszínének digitális, 3D-ós reprezentációja. Az automatikus DTM előállítás folyamata jelenti egyrészt távérzékelt felvételekből a magassági adatok kinyerését,

Részletesebben

Transzformációk síkon, térben

Transzformációk síkon, térben Transzformációk síkon, térben Leképezés, transzformáció Leképezés: Ha egy A ponttér pontjaihoz egy másik B ponttér pontjait kölcsönösen egyértelműen rendeljük hozzá, akkor ezt a hozzárendelést leképezésnek

Részletesebben

A távérzékelés és fizikai alapjai 4. Technikai alapok

A távérzékelés és fizikai alapjai 4. Technikai alapok A távérzékelés és fizikai alapjai 4. Technikai alapok Csornai Gábor László István Budapest Főváros Kormányhivatala Mezőgazdasági Távérzékelési és Helyszíni Ellenőrzési Osztály Az előadás 2011-es átdolgozott

Részletesebben

A DIGITÁLIS TÉRKÉP ADATAINAK ELŐÁLLÍTÁSA, ADATNYERÉSI ELJÁRÁSOK

A DIGITÁLIS TÉRKÉP ADATAINAK ELŐÁLLÍTÁSA, ADATNYERÉSI ELJÁRÁSOK A DIGITÁLIS TÉRKÉP ADATAINAK ELŐÁLLÍTÁSA, ADATNYERÉSI ELJÁRÁSOK - két féle adatra van szükségünk: térbeli és leíró adatra - a térbeli adat előállítása a bonyolultabb. - a költségek nagyjából 80%-a - munkaigényes,

Részletesebben

BMEEOFTAG12 segédlet a BME Építőmérnöki Kar hallgatói részére. Az építész- és az építőmérnök képzés szerkezeti és tartalmi fejlesztése

BMEEOFTAG12 segédlet a BME Építőmérnöki Kar hallgatói részére. Az építész- és az építőmérnök képzés szerkezeti és tartalmi fejlesztése EURÓPAI UNIÓ STRUKTURÁLIS ALAPOK F O T O G R A M M E T R I A BMEEOFTAG12 segédlet a BME Építőmérnöki Kar hallgatói részére Az építész- és az építőmérnök képzés szerkezeti és tartalmi fejlesztése HEFOP/2004/3.3.1/0001.01

Részletesebben

Feladatok Házi feladat. Keszeg Attila

Feladatok Házi feladat. Keszeg Attila 2016.01.29. 1 2 3 4 Adott egy O pont és egy λ 0 valós szám. a tér minden egyes P pontjához rendeljünk hozzá egy P pontot, a következő módon: 1 ha P = O, akkor P = P 2 ha P O, akkor P az OP egyenes azon

Részletesebben

Digitális fotogrammetria

Digitális fotogrammetria Digitális fotogrammetria I. Áttekintés Digitális fotogrammetria (DFG): digitális felvételeket használ Elıállíthatók: fotogrammetriai szkennerekkel hagyományos légifényképekbıl, vagy közvetlenül digitális

Részletesebben

A kivitelezés geodéziai munkái II. Magasépítés

A kivitelezés geodéziai munkái II. Magasépítés A kivitelezés geodéziai munkái II. Magasépítés Építésirányítási feladatok Kitűzési terv: a tervezési térkép másolatán Az elkészítése a tervező felelőssége Nehézségek: Gyakorlatban a geodéta bogarássza

Részletesebben

ÁGAZATI SZAKMAI ÉRETTSÉGI VIZSGA FÖLDMÉRÉS ISMERETEK EMELT SZINTŰ SZÓBELI VIZSGA MINTAFELADATOK ÉS ÉRTÉKELÉSÜK

ÁGAZATI SZAKMAI ÉRETTSÉGI VIZSGA FÖLDMÉRÉS ISMERETEK EMELT SZINTŰ SZÓBELI VIZSGA MINTAFELADATOK ÉS ÉRTÉKELÉSÜK FÖLDMÉRÉS ISMERETEK EMELT SZINTŰ SZÓBELI VIZSGA MINTAFELADATOK ÉS ÉRTÉKELÉSÜK 1. tétel Hibaelméleti alapismertek Ön egy földmérési tevékenységet folytató vállalkozásnál a mérési eredmények ellenőrzésével

Részletesebben

Tesszeláció A vizsgált területet úgy osztjuk fel elemi egységekre, hogy azok hézag- és átfedésmentesek legyenek. Az elemi egységek alakja szerint megk

Tesszeláció A vizsgált területet úgy osztjuk fel elemi egységekre, hogy azok hézag- és átfedésmentesek legyenek. Az elemi egységek alakja szerint megk Monitoring távérzékeléssel Digitális felvételek előfeldolgozása (E130-501) Természetvédelmi MSc szak Király Géza NyME, Erdőmérnöki Kar Geomatikai, Erdőfeltárási és Vízgazdálkodási Intézet Földmérési és

Részletesebben

A FÖLDMINŐSÍTÉS GEOMETRIAI ALAPJAI

A FÖLDMINŐSÍTÉS GEOMETRIAI ALAPJAI A FÖLDMINŐSÍTÉS GEOMETRIAI ALAPJAI Detrekői Ákos Keszthely, 2003. 12. 11. TARTALOM 1 Bevezetés 2 Milyen geometriai adatok szükségesek? 3 Néhány szó a referencia rendszerekről 4 Geometriai adatok forrásai

Részletesebben

Távérzékelés gyakorlat Fotogrammetria légifotó értelmezés

Távérzékelés gyakorlat Fotogrammetria légifotó értelmezés Távérzékelés gyakorlat Fotogrammetria légifotó értelmezés I. A légifotók tájolása a térkép segítségével: a). az ábrázolt terület azonosítása a térképen b). sztereoszkópos vizsgálat II. A légifotók értelmezése:

Részletesebben

Nyugat-magyarországi Egyetem Geoinformatikai Kara. Dr. Jancsó Tamás. Fotogrammetria 13. FOT13 modul. Légiháromszögelés

Nyugat-magyarországi Egyetem Geoinformatikai Kara. Dr. Jancsó Tamás. Fotogrammetria 13. FOT13 modul. Légiháromszögelés Nyugat-magyarországi Egyetem Geoinformatikai Kara Dr. Jancsó Tamás Fotogrammetria 13. FOT13 modul Légiháromszögelés SZÉKESFEHÉRVÁR 2010 Jelen szellemi terméket a szerzői jogról szóló 1999. évi LXXVI. törvény

Részletesebben

Kocka perspektivikus ábrázolása. Bevezetés

Kocka perspektivikus ábrázolása. Bevezetés 1 Kocka perspektivikus ábrázolása Bevezetés Előző három dolgozatunkban ~ melyek címe: 1. Sínpár perspektivikus ábrázolása, 2. Sínpár perspektivikus ábrázolása másként, 3. Sínpár perspektivikus ábrázolása

Részletesebben

Koordináta-geometria feladatgyűjtemény

Koordináta-geometria feladatgyűjtemény Koordináta-geometria feladatgyűjtemény A feladatok megoldásai a dokumentum végén találhatók Vektorok 1. Egy négyzet két szemközti csúcsának koordinátái: A( ; 7) és C(4 ; 1). Határozd meg a másik két csúcs

Részletesebben

29/2014. (III. 31.) VM rendelet az állami digitális távérzékelési adatbázisról

29/2014. (III. 31.) VM rendelet az állami digitális távérzékelési adatbázisról 29/2014. (III. 31.) VM rendelet az állami digitális távérzékelési adatbázisról A földmérési és térképészeti tevékenységről szóló 2012. évi XLVI. törvény 38. (3) bekezdés b) pontjában kapott felhatalmazás

Részletesebben

Piri Dávid. Mérőállomás célkövető üzemmódjának pontossági vizsgálata

Piri Dávid. Mérőállomás célkövető üzemmódjának pontossági vizsgálata Piri Dávid Mérőállomás célkövető üzemmódjának pontossági vizsgálata Feladat ismertetése Mozgásvizsgálat robot mérőállomásokkal Automatikus irányzás Célkövetés Pozíció folyamatos rögzítése Célkövető üzemmód

Részletesebben

HUNAGI 2013 konferencia. Geoshop országos kiterjesztése. FÖLDMÉRÉSI ÉS TÁVÉRZÉKELÉSI INTÉZET Forner Miklós www.fomi.hu www.geoshop.hu 2013. április 4.

HUNAGI 2013 konferencia. Geoshop országos kiterjesztése. FÖLDMÉRÉSI ÉS TÁVÉRZÉKELÉSI INTÉZET Forner Miklós www.fomi.hu www.geoshop.hu 2013. április 4. HUNAGI 2013 konferencia Geoshop országos kiterjesztése www.fomi.hu www.geoshop.hu Az adatokhoz való hozzáférés, szolgáltatási formák A Földmérési és Távérzékelési Intézet a térbeli adatok tekintetében

Részletesebben

ÉRETTSÉGI VIZSGA május 17. FÖLDMÉRÉS ISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA május 17. 8:00. Időtartam: 180 perc

ÉRETTSÉGI VIZSGA május 17. FÖLDMÉRÉS ISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA május 17. 8:00. Időtartam: 180 perc ÉRETTSÉGI VIZSGA 2017. május 17. FÖLDMÉRÉS ISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2017. május 17. 8:00 Időtartam: 180 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Földmérés

Részletesebben

Monitoring távérzékeléssel Természetvédelmi alkalmazások (E130-501) Természetvédelmi MSc szak Király Géza NyME, Erdőmérnöki Kar Geomatikai, Erdőfeltárási és Vízgazdálkodási Intézet Földmérési és Távérzékelési

Részletesebben

FOTOGRAMMETRIAI KIÉRTÉKELŐ SZAKMAISMERTETŐ INFORMÁCIÓS MAPPA. Humánerőforrás-fejlesztési Operatív Program (HEFOP) 1.2 intézkedés

FOTOGRAMMETRIAI KIÉRTÉKELŐ SZAKMAISMERTETŐ INFORMÁCIÓS MAPPA. Humánerőforrás-fejlesztési Operatív Program (HEFOP) 1.2 intézkedés FOTOGRAMMETRIAI KIÉRTÉKELŐ SZAKMAISMERTETŐ INFORMÁCIÓS MAPPA Humánerőforrás-fejlesztési Operatív Program (HEFOP) 1.2 intézkedés Az Állami Foglalkoztatási Szolgálat fejlesztése FOTOGRAMMETRIAI KIÉRTÉKELŐ

Részletesebben

Számítási feladatok a Számítógépi geometria órához

Számítási feladatok a Számítógépi geometria órához Számítási feladatok a Számítógépi geometria órához Kovács Zoltán Copyright c 2012 Last Revision Date: 2012. október 15. kovacsz@nyf.hu Technikai útmutató a jegyzet használatához A jegyzet képernyőbarát

Részletesebben

Vektorok. Wettl Ferenc október 20. Wettl Ferenc Vektorok október / 36

Vektorok. Wettl Ferenc október 20. Wettl Ferenc Vektorok október / 36 Vektorok Wettl Ferenc 2014. október 20. Wettl Ferenc Vektorok 2014. október 20. 1 / 36 Tartalom 1 Vektorok a 2- és 3-dimenziós térben 2 Távolság, szög, orientáció 3 Vektorok koordinátás alakban 4 Összefoglalás

Részletesebben

Fotogrammetria 8. Ortofotoszkópia Balázsik, Valéria

Fotogrammetria 8. Ortofotoszkópia Balázsik, Valéria Fotogrammetria 8. Ortofotoszkópia Balázsik, Valéria Fotogrammetria 8.: Ortofotoszkópia Balázsik, Valéria Lektor: Dr. Barsi, Árpád Ez a modul a TÁMOP - 4.1.2-08/1/A-2009-0027 Tananyagfejlesztéssel a GEO-ért

Részletesebben

MUNKAANYAG. Krauter Erika. Az ortofotoszkópia alapjai. A követelménymodul megnevezése: Fotogrammetria feladatai

MUNKAANYAG. Krauter Erika. Az ortofotoszkópia alapjai. A követelménymodul megnevezése: Fotogrammetria feladatai Krauter Erika Az ortofotoszkópia alapjai A követelménymodul megnevezése: Fotogrammetria feladatai A követelménymodul száma: 2241-06 A tartalomelem azonosító száma és célcsoportja: SzT-008-50 AZ ORTOFOTOSZKÓPIA

Részletesebben

Automatikus irányzás digitális képek. feldolgozásával TURÁK BENCE DR. ÉGETŐ CSABA

Automatikus irányzás digitális képek. feldolgozásával TURÁK BENCE DR. ÉGETŐ CSABA Automatikus irányzás digitális képek feldolgozásával TURÁK BENCE DR. ÉGETŐ CSABA Koncepció Robotmérőállomásra távcsővére rögzített kamera Képek alapján a cél automatikus detektálása És az irányzás elvégzése

Részletesebben

Fotogrammetria 4. Mérőfénykép fogalma, jellemzői, mérőfénykép torzulások Balázsik, Valéria

Fotogrammetria 4. Mérőfénykép fogalma, jellemzői, mérőfénykép torzulások Balázsik, Valéria Fotogrammetria 4. Mérőfénykép fogalma, jellemzői, mérőfénykép torzulások Balázsik, Valéria Fotogrammetria 4.: Mérőfénykép fogalma, jellemzői, Balázsik, Valéria Lektor: Dr. Barsi, Árpád Ez a modul a TÁMOP

Részletesebben

Mozgásvizsgálatok. Mérnökgeodézia II. Ágfalvi Mihály - Tóth Zoltán

Mozgásvizsgálatok. Mérnökgeodézia II. Ágfalvi Mihály - Tóth Zoltán Mérnökgeodézia II. Ágfalvi Mihály - Tóth Zoltán Célja: Várható elmozdulások előrejelzése (erőhatások alatt, Siógemenci árvízkapu) Már bekövetkezett mozgások okainak vizsgálata (Pl. kulcsi löszpart) Laboratóriumi

Részletesebben

Nyugat-magyarországi Egyetem Geoinformatikai Kara. Dr. Jancsó Tamás. Fotogrammetria 10. FOT10 modul. Tájékozások

Nyugat-magyarországi Egyetem Geoinformatikai Kara. Dr. Jancsó Tamás. Fotogrammetria 10. FOT10 modul. Tájékozások Nyugat-magyarországi Egyetem Geoinformatikai Kara Dr. Jancsó Tamás Fotogrammetria 10. FOT10 modul Tájékozások SZÉKESFEHÉRVÁR 2010 Jelen szellemi terméket a szerzői jogról szóló 1999. évi LXXVI. törvény

Részletesebben

A GNSS infrastruktúrára támaszkodó műholdas helymeghatározás. Borza Tibor (FÖMI KGO) Busics György (NyME GEO)

A GNSS infrastruktúrára támaszkodó műholdas helymeghatározás. Borza Tibor (FÖMI KGO) Busics György (NyME GEO) A GNSS infrastruktúrára támaszkodó műholdas helymeghatározás Borza Tibor (FÖMI KGO) Busics György (NyME GEO) Tartalom Mi a GNSS, a GNSS infrastruktúra? Melyek az infrastruktúra szintjei? Mi a hazai helyzet?

Részletesebben

Koordináta-geometria feladatgyűjtemény (A feladatok megoldásai a dokumentum végén találhatók)

Koordináta-geometria feladatgyűjtemény (A feladatok megoldásai a dokumentum végén találhatók) Koordináta-geometria feladatgyűjtemény (A feladatok megoldásai a dokumentum végén találhatók) Vektorok 1. Egy négyzet két szemközti csúcsának koordinátái: A( ; 7) és C(4 ; 1). Határozd meg a másik két

Részletesebben

DRÓNOK HASZNÁLATA A MEZŐGAZDASÁGBAN

DRÓNOK HASZNÁLATA A MEZŐGAZDASÁGBAN DRÓNOK HASZNÁLATA A MEZŐGAZDASÁGBAN KÖRÖSPARTI JÁNOS NAIK Öntözési és Vízgazdálkodási Önálló Kutatási Osztály (ÖVKI) Szaktanári továbbképzés Szarvas, 2017. december 7. A drónok használata egyre elterjedtebb

Részletesebben

Vektoralgebra feladatlap 2018 január 20.

Vektoralgebra feladatlap 2018 január 20. 1. Adott az ABCD tetraéder, határozzuk meg: a) AB + BD + DC b) AD + CB + DC c) AB + BC + DA + CD Vektoralgebra feladatlap 018 január 0.. Adott az ABCD tetraéder. Igazoljuk, hogy AD + BC = BD + AC, majd

Részletesebben

Kis magasságban végzett légi térképészeti munkák tapasztalatai. LÉGIFOTÓ NAP Székesfehérvár GeoSite Kft Horváth Zsolt

Kis magasságban végzett légi térképészeti munkák tapasztalatai. LÉGIFOTÓ NAP Székesfehérvár GeoSite Kft Horváth Zsolt Kis magasságban végzett légi térképészeti munkák tapasztalatai LÉGIFOTÓ NAP 2018 - Székesfehérvár GeoSite Kft Horváth Zsolt Az UAV technológiák térképészeti célú alkalmazásának lehetőségei, célterületei:

Részletesebben

Síkbeli egyenesek. 2. Egy egyenes az x = 1 4t, y = 2 + t parméteres egyenletekkel adott. Határozzuk meg

Síkbeli egyenesek. 2. Egy egyenes az x = 1 4t, y = 2 + t parméteres egyenletekkel adott. Határozzuk meg Analitikus mértan 3. FELADATLAP Síkbeli egyenesek 1. Írjuk fel annak az egyenesnek a paraméteres egyenleteit, amely (i) áthalad az M 0 (1, 2) ponton és párhuzamos a a(3, 1) vektorral; (ii) áthalad az origón

Részletesebben

Papp Ferenc Barlangkutató Csoport. Barlangtérképezés. Fotómodellezés. Holl Balázs 2014. negyedik változat hatodik kiegészítés 4.6

Papp Ferenc Barlangkutató Csoport. Barlangtérképezés. Fotómodellezés. Holl Balázs 2014. negyedik változat hatodik kiegészítés 4.6 Papp Ferenc Barlangkutató Csoport Barlangtérképezés Fotómodellezés Holl Balázs 2014 negyedik változat hatodik kiegészítés 4.6 (első változat 2011) A felszíni térképezés már egy évszázada a légifotókon

Részletesebben

Koordináta-geometria alapozó feladatok

Koordináta-geometria alapozó feladatok Koordináta-geometria alapozó feladatok 1. Határozd meg az AB szakasz felezőpontját! (1,5 ; 3,5) (0,5 ; ) (6,5 ; 8,5) (4,5 ; ) (0,5 ; 1,5) (0 ; 0) (0 ; 8,5) (1 ; 1) ( 1,5 ; ) (3,5 ; 3) (0 ; 3) ( 1 ; 1,5).

Részletesebben

Összeállította: dr. Leitold Adrien egyetemi docens

Összeállította: dr. Leitold Adrien egyetemi docens Skaláris szorzat az R n vektortérben Összeállította: dr. Leitold Adrien egyetemi docens 2008.09.08. 1 Vektorok skaláris szorzata Két R n -beli vektor skaláris szorzata: Legyen a = (a 1,a 2,,a n ) és b

Részletesebben

Nagyméretarányú térképezés 7.

Nagyméretarányú térképezés 7. Nyugat-magyarországi Egyetem Geoinformatikai Kara Dr. Vincze László Nagyméretarányú térképezés 7. NMT7 modul Digitális fotogrammetriai módszerek és dokumentálása DAT készítéséhez SZÉKESFEHÉRVÁR 2010 Jelen

Részletesebben

Érzékelők csoportosítása Passzív Nem letapogató Nem képalkotó mh. radiométer, graviméter Képalkotó - Kamerák Letapogató (képalkotó) Képsíkban TV kamer

Érzékelők csoportosítása Passzív Nem letapogató Nem képalkotó mh. radiométer, graviméter Képalkotó - Kamerák Letapogató (képalkotó) Képsíkban TV kamer Monitoring távérzékeléssel - aktív digitális érzékelők (E130-501) Természetvédelmi MSc szak Király Géza NyME, Erdőmérnöki Kar Geomatikai, Erdőfeltárási és Vízgazdálkodási Intézet Földmérési és Távérzékelési

Részletesebben

TANTÁRGYI ADATLAP I. TANTÁRGYLEÍRÁS

TANTÁRGYI ADATLAP I. TANTÁRGYLEÍRÁS TANTÁRGYI ADATLAP I. TANTÁRGYLEÍRÁS 1 ALAPADATOK 1.1 Tantárgy neve Fotogrammetria és lézerszkennelés 1.2 Azonosító (tantárgykód) BMEEOFTAG43 1.3 A tantárgy jellege kontaktórás tanegység 1.4 Óraszámok típus

Részletesebben

INFORMATIKA ÁGAZATI ALKALMAZÁSAI. Az Agrármérnöki MSc szak tananyagfejlesztése TÁMOP-4.1.2-08/1/A-2009-0010

INFORMATIKA ÁGAZATI ALKALMAZÁSAI. Az Agrármérnöki MSc szak tananyagfejlesztése TÁMOP-4.1.2-08/1/A-2009-0010 INFORMATIKA ÁGAZATI ALKALMAZÁSAI Az Agrármérnöki MSc szak tananyagfejlesztése TÁMOP-4.1.2-08/1/A-2009-0010 9. Távérzékelési adatok alkalmazása Érzékelők Hullámhossz tartományok Visszaverődés Infra felvételek,

Részletesebben

Matematika tanmenet 10. évfolyam 2018/2019

Matematika tanmenet 10. évfolyam 2018/2019 Matematika tanmenet 10. évfolyam 2018/2019 Műveltségi terület: MATEMATIKA Iskola, osztályok: Vetési Albert Gimnázium, 10.A, 10.B, 10.C, 10.D Tantárgy: MATEMATIKA Heti óraszám: 3 óra Készítette: a matematika

Részletesebben

Fotogrammetria és távérzékelés A képi tartalomban rejlő információgazdagság Dr. Jancsó Tamás Nyugat-magyarországi Egyetem, Geoinformatikai Kar MFTTT rendezvény 2012. Április 18. Székesfehérvár Tartalom

Részletesebben

3D - geometriai modellezés, alakzatrekonstrukció, nyomtatás

3D - geometriai modellezés, alakzatrekonstrukció, nyomtatás 3D - geometriai modellezés, alakzatrekonstrukció, nyomtatás 15. Digitális Alakzatrekonstrukció Méréstechnológia, Ponthalmazok regisztrációja http://cg.iit.bme.hu/portal/node/312 https://www.vik.bme.hu/kepzes/targyak/viiiav54

Részletesebben

Történeti bevezető Térlátás 3-D műsorszórás Megjelenítési technikák Tömörítés és átvitel Összefoglalás

Történeti bevezető Térlátás 3-D műsorszórás Megjelenítési technikák Tömörítés és átvitel Összefoglalás Történeti bevezető Térlátás 3-D műsorszórás Megjelenítési technikák Tömörítés és átvitel Összefoglalás ie. 300 Euklidész 1838-39 Wheatstone stereoscope -ja 1922 The Power of Love 1935 Első színes 3D mozifilm

Részletesebben

MUNKAANYAG. Matula Györgyi. A fotogrammetriai alapjai. A követelménymodul megnevezése: A fotogrammetriai alapjai

MUNKAANYAG. Matula Györgyi. A fotogrammetriai alapjai. A követelménymodul megnevezése: A fotogrammetriai alapjai Matula Györgyi A fotogrammetriai alapjai A követelménymodul megnevezése: A fotogrammetriai alapjai A követelménymodul száma: 2241-06 A tartalomelem azonosító száma és célcsoportja: SzT-012-50 A FOTOGRAMMETRIA

Részletesebben

Koordináta-geometria feladatok (emelt szint)

Koordináta-geometria feladatok (emelt szint) Koordináta-geometria feladatok (emelt szint) 1. (ESZÉV Minta (2) 2004.05/7) Egy ABC háromszögben CAB = 30, az ACB = 45. A háromszög két csúcsának koordinátái: A(2; 2) és C(4; 2). Határozza meg a harmadik

Részletesebben

Fotogrammetria 12. Digitális fotogrammetria Dr. Jancsó, Tamás

Fotogrammetria 12. Digitális fotogrammetria Dr. Jancsó, Tamás Fotogrammetria 12. Digitális fotogrammetria Dr. Jancsó, Tamás Fotogrammetria 12.: Digitális fotogrammetria Dr. Jancsó, Tamás Lektor: Dr. Barsi, Árpád Ez a modul a TÁMOP - 4.1.2-08/1/A-2009-0027 Tananyagfejlesztéssel

Részletesebben

egyenletrendszert. Az egyenlő együtthatók módszerét alkalmazhatjuk. sin 2 x = 1 és cosy = 0.

egyenletrendszert. Az egyenlő együtthatók módszerét alkalmazhatjuk. sin 2 x = 1 és cosy = 0. Magyar Ifjúság. X. TRIGONOMETRIKUS FÜGGVÉNYEK A trigonometrikus egyenletrendszerek megoldása során kísérletezhetünk új változók bevezetésével, azonosságok alkalmazásával, helyettesítő módszerrel vagy más,

Részletesebben

A TANTÁRGY ADATLAPJA

A TANTÁRGY ADATLAPJA A TANTÁRGY ADATLAPJA 1. A képzési program adatai 1.1 Felsőoktatási intézmény Babeş-Bolyai Tudományegyetem 1.2 Kar Matematika és Informatika Kar 1.3 Intézet Magyar Matematika és Informatika 1.4 Szakterület

Részletesebben

Láthatósági kérdések

Láthatósági kérdések Láthatósági kérdések Láthatósági algoritmusok Adott térbeli objektum és adott nézőpont esetén el kell döntenünk, hogy mi látható az adott alakzatból a nézőpontból, vagy irányából nézve. Az algoritmusok

Részletesebben

Vonalas közlekedési létesítmények mobil térképezésével kapcsolatos saját fejlesztések

Vonalas közlekedési létesítmények mobil térképezésével kapcsolatos saját fejlesztések www.geodezia.hu Geodézia Zrt. 31. Vándorgyűlés Szekszárd, 2017. július 6-8. Vonalas közlekedési létesítmények mobil térképezésével kapcsolatos saját fejlesztések Csörgits Péter Miről lesz szó? VONALAS

Részletesebben

LÁTÁS FIZIOLÓGIA I.RÉSZ

LÁTÁS FIZIOLÓGIA I.RÉSZ LÁTÁS FIZIOLÓGIA I.RÉSZ Dr Wenzel Klára egyetemi magántanár Budapesti Műszaki és Gazdaságtudományi Egyetem Budapest, 2011 Az 1.rész tartalma: A fény; a fény hatása az élő szervezetre 2. A szem 1. Különböző

Részletesebben

Légi lézeres letapogatással felmért halomsírmezõ a Várhely környékén 5 KIRÁLY GÉZA 1 BROLLY GÁBOR 2 HÁZAS GÁBOR 3 WOLFGANG TRIMMEL 4

Légi lézeres letapogatással felmért halomsírmezõ a Várhely környékén 5 KIRÁLY GÉZA 1 BROLLY GÁBOR 2 HÁZAS GÁBOR 3 WOLFGANG TRIMMEL 4 KIRÁLY GÉZA 1 BROLLY GÁBOR 2 HÁZAS GÁBOR 3 WOLFGANG TRIMMEL 4 Légi lézeres letapogatással felmért halomsírmezõ a Várhely környékén 5 Bevezetés Magyarországon tudtunkkal elõször a Fertõ tó keleti partvidékén,

Részletesebben

FÖLDMÉRÉS ISMERETEK ÁGAZATI SZAKMAI ÉRETTSÉGI VIZSGA

FÖLDMÉRÉS ISMERETEK ÁGAZATI SZAKMAI ÉRETTSÉGI VIZSGA FÖLDMÉRÉS ISMERETEK ÁGAZATI SZAKMAI ÉRETTSÉGI VIZSGA I. RÉSZLETES A földmérés ismeretek ágazati szakmai érettségi vizsga részletes érettségi vizsgakövetelményei a XXXV. Földmérés ágazat szakképesítésének

Részletesebben

VIK A2 Matematika - BOSCH, Hatvan, 3. Gyakorlati anyag. Mátrix rangja

VIK A2 Matematika - BOSCH, Hatvan, 3. Gyakorlati anyag. Mátrix rangja VIK A2 Matematika - BOSCH, Hatvan, 3. Gyakorlati anyag 2019. március 21. Mátrix rangja 1. Számítsuk ki az alábbi mátrixok rangját! (d) 1 1 2 2 4 5 1 1 1 1 1 1 1 1 2 1 2 1 1 0 1 1 2 1 0 1 1 1 1 2 3 1 3

Részletesebben

Nagyméretarányú térképezés

Nagyméretarányú térképezés Nyugat-magyarországi Egyetem Geoinformatikai Kara Dr. Vincze László Nagyméretarányú térképezés NMT7 modul Digitális fotogrammetriai módszerek és dokumentálása DAT készítéséhez SZÉKESFEHÉRVÁR 2010 Jelen

Részletesebben

Lencse típusok Sík domború 2x Homorúan domború Síkhomorú 2x homorú domb. Homorú

Lencse típusok Sík domború 2x Homorúan domború Síkhomorú 2x homorú domb. Homorú Jegyzeteim 1. lap Fotó elmélet 2015. október 9. 14:42 Lencse típusok Sík domború 2x Homorúan domború Síkhomorú 2x homorú domb. Homorú Kardinális elemek A lencse képalkotását meghatározó geometriai elemek,

Részletesebben

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Megoldások

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Megoldások Megoldások 1. Határozd meg a szakasz hosszát, ha a végpontok koordinátái: A ( 1; ) és B (5; )! A szakasz hosszához számítsuk ki a két pont távolságát: d AB = AB = (5 ( 1)) + ( ) = 6 + 1 = 7 6,08.. Határozd

Részletesebben

Trigonometria. Szögfüggvények alkalmazása derékszög háromszögekben. Szent István Egyetem Gépészmérnöki Kar Matematika Tanszék 1

Trigonometria. Szögfüggvények alkalmazása derékszög háromszögekben. Szent István Egyetem Gépészmérnöki Kar Matematika Tanszék 1 Szent István Egyetem Gépészmérnöki Kar Matematika Tanszék 1 Trigonometria Szögfüggvények alkalmazása derékszög háromszögekben 1. Az ABC hegyesszög háromszögben BC = 14 cm, AC = 1 cm, a BCA szög nagysága

Részletesebben

Lineáris leképezések. Wettl Ferenc március 9. Wettl Ferenc Lineáris leképezések március 9. 1 / 31

Lineáris leképezések. Wettl Ferenc március 9. Wettl Ferenc Lineáris leképezések március 9. 1 / 31 Lineáris leképezések Wettl Ferenc 2015. március 9. Wettl Ferenc Lineáris leképezések 2015. március 9. 1 / 31 Tartalom 1 Mátrixleképezés, lineáris leképezés 2 Alkalmazás: dierenciálhatóság 3 2- és 3-dimenziós

Részletesebben

DIGITÁLIS TEREPMODELL A TÁJRENDEZÉSBEN

DIGITÁLIS TEREPMODELL A TÁJRENDEZÉSBEN DIGITÁLIS TEREPMODELL A TÁJRENDEZÉSBEN DR. GIMESI LÁSZLÓ Bevezetés Pécsett és környékén végzett bányászati tevékenység felszámolása kapcsán szükségessé vált az e tevékenység során keletkezett meddők, zagytározók,

Részletesebben

Az érzékelők legfontosabb elemei Optikai rendszer: lencsék, tükrök, rekeszek, szóró tagok, stb. Érzékelők: Az aktív felületükre eső sugárzás arányában

Az érzékelők legfontosabb elemei Optikai rendszer: lencsék, tükrök, rekeszek, szóró tagok, stb. Érzékelők: Az aktív felületükre eső sugárzás arányában Monitoring távérzékeléssel - passzív digitális érzékelők (E130-501) Természetvédelmi MSc szak Király Géza NyME, Erdőmérnöki Kar Geomatikai, Erdőfeltárási és Vízgazdálkodási Intézet Földmérési és Távérzékelési

Részletesebben

Síkbeli egyenesek Egy egyenes az x = 1 4t, y = 2 + t parméteres egyenletekkel adott. Határozzuk meg

Síkbeli egyenesek Egy egyenes az x = 1 4t, y = 2 + t parméteres egyenletekkel adott. Határozzuk meg Analitikus mértan 5. FELADATLAP Síkbeli egyenesek 5.1. Írjuk fel annak az egyenesnek a paraméteres egyenleteit, amely (i) áthalad az M 0 (1, 2) ponton és párhuzamos a a(3, 1) vektorral; (ii) áthalad az

Részletesebben

A távérzékelés és fizikai alapjai 3. Fizikai alapok

A távérzékelés és fizikai alapjai 3. Fizikai alapok A távérzékelés és fizikai alapjai 3. Fizikai alapok Csornai Gábor László István Budapest Főváros Kormányhivatala Mezőgazdasági Távérzékelési és Helyszíni Ellenőrzési Osztály Az előadás 2011-es átdolgozott

Részletesebben

Digitális tananyag a fizika tanításához

Digitális tananyag a fizika tanításához Digitális tananyag a fizika tanításához A lencsék fogalma, fajtái Az optikai lencsék a legegyszerűbb fénytörésen alapuló leképezési eszközök. Fajtái: a domború és a homorú lencse. optikai középpont optikai

Részletesebben

Paksi Atomerőmű II. blokk lokalizációs torony deformáció mérése

Paksi Atomerőmű II. blokk lokalizációs torony deformáció mérése Siki Zoltán, Dede Károly, Homolya András, Kiss Antal (BME-ÁFGT) Paksi Atomerőmű II. blokk lokalizációs torony deformáció mérése siki@agt.bme.hu http://www.agt.bme.hu Geomatikai Szeminárium, 2008 Sopron

Részletesebben

TANTÁRGYI ADATLAP I. TANTÁRGYLEÍRÁS

TANTÁRGYI ADATLAP I. TANTÁRGYLEÍRÁS TANTÁRGYI ADATLAP I. TANTÁRGYLEÍRÁS 1 ALAPADATOK 1.1 Tantárgy neve GEODÉZIA I. 1.2 Azonosító (tantárgykód) BMEEOAFAT41 1.3 A tantárgy jellege kontaktórás tanegység 1.4 Óraszámok típus előadás (elmélet)

Részletesebben

MFTTT Vándorgyűlés. Zboray Zoltán Igazgató. FÖMI Távérzékelési és Kozmikus Geodéziai Igazgatóság (TKGI) Földmérési és Távérzékelési Intézet

MFTTT Vándorgyűlés. Zboray Zoltán Igazgató. FÖMI Távérzékelési és Kozmikus Geodéziai Igazgatóság (TKGI) Földmérési és Távérzékelési Intézet MFTTT Vándorgyűlés Zboray Zoltán Igazgató FÖMI Távérzékelési és Kozmikus Geodéziai Igazgatóság (TKGI) Szolnok 2015. július 3. 1149 Budapest, Bosnyák tér 5. http://www.fomi.hu Előzmények A fotogrammetriai

Részletesebben

7. Koordináta méréstechnika

7. Koordináta méréstechnika 7. Koordináta méréstechnika Coordinate Measuring Machine: CMM, 3D-s mérőgép Egyiptomi piramis kövek mérése i.e. 1440 Egyiptomi mérővonalzó, Amenphotep fáraó (i.e. 1550) alkarjának hossza: 524mm A koordináta

Részletesebben

Egy pont földfelszíni helyzetét meghatározzák: a pont alapfelületi földrajzi koordinátái a pont tengerszint feletti magassága

Egy pont földfelszíni helyzetét meghatározzák: a pont alapfelületi földrajzi koordinátái a pont tengerszint feletti magassága Földrajzi koordináták Egy pont földfelszíni helyzetét meghatározzák: a pont alapfelületi földrajzi koordinátái a pont tengerszint feletti magassága Topo-Karto-2 1 Földrajzi koordináták pólus egyenlítő

Részletesebben

Magasságos GPS. avagy továbbra is

Magasságos GPS. avagy továbbra is Magasságos GPS avagy továbbra is Tisztázatlan kérdések az RTK-technológiával végzett magasságmeghatározás területén? http://www.sgo.fomi.hu/files/magassagi_problemak.pdf Takács Bence BME Általános- és

Részletesebben

FÖLDMÉRÉS ISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

FÖLDMÉRÉS ISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Földmérés ismeretek középszint 1711 ÉRETTSÉGI VIZSGA 2017. május 17. FÖLDMÉRÉS ISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Útmutató a vizsgázók teljesítményének

Részletesebben

Modern Fizika Labor. 17. Folyadékkristályok

Modern Fizika Labor. 17. Folyadékkristályok Modern Fizika Labor Fizika BSc A mérés dátuma: 2011. okt. 11. A mérés száma és címe: 17. Folyadékkristályok Értékelés: A beadás dátuma: 2011. okt. 23. A mérést végezte: Domokos Zoltán Szőke Kálmán Benjamin

Részletesebben

MUNKAANYAG. Krauter Erika. A földi fotogrammetriai technológia. A követelménymodul megnevezése: Fotogrammetria feladatai

MUNKAANYAG. Krauter Erika. A földi fotogrammetriai technológia. A követelménymodul megnevezése: Fotogrammetria feladatai Krauter Erika A földi fotogrammetriai technológia A követelménymodul megnevezése: Fotogrammetria feladatai A követelménymodul száma: 2241-06 A tartalomelem azonosító száma és célcsoportja: SzT-004-50 A

Részletesebben