Képszűrés II. Digitális képelemzés alapvető algoritmusai. Laplace-operátor és approximációja. Laplace-szűrő és átlagolás. Csetverikov Dmitrij
|
|
- Rebeka Kozma
- 9 évvel ezelőtt
- Látták:
Átírás
1 Képszűrés II Digitális képelemzés alapvető algoritmusai Csetverikov Dmitrij Eötvös Lóránd Egyetem, Budapest Informatikai Kar 1 Laplace-szűrő 2 Gauss- és Laplace-képpiramis 3 Gyors szűrők Szeparábilis szűrők Futószűrők 4 Adaptív zajszűrés Laplace-operátor és approximációja A folytonos Laplace-operátor definíciója: f(x, y). = 2 f x f y 2 = ( 2 x y 2 ) f Egyszerű 3 3-as maszk Laplace-operátorra a deriváltakat különbségekkel approximáljuk f x [ ] 2 f x 2 [ ] [ ] = [ ] f = Laplace-szűrő és átlagolás Normalizálás után az alábbi approximált w L Laplace-szűrőt kapjuk: f(x, y) f(x, y) Av(x, y) = f(x, y) w L, ahol Av a szomszédos képelemek átlaga: Av(x, y). = [ ] f(x 1, y) + f(x, y 1) + f(x + 1, y) + f(x, y + 1) szomszéd 8 szomszéd Egyszerű maszkok Laplace-szűrésre
2 Laplace-szűrő tulajdonságai 1/2 Laplace-szűrő tulajdonságai 2/2 Az eredmény közel áll az eredeti és a simított kép különbségéhez. a lassú képváltozásokat levonjuk, a gyorsak megmaradnak ha nincs változás, nulla az eredmény (válasz, response) Az output kép értéktartománya elvileg [ 255, 255]. egy pixel és a szomszédai különbsége gyakran kicsi a gyakorlatban az értéktartomány lényegesen szűkebb jobb nem kerekíteni A Laplace-szűrő kiemel intenzitás-változásokat és finom részleteket. kontúrokat, foltokat, vékony vonalakat Zaj-érzékeny, mert magasrendű deriváltakat tartalmaz. Egy simítószűrőt alkalmazhatunk elötte, hogy a képfüggvény deriválható legyen. Laplacian-of-Gaussian (LoG): a Laplace és a Gauss szűrő konbinációja w LoG = w G w L w G alkalmazása után a képfüggvény simább, deriválhatóbb lesz w LoG kevésbé zajérzékeny, mint w L a LoG nulla-átmenetei élpontok nulla-átmenetek: előjel-váltások, zero-crossings Laplace-szűrés példái 1/3 Laplace-szűrés példái 2/3 bemenet Laplace abszolút Laplace eltolt Az eredményt kétféleképpen mutatjuk be: abszolútérték leképezés: , eltoltérték leképezés: 127 0, A leképezéstől fűggően más és más részletek látszanak. bemenet Laplace abszolút Laplace eltolt A kontúrok ki vannak emelve. A fokozatos képváltozások el vannak nyomva.
3 Laplace-szűrés példái 3/3 Képpiramis 1/2 Csökkenő felbontású képmásolatok sorozata a piramis alja (bottom): maximális (eredeti) felbontás a piramis csúcsa (top): minimális felbontás bemenet Laplace abszolút Laplace eltolt A Laplace-szűrő zaj-érzékeny. A só-és-borsó zajt tartalmazó képen kevés a kontraszt rész. a Laplace-szűrés eredménye zaj jellegű A felbontás-csökkentés tipikus menete: 1 képszűrés, pl. kisméretű Gauss- vagy Laplace-szűrővel 2 decimálás (decimation): minden második sor és oszlop törlése 3 iteráció: a két művelet megismétlése A Gauss-piramis legalsó szintje (alja) az eredeti kép. A Laplace-piramis alja a Laplace-szűrt eredeti kép. Képpiramis 2/2 Gauss-képpiramis példája A szűrőtípus választása milyen képi tulajdonságokat, sajátságokat akarunk megőrizni a csökkenő felbontású képen? ha az élekre koncentrálunk, akkor Laplace ha minimális információ-vesztességet akarunk, akkor Gauss Másféle, bonyolultabb képpiramisok is léteznek. A képpiramis szorosan kapcsolódik a scale-space-hez. képpiramis: rögzitett arányú felbontás-csökkenés (tipikusan, a felére) scale-space: szabályozható arányú részletesség-csökkenés (elméletileg, folytonos) A képet elsimítjuk, a felbontás a felére csökken. A finom részletek fokozatosan eltűnnek. lehetőség változó részletességű képelemzésre
4 Laplace-képpiramis példája Sejtdetektálás Laplace-piramis segítségével 1/3 eredeti sejtkép (vizelet) A finom részletek megmaradnak. A lassú képváltozások eltűnnek. lehetőség lassan változő háttér eltűntetésére Különböző méretű, alakú és textúrajú sejtek láthatók. egyes sejtek kontrasztja igen alacsony A cél a sejtrégiók kiemelése. Sejtdetektálás Laplace-piramis segítségével 2/3 Sejtdetektálás Laplace-piramis segítségével 3/3 Laplace-piramis 2.szintje, kinagyítva A piramis kiemeli a sűrű képváltozású régiókat. Az objektumok láthatók az alacsony kontraszt és a változó háttér ellenére. a detektált objektumok Minden sejtet detektáltunk és nincs hamis detektálás (false positive) Az alacsony kontraszt ellenére a határok elég pontosak.
5 Szeparábilis szűrők 1/3 Szeparábilis szűrők 2/3 Egy 2D-s szeparábilis szűrő két 1D-s szűrőre bontható: w(y, x) = v(y) u T (x) a szűrőmátrix (maszk) minden eleme a két 1D-s szűrő megfelelő elemeinek a szorzata u T (x) a transzponált (horizontális) vektor = 2 [1 2 1 ] Egy D W D W -s ablakra a műveletigény minden pontban eredeti szűrő: O(D 2 W ) szeparábilis szűrő: 2 O(D W ) Hogyan bontsunk egy 2D-s szűrőmátrixot több 1D-s szűrő lineáris konbinációára? használjuk a Szinguláris Érték Dekompozíciót, az SVD-t nem biztos, hogy gyorsabb lesz függ az 1D-s szűrők számától Szeparábilis szűrő példája Szeparábilis szűrők 3/3 Futószűrés fogalma 1/2 A Gauss-szűrő szeparábilis w G (x, y) = w G (x) w G (y) w G (x) = C e x2 2σ 2 A dobozszűrő is szeparábilis egy dobozszűrő mátrix két 1D-s egységvektor szorzata a dobozszűrő futószűrő-implementációja még gyorsabb Amikor az ablak a következű pozícióba lép, nem számítjuk ki az új értéket az eredeti definíció szerint hanem felhasználjuk az előző pozícióban kapott értéket és módosítjuk azt (felfrissítjük, update) hiszen az ablak tartalma csak kismértékben változik egy oszlop kilép egy oszlop belép Futószűrő megoldások különböző szűrőkre léteznek. dobozszűrő mediánszűrő Angolul: futószűrés: run filtering futószűrő: running filter
6 Futószűrés fogalma 2/2 A futó dobozszűrő 1/2 A módszer hatékonysága az eredmény kiszámítási módjától függ. egy addítiv mennyiség, pl. az átlag könnyen módosítható egy nemlineáris mennyiség, pl. a medián nehezebben módosítható A futószűrés kiterjeszthető tetszőleges alakú ablakra. Az ötletet más, bonyolultabb matematikai műveletekre is ki lehet terjeszteni egy fútóablakban (data window) a Gyors Fourier Transzformációra (FFT) a Szinguláris Érték Dekompozícióra (SVD) Adatstruktúra: az S[x] tömb, hossza N képméret: M sor, N oszlop ablakméret: D W D W Az adatstruktúra inicializálása a kezdő sorra kiszámítjuk az S[x] oszlopösszegeket Inicializálás minden sor elején a kezdő pozícióra kiszámítjuk az S W ablakösszeget D W y S[1] S[3] S[x] x A futó dobozszűrő 2/2 A futó dobozszűrő számításigénye Lépés soron belül (Next Position) az aktuális S W frissítése: minusz kilépő S plusz belépő S INIT S[1] S[3] S[x] x Kép- és ablakméret képméret: M sor, N oszlop ablakméret: D W D W Sor végén ugrás a következő sor elejére (Next Row) az összes S[x] frissítése: minusz kilépő pixel plusz belépő pixel INIT: S[x] inicializálása (emlékeztető) D W y NR NP Ha M D W, a műveletigény az S[x] inicializálása erejeig nem függ az ablakmérettől. a gyakorlatban a ös futó dobozszűrő ugyanolyan gyors, mint az 5 5-ös Ha N M, transzponáljuk a képmátrixot, a szűrés után pedig állítsuk vissza! így talán gyorsabb lesz
7 Az adaptívitás szüksége Adaptív környezet-kiválasztás Eddig kizárolag a nemadaptív szűrőkkel foglalkoztunk: rögzített a környezet-kiválasztás, pl. fix méretű ablak rögzített a környezeten definiált operátor, pl. a medián Az adaptívitás a lokális kontextus felhasználása, amitől az eredmény javulását várjuk. elkerüljük az átlagszűrőkre jellemző élelmosódást elkerüljük az mediánszűrőkre jellemző sarok-lekerekítést Mi ezen nemkívánatos hatások oka? nem vesszük észre, hogy az ablak az objektum és a háttér határán van összekeverjük a két különböző intenzitás-osztályhoz tartozó értékeket Megpróbáljuk elválasztani az objektum-képelemeket a háttér-képelemektől a releváns értékeket a zajtól Adaptív környezet-kiválasztás: csak a releváns pixeleket fogjuk felhasználni. eddig a környezet a teljes ablak volt most az ablakban csak bizonyos képelemeket veszünk figyelembe A kiválasztott környezeten definiált operátor viszont fix marad. eddig is fix függvényt, pl. átlagot használtunk most is ez lesz Képelem-kiválasztás egy n n-es ablakban Szimmetrikus legközelebbi szomszédok Standard környezet az összes n 2 pixel k legközelebbi szomszéd (k-nearest neighbours, k-nn) a k pixel, amely intenzitás szerint legközelebb van a c középpixelhez a k egyik lehetséges beállítása: k = n [ n 2] + (n 1) például, ha n = 3, akkor k = 5 az i pixelt akkor választjuk, ha I(i) I(c) < I(i s ) I(c) {i, i s } a közép-szimmetrikus képelemek egyik párja Lokális kontextus: pixelek intenzitása és elrendezése Hasznos az élek esetén az él ugyanazon oldálán levő képelemeket választja elkerüli "az élen keresztüli átlagolást" elkerüli az élelmosódást Szigma-legközelebbi szomszédok az i pixelt akkor választjuk, ha I(i) I(c) < k σ zaj gyakran k = 2 σ zaj a zaj szórása σ zaj becslésére felhasználhatjuk a kép háttér részeit i c is szimmetrikus pixelpár választás kontúron
8 Standard és adaptív 5 5-ös szűrők össehasonlítása A szigma-szűrő nem tünteti el a só-és-borsó zajt input kép doboz medián k-nn átlag szimm. átlag szimm. medián szigma átlag 5 5 szigma med. 5 5 szigma med. 9 9 Egy zajos pixelre az I zajos ± 2σ zaj intervallum nem tartalmaz zajmentes pixeleket I zajos I zajmentes > 2σ zaj Emiatt a szúrő a I zajos zajos értéket választja a zajt nem távolítja el
3. Szűrés képtérben. Kató Zoltán. Képfeldolgozás és Számítógépes Grafika tanszék SZTE (http://www.inf.u-szeged.hu/~kato/teaching/)
3. Szűrés képtérben Kató Zoltán Képfeldolgozás és Számítógépes Grafika tanszék SZTE http://www.inf.u-szeged.hu/~kato/teaching/ 2 Kép transzformációk típusai Kép értékkészletének radiometriai információ
Éldetektálás. Digitális képelemzés alapvető algoritmusai. Képi élek. Csetverikov Dmitrij. A Canny-éldetektor Az éldetektálás utófeldolgozása
Éldetektálás Digitális képelemzés alapvető algoritmusai 1 Alapvető képi sajátságok Csetverikov Dmitrij Eötvös Lóránd Egyetem, Budapest csetverikov@sztaki.hu http://vision.sztaki.hu Informatikai Kar Az
Sergyán Szabolcs szeptember 21.
Éldetektálás Sergyán Szabolcs Budapesti Műszaki Főiskola Neumann János Informatikai Kar 2009. szeptember 21. Sergyán Sz. (BMF NIK) Éldetektálás 2009. szeptember 21. 1 / 28 Mit nevezünk élnek? Intuitív
6. Éldetektálás. Kató Zoltán. Képfeldolgozás és Számítógépes Grafika tanszék SZTE (http://www.inf.u-szeged.hu/~kato/teaching/)
6. Éldetektálás Kató Zoltán Képeldolgozás és Számítógépes Graika tanszék SZTE (http://www.in.u-szeged.hu/~kato/teaching/) 2 Élek A képen ott található él, ahol a kép-üggvény hirtelen változik. A kép egy
Digitális képelemzés alapvető algoritmusai Csetverikov, Dmitrij
Csetverikov, Dmitrij írta Csetverikov, Dmitrij Publication date 2015 Szerzői jog 2015 Csetverikov Dmitrij Tartalom Digitális képelemzés alapvető... 1 1. 1 Bevezetés... 1 1.1. 1.1 A jegyzet tematikája...
Képfeldolgozó eljárások áttekintés. Orvosi képdiagnosztika
Képfeldolgozó eljárások áttekintés Orvosi képdiagnosztika Tartalomjegyzék Képmanipulációs eljárások Képjavítás (kontraszt módosítás, intenzitásviszonyok módosításahisztogram módosítás, zajszűrés) Képelemzés
Mit lássunk élnek? Hol van az él? Milyen vastag legyen? Hol
Textúra Könnyű az élt megtalálni? Mi lássunk élnek? Mit lássunk élnek? Hol van az él? Milyen vastag legyen? Mit lássunk élnek? Zaj A zajpontokat nem szabad az élpontokkal összekeverni Egy vagy két él?
Képfeldolgozás jól párhuzamosítható
Képfeldolgozás jól párhuzamosítható B. Wilkinson, M. Allen: Parallel Programming, Pearson Education Prentice Hall, 2nd ed., 2005. könyv 12. fejezete alapján Vázlat A képfeldolgozás olyan alkalmazási terület,
Gauss-Seidel iteráció
Közelítő és szimbolikus számítások 5. gyakorlat Iterációs módszerek: Jacobi és Gauss-Seidel iteráció Készítette: Gelle Kitti Csendes Tibor Somogyi Viktor London András Deák Gábor jegyzetei alapján 1 ITERÁCIÓS
Digitális képelemzés alapvető algoritmusai
1 Digitális képelemzés alapvető algoritmusai Csetverikov Dmitrij Eötvös Lóránd Tudománygyetem Informatikai Kar Tartalomjegyzék 1. Bevezetés 10 1.1. A jegyzet tematikája.............................. 10
A médiatechnológia alapjai
A médiatechnológia alapjai Úgy döntöttem, hogy a Szirányi oktatta előadások számonkérhetőnek tűnő lényegét kiemelem, az alapján, amit a ZH-ról mondott: rövid kérdések. A rész és az egész: összefüggések
Képfeldolgozó eljárások áttekintés. Orvosi képdiagnosztika 9. ea ősz
Képfeldolgozó eljárások áttekintés Orvosi képdiagnosztika 9. ea. 2015 ősz Tartalomjegyzék Képmanipulációs eljárások Képjavítás (kontraszt módosítás, intenzitásviszonyok módosításahisztogram módosítás,
Él: a képfüggvény hirtelen változása. Típusai. Felvételeken zajos formában jelennek meg. Lépcsős
Él: a képfüggvény hirtelen változása Típusai Lépcsős Rámpaszerű Tetőszerű Vonalszerű él Felvételeken zajos formában jelennek meg Adott pontbeli x ill. y irányú változás jellemezhető egy f folytonos képfüggvény
{ } x x x y 1. MATEMATIKAI ÖSSZEFOGLALÓ. ( ) ( ) ( ) (a szorzás eredménye:vektor) 1.1. Vektorok közötti műveletek
1. MAEMAIKAI ÖSSZEFOGLALÓ 1.1. Vektorok közötti műveletek Azok a fizikai mennyiségek, melyeknek nagyságukon kívül irányuk is van, vektoroknak nevezzük. A vektort egyértelműen megadhatjuk a hosszával és
Képfeldolgozás jól párhuzamosítható
Képeldolgozás jól párhuzamosítható B. Wilkinson, M. Allen: Parallel Programming, Pearson Education Prentice Hall, nd ed., 005. könyv. ejezete alapján Vázlat A képeldolgozás olyan alkalmazási terület, amely
Konjugált gradiens módszer
Közelítő és szimbolikus számítások 12. gyakorlat Konjugált gradiens módszer Készítette: Gelle Kitti Csendes Tibor Vinkó Tamás Faragó István Horváth Róbert jegyzetei alapján 1 LINEÁRIS EGYENLETRENDSZEREK
Fourier transzformáció
a Matematika mérnököknek II. című tárgyhoz Fourier transzformáció Fourier transzformáció, heurisztika Tekintsük egy 2L szerint periodikus függvény Fourier sorát: f (x) = a 0 2 + ( ( nπ ) ( nπ )) a n cos
Numerikus módszerek beugró kérdések
1. Definiálja a gépi számok halmazát (a tanult modellnek megfelelően)! Adja meg a normalizált lebegőpontos szám alakját. (4 pont) Az alakú számot normalizált lebegőpontos számnak nevezik, ha Ahol,,,. Jelöl:
Számsorok. 1. Definíció. Legyen adott valós számoknak egy (a n ) n=1 = (a 1, a 2,..., a n,...) végtelen sorozata. Az. a n
Számsorok 1. Definíció. Legyen adott valós számoknak egy (a n ) = (a 1, a 2,..., a n,...) végtelen sorozata. Az végtelen összeget végtelen számsornak (sornak) nevezzük. Az a n számot a sor n-edik tagjának
Fraktálok. Kontrakciók Affin leképezések. Czirbusz Sándor ELTE IK, Komputeralgebra Tanszék. TARTALOMJEGYZÉK Kontrakciók Affin transzformációk
Fraktálok Kontrakciók Affin leképezések Czirbusz Sándor ELTE IK, Komputeralgebra Tanszék TARTALOMJEGYZÉK 1 of 71 A Lipschitz tulajdonság ÁTMÉRŐ, PONT ÉS HALMAZ TÁVOLSÁGA Definíció Az (S, ρ) metrikus tér
Képfeldolgozó eljárások áttekintés. Orvosi képdiagnosztika 9. ea ősz
Képfeldolgozó eljárások áttekintés Orvosi képdiagnosztika 9. ea. 2015 ősz Tartalomjegyzék Képmanipulációs eljárások Képjavítás (kontraszt módosítás, hisztogram módosítás, zajszűrés, élkiemelés) Képelemzés
Keresés képi jellemzők alapján. Dr. Balázs Péter SZTE, Képfeldolgozás és Számítógépes Grafika Tanszék
Keresés képi jellemzők alapján Dr. Balázs Péter SZTE, Képfeldolgozás és Számítógépes Grafika Tanszék Lusta gépi tanulási algoritmusok Osztályozás: k=1: piros k=5: kék k-legközelebbi szomszéd (k=1,3,5,7)
Adaptív dinamikus szegmentálás idősorok indexeléséhez
Adaptív dinamikus szegmentálás idősorok indexeléséhez IPM-08irAREAE kurzus cikkfeldolgozás Balassi Márton 1 Englert Péter 1 Tömösy Péter 1 1 Eötvös Loránd Tudományegyetem Informatikai Kar 2013. november
Differenciálegyenletek numerikus megoldása
a Matematika mérnököknek II. című tárgyhoz Differenciálegyenletek numerikus megoldása Fokozatos közeĺıtés módszere (1) (2) x (t) = f (t, x(t)), x I, x(ξ) = η. Az (1)-(2) kezdeti érték probléma ekvivalens
Összeállította: dr. Leitold Adrien egyetemi docens
Skaláris szorzat az R n vektortérben Összeállította: dr. Leitold Adrien egyetemi docens 2008.09.08. 1 Vektorok skaláris szorzata Két R n -beli vektor skaláris szorzata: Legyen a = (a 1,a 2,,a n ) és b
KONVOLÚCIÓS NEURONHÁLÓK. A tananyag az EFOP pályázat támogatásával készült.
KONVOLÚCIÓS NEURONHÁLÓK A tananyag az EFOP-3.5.1-16-2017-00004 pályázat támogatásával készült. 1. motiváció A klasszikus neuronháló struktúra a fully connected háló Két réteg között minden neuron kapcsolódik
Képrestauráció Képhelyreállítás
Képrestauráció Képhelyreállítás Képrestauráció - A képrestauráció az a folyamat mellyel a sérült képből eltávolítjuk a degradációt, eredményképpen pedig az eredetihez minél közelebbi képet szeretnénk kapni
ACM Snake. Orvosi képdiagnosztika 11. előadás első fele
ACM Snake Orvosi képdiagnosztika 11. előadás első fele ACM Snake (ismétlés) A szegmentáló kontúr egy paraméteres görbe: x Zs s X s, Y s,, s A szegmentáció energia funkcionál minimalizálása: E x Eint x
GROVER-algoritmus. Sinkovicz Péter. ELTE, MSc II dec.15.
ELTE, MSc II. 2011.dec.15. Áttekintés Feladat Algoritmus Kvantum keresési algoritmus áttekintése Input: N = 2 n elemű tömb, Ψ 1 = 0 1 kezdőállapot, f x0 (x) orákulum függvény. Output: x 0 keresett elem
Totális Unimodularitás és LP dualitás. Tapolcai János
Totális Unimodularitás és LP dualitás Tapolcai János tapolcai@tmit.bme.hu 1 Optimalizálási feladat kezelése NP-nehéz Hatékony megoldás vélhetően nem létezik Jó esetben hatékony algoritmussal közelíteni
Számítógépes képelemzés 7. előadás. Dr. Balázs Péter SZTE, Képfeldolgozás és Számítógépes Grafika Tanszék
Számítógépes képelemzés 7. előadás Dr. Balázs Péter SZTE, Képfeldolgozás és Számítógépes Grafika Tanszék Momentumok Momentum-alapú jellemzők Tömegközéppont Irányultáság 1 2 tan 2 1 2,0 1,1 0, 2 Befoglaló
5 = hiszen és az utóbbi mátrix determinánsa a középs½o oszlop szerint kifejtve: 3 7 ( 2) = (példa vége). 7 5 = 8. det 6.
A pivotálás hasznáról és hatékony módjáról Adott M mátrixra pivotálás alatt a következ½ot értjük: Kijelölünk a mátrixban egy nemnulla elemet, melynek neve pivotelem, aztán az egész sort leosztjuk a pivotelemmel.
Vektorok, mátrixok, lineáris egyenletrendszerek
a Matematika mérnököknek I. című tárgyhoz Vektorok, mátrixok, lineáris egyenletrendszerek Vektorok A rendezett valós számpárokat kétdimenziós valós vektoroknak nevezzük. Jelölésükre latin kisbetűket használunk.
Regresszió. Csorba János. Nagyméretű adathalmazok kezelése március 31.
Regresszió Csorba János Nagyméretű adathalmazok kezelése 2010. március 31. A feladat X magyarázó attribútumok halmaza Y magyarázandó attribútumok) Kérdés: f : X -> Y a kapcsolat pár tanítópontban ismert
Képrekonstrukció 3. előadás
Képrekonstrukció 3. előadás Balázs Péter Képfeldolgozás és Számítógépes Grafika Tanszék Szegedi Tudományegyetem Computed Tomography (CT) Elv: Röntgen-sugarak áthatolása 3D objektum 3D térfogati kép Mérések
1/ gyakorlat. Lineáris Programozási feladatok megoldása szimplex módszerrel. Pécsi Tudományegyetem PTI
/ Operációkutatás. gyakorlat Lineáris Programozási feladatok megoldása szimplex módszerrel Pécsi Tudományegyetem PTI /. Legyen adott az alábbi LP-feladat: x + 4x + x 9 x + x x + x + x 6 x, x, x x + x +
Principal Component Analysis
Principal Component Analysis Principal Component Analysis Principal Component Analysis Definíció Ortogonális transzformáció, amely az adatokat egy új koordinátarendszerbe transzformálja úgy, hogy a koordináták
Képfeldolgozási módszerek a geoinformatikában
Képfeldolgozási módszerek a geoinformatikában Elek István Klinghammer István Eötvös Loránd Tudományegyetem, Informatikai Kar, Térképtudományi és Geoinformatikai Tanszék, MTA Térképészeti és Geoinformatikai
Wavelet transzformáció
1 Wavelet transzformáció Más felbontás: Walsh, Haar, wavelet alapok! Eddig: amplitúdó vagy frekvencia leírás: Pl. egy rövid, Dirac-delta jellegű impulzus Fourier-transzformált: nagyon sok, kb. ugyanolyan
Matematika A2 vizsga mgeoldása június 4.
Matematika A vizsga mgeoldása 03. június.. (a (3 pont Definiálja az f(x, y függvény határértékét az (x 0, y 0 helyen! Megoldás: Legyen D R, f : D R. Legyen az f(x, y függvény értelmezve az (x 0, y 0 pont
Algoritmuselmélet. Legrövidebb utak, Bellmann-Ford, Dijkstra. Katona Gyula Y.
Algoritmuselmélet Legrövidebb utak, Bellmann-Ford, Dijkstra Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem 3. előadás Katona Gyula Y. (BME
6. Függvények. Legyen függvény és nem üreshalmaz. A függvényt az f K-ra való kiterjesztésének
6. Függvények I. Elméleti összefoglaló A függvény fogalma, értelmezési tartomány, képhalmaz, értékkészlet Legyen az A és B halmaz egyike sem üreshalmaz. Ha az A halmaz minden egyes eleméhez hozzárendeljük
Intelligens Rendszerek Elmélete. Versengéses és önszervező tanulás neurális hálózatokban
Intelligens Rendszerek Elmélete : dr. Kutor László Versengéses és önszervező tanulás neurális hálózatokban http://mobil.nik.bmf.hu/tantargyak/ire.html Login név: ire jelszó: IRE07 IRE 9/1 Processzor Versengéses
Éldetektálás, szegmentálás (folytatás) Orvosi képdiagnosztika 11_2 ea
Éldetektálás, szegmentálás (folytatás) Orvosi képdiagnosztika 11_2 ea Geometrikus deformálható modellek Görbe evolúció Level set módszer A görbe evolúció parametrizálástól független mindössze geometriai
Konfokális mikroszkópia elméleti bevezetõ
Konfokális mikroszkópia elméleti bevezetõ A konfokális mikroszkóp fluoreszcensen jelölt minták vizsgálatára alkalmas. Jobb felbontású képeket ad, mint a hagyományos fluoreszcens mikroszkópok, és képes
Gyakorló feladatok. Agbeko Kwami Nutefe és Nagy Noémi
Gyakorló feladatok Agbeko Kwami Nutefe és Nagy Noémi 25 Tartalomjegyzék. Klasszikus hibaszámítás 3 2. Lineáris egyenletrendszerek 3 3. Interpoláció 4 4. Sajátérték, sajátvektor 6 5. Lineáris és nemlineáris
STATISZTIKA ELŐADÁS ÁTTEKINTÉSE. Matematikai statisztika. Mi a modell? Binomiális eloszlás sűrűségfüggvény. Binomiális eloszlás
ELŐADÁS ÁTTEKINTÉSE STATISZTIKA 9. Előadás Binomiális eloszlás Egyenletes eloszlás Háromszög eloszlás Normális eloszlás Standard normális eloszlás Normális eloszlás mint modell 2/62 Matematikai statisztika
Nemlineáris egyenletrendszerek megoldása április 15.
Nemlineáris egyenletrendszerek megoldása 2014. április 15. Nemlineáris egyenletrendszerek Az egyenletrendszer a következő formában adott: f i (x 1, x 2,..., x M ) = 0 i = 1...N az f i függvények az x j
Pontműveletek. Sergyán Szabolcs Óbudai Egyetem Neumann János Informatikai Kar február 20.
Pontműveletek Sergyán Szabolcs sergyan.szabolcs@nik.uni-obuda.hu Óbudai Egyetem Neumann János Informatikai Kar 2012. február 20. Sergyán (OE NIK) Pontműveletek 2012. február 20. 1 / 40 Felhasznált irodalom
R ++ -tree: an efficient spatial access method for highly redundant point data - Martin Šumák, Peter Gurský
R ++ -tree: an efficient spatial access method for highly redundant point data - Martin Šumák, Peter Gurský Recenzió: Németh Boldizsár Térbeli indexelés Az adatszerkezetek alapvetően fontos feladata, hogy
Jelkondicionálás. Elvezetés. a bioelektromos jelek kis amplitúdójúak. extracelluláris spike: néhányszor 10 uv. EEG hajas fejbőrről: max 50 uv
Jelkondicionálás Elvezetés 2/12 a bioelektromos jelek kis amplitúdójúak extracelluláris spike: néhányszor 10 uv EEG hajas fejbőrről: max 50 uv EKG: 1 mv membránpotenciál: max. 100 mv az amplitúdó növelésére,
OpenGL és a mátrixok
OpenGL és a mátrixok Róth Gergő 2013. március 4. Róth Gergő 1/20 A rajzoláskor a videókártya minden csúcson végrehajt egy transzformációt. Mire jó? Kamera helyének beállítása Egy objektum több pozícióra
7. Régió alapú szegmentálás
Digitális képek szegmentálása 7. Régió alapú szegmentálás Kató Zoltán http://www.cab.u-szeged.hu/~kato/segmentation/ Szegmentálási kritériumok Particionáljuk a képet az alábbi kritériumokat kielégítő régiókba
DIGITÁLIS KÉPANALÍZIS KÉSZÍTETTE: KISS ALEXANDRA ELÉRHETŐSÉG:
DIGITÁLIS KÉPANALÍZIS KÉSZÍTETTE: KISS ALEXANDRA ELÉRHETŐSÉG: kisszandi@mailbox.unideb.hu ImageJ (Fiji) Nyílt forrás kódú, java alapú képelemző szoftver https://fiji.sc/ Számos képformátumhoz megfelelő
Gauss-eliminációval, Cholesky felbontás, QR felbontás
Közelítő és szimbolikus számítások 4. gyakorlat Mátrix invertálás Gauss-eliminációval, Cholesky felbontás, QR felbontás Készítette: Gelle Kitti Csendes Tibor Somogyi Viktor London András Deák Gábor jegyzetei
Digitális képek szegmentálása. 5. Textúra. Kató Zoltán.
Digitális képek szegmentálása 5. Textúra Kató Zoltán http://www.cab.u-szeged.hu/~kato/segmentation/ Textúra fogalma Sklansky: Egy képen egy területnek állandó textúrája van ha a lokális statisztikák vagy
Az egyenlőtlenség mindkét oldalát szorozzuk meg 4 16-al:
Bevezető matematika kémikusoknak., 04. ősz. feladatlap. Ábrázoljuk számegyenesen a következő egyenlőtlenségek megoldáshalmazát! (a) x 5 < 3 5 x < 3 x 5 < (d) 5 x
Feladatok a Gazdasági matematika II. tárgy gyakorlataihoz
Debreceni Egyetem Közgazdaságtudományi Kar Feladatok a Gazdasági matematika II tárgy gyakorlataihoz a megoldásra ajánlott feladatokat jelöli e feladatokat a félév végére megoldottnak tekintjük a nehezebb
Numerikus módszerek 1.
Numerikus módszerek 1. 6. előadás: Vektor- és mátrixnormák Lócsi Levente ELTE IK 2013. október 14. Tartalomjegyzék 1 Vektornormák 2 Mátrixnormák 3 Természetes mátrixnormák, avagy indukált normák 4 Mátrixnormák
Információ megjelenítés Számítógépes ábrázolás. Dr. Iványi Péter
Információ megjelenítés Számítógépes ábrázolás Dr. Iványi Péter Raszterizáció OpenGL Mely pixelek vannak a primitíven belül fragment generálása minden ilyen pixelre Attribútumok (pl., szín) hozzárendelése
Hibadetektáló rendszer légtechnikai berendezések számára
Hibadetektáló rendszer légtechnikai berendezések számára Tudományos Diákköri Konferencia A feladatunk Légtechnikai berendezések Monitorozás Hibadetektálás Újrataníthatóság A megvalósítás Mozgásérzékelő
Mátrixok 2017 Mátrixok
2017 számtáblázatok" : számok rendezett halmaza, melyben a számok helye két paraméterrel van meghatározva. Például lineáris egyenletrendszer együtthatómátrixa 2 x 1 + 4 x 2 = 8 1 x 1 + 3 x 2 = 1 ( 2 4
Láncolt listák Témakörök. Lista alapfogalmak
Láncolt listák szenasi.sandor@nik.bmf.hu PPT 2007/2008 tavasz http://nik.bmf.hu/ppt 1 Lista alapfogalmai Egyirányú egyszerű láncolt lista Egyirányú rendezett láncolt lista Speciális láncolt listák Témakörök
Képszegmentáló eljárások. Orvosi képdiagnosztika 2018 ősz
Képszegmentáló eljárások Orvosi képdiagnosztika 2018 ősz Képszegmentálás Anatómiai részek elkülönítés: pl. csontok, szív, erek, szürkefehér állomány, stb Vizsgálandó terület körbehatárolása: pl. tüdőterület
8. Pontmegfeleltetések
8. Pontmegfeleltetések Kató Zoltán Képfeldolgozás és Számítógépes Grafika tanszék SZTE (http://www.inf.u-szeged.hu/~kato/teaching/) 2 Példa: panoráma kép készítés 1. Jellemzőpontok detektálása mindkét
A szimplex algoritmus
A szimplex algoritmus Ismétlés: reprezentációs tétel, az optimális megoldás és az extrém pontok kapcsolata Alapfogalmak: bázisok, bázismegoldások, megengedett bázismegoldások, degenerált bázismegoldás
Gauss elimináció, LU felbontás
Közelítő és szimbolikus számítások 3. gyakorlat Gauss elimináció, LU felbontás Készítette: Gelle Kitti Csendes Tibor Somogyi Viktor London András Deák Gábor jegyzetei alapján 1 EGYENLETRENDSZEREK 1. Egyenletrendszerek
Valószínűségi változók. Várható érték és szórás
Matematikai statisztika gyakorlat Valószínűségi változók. Várható érték és szórás Valószínűségi változók 2016. március 7-11. 1 / 13 Valószínűségi változók Legyen a (Ω, A, P) valószínűségi mező. Egy X :
32. A Knuth-Morris-Pratt algoritmus
32. A Knuth-Morris-Pratt algoritmus A nyers erőt használó egyszerű mintaillesztés műveletigénye legrosszabb esetben m*n-es volt. A Knuth-Morris-Pratt algoritmus (KMP-vel rövidítjük) egyike azon mintaillesztő
Numerikus matematika. Irodalom: Stoyan Gisbert, Numerikus matematika mérnököknek és programozóknak, Typotex, Lebegőpontos számok
Numerikus matematika Irodalom: Stoyan Gisbert, Numerikus matematika mérnököknek és programozóknak, Typotex, 2007 Lebegőpontos számok Normák, kondíciószámok Lineáris egyenletrendszerek Legkisebb négyzetes
Fehérzajhoz a konstans érték kell - megoldás a digitális szűrő Összegezési súlyok sin x/x szerint (ez akár analóg is lehet!!!)
DSP processzorok: 1 2 3 HP zajgenerátor: 4 Shift regiszter + XOR kapu: 2 n állapot Autókorrelációs függvény: l. pénzdobálás: (sin x/x) 2 burkoló! Fehérzajhoz a konstans érték kell - megoldás a digitális
Köszönetnyilványítás. Digitális képelemzés alapvető algoritmusai. A kurzus témái. Képelemzés és képszűrés alapfogalmai. Csetverikov Dmitrij
Köszönetnyilványítás Digitális képelemzés alapvető algoritmusai Csetverikov Dmitrij Eötvös Lóránd Egyetem, Budapest csetverikov@sztaki.hu http://vision.sztaki.hu Informatikai Kar A kurzus megírásában az
Idősorok elemzése. Salánki Ágnes
Idősorok elemzése Salánki Ágnes salanki.agnes@gmail.com 2012.04.13. Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs Rendszerek Tanszék 1 Idősorok analízise Alapfogalmak Komponenselemzés
A fontosabb definíciók
A legfontosabb definíciókat jelöli. A fontosabb definíciók [Descartes szorzat] Az A és B halmazok Descartes szorzatán az A és B elemeiből képezett összes (a, b) a A, b B rendezett párok halmazát értjük,
Diszkrét matematika I., 12. előadás Dr. Takách Géza NyME FMK Informatikai Intézet takach november 30.
1 Diszkrét matematika I, 12 előadás Dr Takách Géza NyME FMK Informatikai Intézet takach@infnymehu http://infnymehu/ takach 2005 november 30 Vektorok Definíció Egy tetszőleges n pozitív egész számra n-komponensű
f(x) vagy f(x) a (x x 0 )-t használjuk. lim melyekre Mivel itt ɛ > 0 tetszőlegesen kicsi, így a a = 0, a = a, ami ellentmondás, bizonyítva
6. FÜGGVÉNYEK HATÁRÉRTÉKE ÉS FOLYTONOSSÁGA 6.1 Függvény határértéke Egy D R halmaz torlódási pontjainak halmazát D -vel fogjuk jelölni. Definíció. Legyen f : D R R és legyen x 0 D (a D halmaz torlódási
Az fmri alapjai Statisztikai analízis II. Dr. Kincses Tamás Szegedi Tudományegyetem Neurológiai Klinika
Az fmri alapjai Statisztikai analízis II. Dr. Kincses Tamás Szegedi Tudományegyetem Neurológiai Klinika Autokorreláció white noise Autokorreláció: a függvény önnmagával számított korrelációja különböző
Geoinformatika I. (vizsgakérdések)
Geoinformatika I. (vizsgakérdések) 1.1. Kinek a munkásságához köthető a matematikai információelmélet kialakulása? 1.2. Határozza meg a földtani kutatás információértékét egy terület tektonizáltságának
van neve lehetnek bemeneti paraméterei (argumentumai) lehet visszatérési értéke a függvényt úgy használjuk, hogy meghívjuk
függvények ismétlése lista fogalma, használata Game of Life program (listák használatának gyakorlása) listák másolása (alap szintű, teljes körű) Reversi 2 Emlékeztető a függvények lényegében mini-programok,
Shift regiszter + XOR kapu: 2 n állapot
DSP processzorok: 1 2 HP zajgenerátor: 3 Shift regiszter + XOR kapu: 2 n állapot Autókorrelációs függvény: l. pénzdobálás: (sin x/x) 2 burkoló! 4 Fehérzajhoz a konstans érték kell - megoldás a digitális
Rendszámfelismerő rendszerek
Problémamegoldó szeminárium Témavezető: Pataki Péter ARH Zrt. ELTE-TTK 2013 Tartalomjegyzék 1 Bevezetés 2 Út a megoldás felé 3 Felmerült problémák 4 Alkalmazott matematika 5 További lehetőségek Motiváció
Funkcionálanalízis. n=1. n=1. x n y n. n=1
Funkcionálanalízis 2011/12 tavaszi félév - 2. előadás 1.4. Lényeges alap-terek, példák Sorozat terek (Folytatás.) C: konvergens sorozatok tere. A tér pontjai sorozatok: x = (x n ). Ezen belül C 0 a nullsorozatok
Szinguláris értékek. Wettl Ferenc április 3. Wettl Ferenc Szinguláris értékek április 3. 1 / 28
Szinguláris értékek Wettl Ferenc 2015. április 3. Wettl Ferenc Szinguláris értékek 2015. április 3. 1 / 28 Tartalom 1 Szinguláris érték 2 Alkalmazások 3 Norma 4 Mátrixnorma Wettl Ferenc Szinguláris értékek
Kép mátrix. Feladat: Pap Gáborné-Zsakó László: Algoritmizálás, adatmodellezés 2/35
Grafika I. Kép mátrix Feladat: Egy N*M-es raszterképet nagyítsunk a két-szeresére pontsokszorozással: minden régi pont helyébe 2*2 azonos színű pontot rajzolunk a nagyított képen. Pap Gáborné-Zsakó László:
12. Mikor nevezünk egy részhalmazt nyíltnak, illetve zártnak a valós számok körében?
Ellenörző Kérdések 1. Mit jelent az, hogy egy f : A B függvény injektív, szürjektív, illetve bijektív? 2. Mikor nevezünk egy függvényt invertálhatónak? 3. Definiálja a komplex szám és műveleteinek fogalmát!
Ellenőrző kérdések a Matematika I. tantárgy elméleti részéhez, 2. rész
Ellenőrző kérdések a Matematika I. tantárgy elméleti részéhez, 2. rész Mintakérdések a 2. ZH elméleti részéhez. Nem csak ezek a kérdések szerepelhetnek az elméleti részben, de azért hasonló típusú kérdések
Matematika szigorlat június 17. Neptun kód:
Név Matematika szigorlat 014. június 17. Neptun kód: 1.. 3. 4. 5. Elm. Fel. Össz. Oszt. Az eredményes szigorlat feltétele elméletből legalább 0 pont, feladatokból pedig legalább 30 pont elérése. A szigorlat
1.9. B - SPLINEOK B - SPLINEOK EGZISZTENCIÁJA. numerikus analízis ii. 34. [ a, b] - n legfeljebb n darab gyöke lehet. = r (m 1) n = r m + n 1
numerikus analízis ii 34 Ezért [ a, b] - n legfeljebb n darab gyöke lehet = r (m 1) n = r m + n 1 19 B - SPLINEOK VOLT: Ω n véges felosztás S n (Ω n ) véges dimenziós altér A bázis az úgynevezett egyoldalú
12. előadás. Egyenletrendszerek, mátrixok. Dr. Szörényi Miklós, Dr. Kallós Gábor
12. előadás Egyenletrendszerek, mátrixok Dr. Szörényi Miklós, Dr. Kallós Gábor 2015 2016 1 Tartalom Matematikai alapok Vektorok és mátrixok megadása Tömbkonstansok Lineáris műveletek Mátrixok szorzása
Jelek és rendszerek 1. 10/9/2011 Dr. Buchman Attila Informatikai Rendszerek és Hálózatok Tanszék
Jelek és rendszerek 1 10/9/2011 Dr. Buchman Attila Informatikai Rendszerek és Hálózatok Tanszék 1 Ajánlott irodalom: FODOR GYÖRGY : JELEK ÉS RENDSZEREK EGYETEMI TANKÖNYV Műegyetemi Kiadó, Budapest, 2006
SZÁMÍTÁSOK A TÁBLÁZATBAN
SZÁMÍTÁSOK A TÁBLÁZATBAN Az Excelben az egyszerű adatok bevitelén kívül számításokat is végezhetünk. Ezeket a cellákba beírt képletek segítségével oldjuk meg. A képlet: olyan egyenlet, amely a munkalapon
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 10 X. SZIMULÁCIÓ 1. VÉLETLEN számok A véletlen számok fontos szerepet játszanak a véletlen helyzetek generálásában (pénzérme, dobókocka,
Lineáris egyenletrendszerek
Lineáris egyenletrendszerek 1 Alapfogalmak 1 Deníció Egy m egyenletb l álló, n-ismeretlenes lineáris egyenletrendszer általános alakja: a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a
Amortizációs költségelemzés
Amortizációs költségelemzés Amennyiben műveleteknek egy M 1,...,M m sorozatának a futási idejét akarjuk meghatározni, akkor egy lehetőség, hogy külön-külön minden egyes művelet futási idejét kifejezzük
Idő-frekvencia transzformációk waveletek
Idő-frekvencia transzformációk waveletek Pokol Gergő BME NTI Üzemi mérések és diagnosztika 2015. április 23. Vázlat Alapfogalmak az idő-frekvencia síkon Rövid idejű Fourier-transzformáció spektrogram Folytonos
I. LABOR -Mesterséges neuron
I. LABOR -Mesterséges neuron A GYAKORLAT CÉLJA: A mesterséges neuron struktúrájának az ismertetése, neuronhálókkal kapcsolatos elemek, alapfogalmak bemutatása, aktivációs függvénytípusok szemléltetése,
Jelek és rendszerek MEMO_03. Pletl. Belépő jelek. Jelek deriváltja MEMO_03
Jelek és rendszerek MEMO_03 Belépő jelek Jelek deriváltja MEMO_03 1 Jelek és rendszerek MEMO_03 8.ábra. MEMO_03 2 Jelek és rendszerek MEMO_03 9.ábra. MEMO_03 3 Ha a jelet méréssel kapjuk, akkor a jel következő
Gauss-Jordan módszer Legkisebb négyzetek módszere, egyenes LNM, polinom LNM, függvény. Lineáris algebra numerikus módszerei
A Gauss-Jordan elimináció, mátrixinvertálás Gauss-Jordan módszer Ugyanazzal a technikával, mint ahogy a k-adik oszlopban az a kk alatti elemeket kinulláztuk, a fölötte lévő elemeket is zérussá lehet tenni.
Szinguláris érték felbontás Singular Value Decomposition
Szinguláris érték felbontás Singular Value Decomposition Borbély Gábor 7. április... Tétel (teljes SVD. Legyen A C m n mátrix (valósra is jó, ekkor léteznek U C m m és V C n n unitér mátrixok (valósban
(Independence, dependence, random variables)
Két valószínűségi változó együttes vizsgálata Feltételes eloszlások Két diszkrét változó együttes eloszlása a lehetséges értékpárok és a hozzájuk tartozó valószínűségek (táblázat) Példa: Egy urna 3 fehér,