Hátrányok: A MANOVA elvégzésének lépései:
|
|
- Botond Lakatos
- 8 évvel ezelőtt
- Látták:
Átírás
1 MANOVA Tulajdonságok: Hasonló az ANOVÁ-hoz Több függő változó A függő változók korreláltak és a lineáris kombinációnak értelme van. Azt teszteli, hogy k populációban a függő változók egy lineáris kombinációjának átlagai különböznek-e. Alapötlet: találjunk egy olyan lineáris kombinációt, amely optimálisan szeparálja a csoportokat, azaz olyat amely maximalizálja a hatás (between group) variancia/kovariancia mátrix és a hiba (within group) variancia/kovariancia mátrix hányadosát. (Ez ugyanaz, mint amit a diszkriminancia elemzésnél használunk.) Ennek a kombinációnak a standardizált együtthatói megmondják, hogy melyik változó milyen súllyal szerepel a szeparálásban. Előnyök: Annak az esélye, hogy különbségeket találunk a csoportok között nagyobb ahhoz képest, mintha minden változóra egyenként ANOVÁ-t csinálnánk. Nem inflálódik az elsőfajú hiba. Több ANOVA elvégzése nem veszi figyelembe azt, hogy a függő változók korreláltak. 23
2 Hátrányok: Bonyolultabb, Az ANOVA gyakran nagyobb hatóerejű. Sokkal komplikáltabb kísérleti elrendezést igényel. Kétségek merülhetnek fel, hogy valójában mely független változók mely függő változók értékét befolyásolják. Minden plusz függő változó 1 szabadsági fokkal kevesebbet jelent. Feltételek: Független minták, Többváltozós normális eloszlású hiba. A kovariancia mátrix homogenitása. Lineáris kapcsolat a független változók és a függő változók között. A MANOVA elvégzésének lépései: Ha a MANOVA nem szignifikáns, stop Ha a MANOVA szignifikáns, egyváltozós ANOVÁk Ha az egyváltozós ANOVA szignifikáns, Post Hoc tesztek. Ha igaz a homoscedasticity, Wilks Lambda, ha nem Pillai s Trace. Általában mind a 4 statisztikának hasonlónak kell lennie. A MANOVA algoritmusa: 1. Az ANOVA négyzetösszegei helyett sums-of-squares-andcross-products (SSCP) mátrixok. Egy a hatásnak (between 24
3 2. Kiszámítjuk a HE -1 szorzatot (egyváltozós esetben ez az F érték). 3. Kiszámítjuk a HE -1 spektrál felbontását: sajátértékek, sajátvektorok. A s.é.-kek azt mutatják meg, hogy betweengroup varianciából a sajátvektorok vagy lineáris kombinációk mennyit magyaráznak. A s.v.-ok tartalmazzák a lineáris kombinációk együtthatóit. 4. Az a lineáris kombináció, amelyikhez a legnagyobb s.é. tartozik maximalizálja a between-group/within-group variancia hányadost. H 0 : a csoport centroidok megegyeznek. Ez tesztelhető valamelyik variancia mérték segítségével (nyom, determináns: általánosított variancia). Wilk s lambda: E / T. A teljes variancia hányad része a reziduális. Minél kisebb, annál nagyobb a csoportok köztötti különbségek. Hotelling-Lawley trace: H / E. Ez ugyanaz, mint a HE -1 mátrix nyoma (sajátértékek összege). Nagyobb értékek nagyobb különbségeket indikálnak a csoport centroidok között. Pillai trace: A HT -1 nyoma, vagyis a between groups variancia. Roy s largest root: a HE -1 legnagyobb s.é.-e, vagyis ahhoz a lineáris kombinációhoz tartozó s.é. amely a between groups variancia-kovarianca legnagyobb részét magyarázza. 25
4 Ezeknek a statisztikáknak az eloszlása nem teljesen ismert, közelítő F értékekké konvertálják ezeket. Két csoport esetén a Wilk s lambda, a Hotteling és Pillai féle érték megegyezik és megegyezik a Hotteling féle T 2 statisztikával, ami a t-próba többváltozós kiterjesztése. Általában hasonló eredményeket produkálnak több csoport esetén is. A Pillai trace a legrobosztusabb teszt. > attach(skulls) > skulls.manova<-manova(cbind(mb,bh,bl,nh)~epoch) > summary(skulls.manova,test="pillai") Df Pillai approx F num Df den Df Pr(>F) EPOCH e-06 *** Residuals Signif. codes: 0 *** ** 0.01 * > summary(skulls.manova,test="wilks") Df Wilks approx F num Df den Df Pr(>F) EPOCH e-07 *** Residuals Signif. codes: 0 *** ** 0.01 * > summary(skulls.manova,test="hotelling") Df Hotelling-Lawley approx F num Df den Df EPOCH Residuals 145 Pr(>F) EPOCH 8.278e-08 *** Residuals --- Signif. codes: 0 *** ** 0.01 * > summary(skulls.manova,test="roy") Df Roy approx F num Df den Df Pr(>F) EPOCH e-10 *** 26
5 Diszkriminancia analízis Cél: egy olyan függvény létrehozása, amely alapján az egyedek két vagy több csoportba sorolhatók (a függvény értéke lényegesen változik csoportról csoportra). Később a függvényt új egyedek besorolására lehessen használni. pl. verebek. A testméretek alapján besorolhatók-e a verebek a túlélők ill. nem túlélők közé (Mire emlékeztet ez a kérdés?!!): Lineáris diszkriminancia függvény: Z = a1x 1 + a2x a p X p Ha Z értéke jelentősen változik csoportról csoportra, akkor a csoportok jól szeparálhatók. Több függvény is konstruálható. A függvény úgy vetíti le a csoportokat egy alacsonyabb dimenziós térbe, hogy azok eloszlásai a legkisebb mértékben fedjék át egymást. A MANOVA inverze. A MANOVA ugyanezt a függvényt használja. Kétféle cél: 1. Prediktív diszkriminancia analízis (generáljunk egy szabályt, amely alapján csoportokba sorolhatunk). 2. Leíró analízis: a függő változó és a független változók kapcsolatát vizsgáljuk. Hogyan működik? 1. Feltételezzük, hogy a célpopuláció egymást kizáró rész populációkból áll. 27
6 2. Feltételezzük, hogy a független változóink többváltozós normális elsozlást követnek 3. Megkeressük azt a lineáris kombinációt, amely a legjobban szeparálja a csoportokat. 4. Ha k csoportunk van, akkor k-1 diszkriminancia függvényt készítünk. 5. Minden függvényre kiszámítjuk a diszkriminancia szkórokat. 6. Ezeket a szkórokat használjuk a klasszifikáláshoz. > skulls.lda<-lda(epoch~.,skulls) > skulls.lda Call: lda(epoch ~., data = skulls) Prior probabilities of groups: c1850bc c200bc c3300bc c4000bc cad Group means: MB BH BL NH c1850bc c200bc c3300bc c4000bc cad Coefficients of linear discriminants: LD1 LD2 LD3 LD4 MB BH BL NH
7 Proportion of trace: LD1 LD2 LD3 LD Logisztikus ill. multinomiális regresszió vagy diszkriminancia analízis? Ha a magyarázó változók normális eloszlásúak, akkor a DA jobb. Ha kategóriás változóink is vannak, akkor a DA akkor rosszabb, ha a kategóriák száma nagyon kicsi (2, 3). Ezekben az esetekben a LR eredménye hasonló a DA-éhoz, legfeljebb egy kicsit rosszabb (ha a mintaelemszám aránylag kicsi). Ha a DA feltételei nem teljesülnek, mindenképpen a LR-t kell használni. Az LR nem eloszlás függő. 29
8 Kanonikus korreláció elemzés Többszörös regresszió elemzés általánosítása. Sokszor két természetes csoportot alkotnak a változók és a két csoport közötti kapcsolatot szereténk vizsgálni. Példa: 16 Euphydryas editha lepke kolónia Kaliforniából és Oregonból. Minden kolónia esetén ismert 4 környezeti változó és 6 génfrekvencia érték. Kérdés: milyen kapcsolatban vannak egymással a környezeti és genetikus tényezők? Változók: Alt Tengerszint feletti magasság (láb) prec- éves csapadék mennyiség max Éves max. hőmérséklet ( F) min Éves min. hőmérséklet ( F) F0.40-F1.30 Pgi mobility gene frequencies (%) Colony Alt prec max min F0.40 F0.60 F0.80 F1.00 F1.16 F1.30 SS SB WSB JRC JRH SJ CR UO LO DP PZ MC IF AF GH GL
9 Ötlet: Készítsünk olyan lineáris kombinációkat a két csoportban lévő változókból, hogy azok maximálisan korreláltak legyenek. A gyakorlatban több változó készíthető. Ha van p ( X 1, X 2,..., X p) és q ( Y 1, Y2,..., Y q ) standardizált változónk a két csoportban, akkor min(p,q) ilyen lineáris kombináció készíthető. Azaz i i1 X1 + ai2 X 2 + aip X p i = 1,2,..., r U = a... + V = a Y + a Y a i i1 1 i2 2 ip Y p ahol r = min(p,q) Úgy választjuk meg az együtthatókat, hogy az U 1 és V 1 korrelációja maximális legyen, U 2 és V 2 korrelációja maximális legyen olyan módon, hogy nem korreláltak U 1 gyel és V 1 -gyel, stb... Ilyen módon minden (U i és V i ) a kapcsolat különböző dimenzióit méri. Az első pár korrelációja a legnagyobb. A számítás menete Elkészítünk egy (p+q) (p+q) dimenziós korrelációs mátrixot a változóinkból: X X Y Y 1 1 q p X 1 X A L C 2 T X p M L M Y 1 Y 2 C L B Y q 31
10 Kiszámítható egy B -1 C T A -1 C mátrix kiszámíthatóak ennek a sajátértékei. Bebizonyítható, hogy a λ 1> λ 2 >...> λ r, a kanonikus változók korrelációinak (kanonikus korrelációk) négyzetei. A hozzájuk tartozó b 1,b 2,...,b r sajátvektorok pedig az Y i -k együtthatói. Az X i -k együtthatóit az a i = A -1 Cb i vektor komponensei adják. A sajátértékek azt mutatják meg, hogy a független változók mennyit magyaráznak a függőkből az adott dimenzióban. Szignifikancia tesztek Ha r sajátértékünk van, akkor r kanonikus változó párunk van. Ezek közül sok olyan kicsi, hogy már nem szignifikáns. A Wilk s féle tesztet használjuk annak eldöntésére, hogy hány szignifikáns változó párunk van. A szabadsági foka p*q. Feltételek Általában ugyanazok mint a MANOVA esetén: linearitás intervallum vagy legalábbis közel intervallum skálán mért változók többváltozós normalitás 32
11 Példa Az utolsó frekvencia változó nem kell, mert a 6 együtt 100%- ot ad ki. Az output: Korrelációs mátrixok (A, B és C) Kanonikus korrelációk (sajátértékek négyzetgyöke): > cancor(gen[,2:5],gen[,6:10]) $Summary R RSquared LR ApproxF NumDF DenDF pvalue NaN 2 NaN NaN Egyik kanonikus változó sem szignifikáns. Nincs bizonyítva a kapcsolat. Valószínűleg túl kicsi a minta. 33
12 Együtthatók: > cancor(gen[,2:5],gen[,6:10]) $cor [1] $xcoef [,1] [,2] [,3] [,4] Alt e prec e max e min e $ycoef [,1] [,2] [,3] [,4] F F F F F [,5] F F F F F Az 1. kanonikus változó magas max. és min. hőmérséklettel, és alacsony magassággal és csapadék mennyiséggel korrelál. $XUCorrelations U1 U2 U3 U4 Alt prec max min $YVCorrelations V1 V2 V3 V4 F F F F F
13 A kanonikus változó és az eredeti változók közötti korreláció. (Faktor struktúra). Négyzete méri az adott változó magyarázó hatását a kanonikus változóra nézve. 3 célra használjuk: Interpretáció. Azon változókat, amelyeknek a korrelációja 0.3 felett van, tekintjük úgy hogy hozzájárulnak lényegesen a változóhoz. A 2. csoport esetén az F1.00-val negatív a korreláció, a többivel pozitív. Így úgy tűnik, hogy a magas max. és min. hőmérséklet és alacsony magasság és csapadék mennyiség az F1.00 hiányával korrelál. 35
ANOVA,MANOVA. Márkus László március 30. Márkus László ANOVA,MANOVA március / 26
ANOVA,MANOVA Márkus László 2013. március 30. Márkus László ANOVA,MANOVA 2013. március 30. 1 / 26 ANOVA / MANOVA One-Way ANOVA (Egyszeres ) Analysis of Variance (ANOVA) = szóráselemzés A szórásokat elemezzük,
Diszkriminancia-analízis
Diszkriminancia-analízis az SPSS-ben Petrovics Petra Doktorandusz Diszkriminancia-analízis folyamata Feladat Megnyitás: Employee_data.sav Milyen tényezőktől függ a dolgozók beosztása? Nem metrikus Független
y ij = µ + α i + e ij STATISZTIKA Sir Ronald Aylmer Fisher Példa Elmélet A variancia-analízis alkalmazásának feltételei Lineáris modell
Példa STATISZTIKA Egy gazdálkodó k kukorica hibrid termesztése között választhat. Jelöljük a fajtákat A, B, C, D-vel. Döntsük el, hogy a hibridek termesztése esetén azonos terméseredményre számíthatunk-e.
STATISZTIKA. A maradék független a kezelés és blokk hatástól. Maradékok leíró statisztikája. 4. A modell érvényességének ellenőrzése
4. A modell érvényességének ellenőrzése STATISZTIKA 4. Előadás Variancia-analízis Lineáris modellek 1. Függetlenség 2. Normális eloszlás 3. Azonos varianciák A maradék független a kezelés és blokk hatástól
y ij = µ + α i + e ij
Elmélet STATISZTIKA 3. Előadás Variancia-analízis Lineáris modellek A magyarázat a függő változó teljes heterogenitásának két részre bontását jelenti. A teljes heterogenitás egyik része az, amelynek okai
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 8 VIII. REGREssZIÓ 1. A REGREssZIÓs EGYENEs Két valószínűségi változó kapcsolatának leírására az eddigiek alapján vagy egy numerikus
[Biomatematika 2] Orvosi biometria. Visegrády Balázs
[Biomatematika 2] Orvosi biometria Visegrády Balázs 2016. 03. 27. Probléma: Klinikai vizsgálatban három különböző antiaritmiás gyógyszert (ß-blokkoló) alkalmaznak, hogy kipróbálják hatásukat a szívműködés
Varianciaanalízis 4/24/12
1. Feladat Egy póker kártya keverő gép a kártyákat random módon választja ki. A vizsgálatban 1600 választott kártya színei az alábbi gyakorisággal fordultak elő. Vizsgáljuk meg, hogy a kártyák kiválasztása
Egyszempontos variancia analízis. Statisztika I., 5. alkalom
Statisztika I., 5. alkalom Számos t-próba versus variancia analízis Kreativitás vizsgálata -nık -férfiak ->kétmintás t-próba I. Fajú hiba=α Kreativitás vizsgálata -informatikusok -építészek -színészek
STATISZTIKA. Egymintás u-próba. H 0 : Kefir zsírtartalma 3% Próbafüggvény, alfa=0,05. Egymintás u-próba vagy z-próba
Egymintás u-próba STATISZTIKA 2. Előadás Középérték-összehasonlító tesztek Tesztelhetjük, hogy a valószínűségi változónk értéke megegyezik-e egy konkrét értékkel. Megválaszthatjuk a konfidencia intervallum
Biometria az orvosi gyakorlatban. Korrelációszámítás, regresszió
SZDT-08 p. 1/31 Biometria az orvosi gyakorlatban Korrelációszámítás, regresszió Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu Korrelációszámítás
Bevezetés a hipotézisvizsgálatokba
Bevezetés a hipotézisvizsgálatokba Nullhipotézis: pl. az átlag egy adott µ becslése : M ( x -µ ) = 0 Alternatív hipotézis: : M ( x -µ ) 0 Szignifikancia: - teljes bizonyosság csak teljes enumerációra -
Adatok statisztikai értékelésének főbb lehetőségei
Adatok statisztikai értékelésének főbb lehetőségei 1. a. Egy- vagy kétváltozós eset b. Többváltozós eset 2. a. Becslési problémák, hipotézis vizsgálat b. Mintázatelemzés 3. Szint: a. Egyedi b. Populáció
4/24/12. Regresszióanalízis. Legkisebb négyzetek elve. Regresszióanalízis
1. feladat Regresszióanalízis. Legkisebb négyzetek elve 2. feladat Az iskola egy évfolyamába tartozó diákok átlagéletkora 15,8 év, standard deviációja 0,6 év. A 625 fős évfolyamból hány diák fiatalabb
Többváltozós lineáris regressziós modell feltételeinek tesztelése I.
Többváltozós lineáris regressziós modell feltételeinek tesztelése I. - A hibatagra vonatkozó feltételek tesztelése - Kvantitatív statisztikai módszerek Petrovics Petra Többváltozós lineáris regressziós
Bevezetés a Korreláció &
Bevezetés a Korreláció & Regressziószámításba Petrovics Petra Doktorandusz Statisztikai kapcsolatok Asszociáció 2 minőségi/területi ismérv között Vegyes kapcsolat minőségi/területi és egy mennyiségi ismérv
Lineáris algebra Gyakorló feladatok
Lineáris algebra Gyakorló feladatok. október.. Feladat: Határozzuk meg a, 4b, c és a b c vektorokat, ha a = (; ; ; ; b = (; ; ; ; c = ( ; ; ; ;.. Feladat: Határozzuk meg a, 4b, a, c és a b; c + b kifejezések
Többváltozós lineáris regressziós modell feltételeinek
Többváltozós lineáris regressziós modell feltételeinek tesztelése I. - A hibatagra vonatkozó feltételek tesztelése - Petrovics Petra Doktorandusz Többváltozós lineáris regressziós modell x 1, x 2,, x p
Tárgy- és névmutató. C Cox & Snell R négyzet 357 Cramer-V 139, , 151, 155, 159 csoportok közötti korrelációs mátrix 342 csúcsosság 93 95, 102
Tárgy- és névmutató A a priori kontraszt 174 175 a priori kritérium 259, 264, 276 adatbevitel 43, 47, 49 52 adatbeviteli nézet (data view) 45 adat-elôkészítés 12, 37, 62 adatgyûjtés 12, 15, 19, 20, 23,
Kettőnél több csoport vizsgálata. Makara B. Gábor
Kettőnél több csoport vizsgálata Makara B. Gábor Három gyógytápszer elemzéséből az alábbi energia tartalom adatok származtak (kilokalória/adag egységben) Három gyógytápszer elemzésébô A B C 30 5 00 10
Többváltozós Regresszió-számítás
Töváltozós Regresszió-számítás 3. előadás Döntéselőkészítés módszertana Dr. Szilágyi Roland Korreláció Célja a kacsolat szorosságának mérése. Regresszió Célja a kacsolatan megfigyelhető törvényszerűség
Több mint egy változót jegyzünk fel a megfigyelési egységekről (objektumok).
Többváltozós problémák Több mint egy változót jegyzünk fel a megfigyelési egységekről (objektumok). Volt: Több magyarázó változó: többszörös regresszió, több faktoros ANOVA, ANCOVA. Most: több független
Biostatisztika 2. Dr. Dinya Elek Dr. Solymosi Róbert: Biometria a klinikumban Dr. Dinya Elek: Biostatisztika c. művei alapján
Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs rendszerek Tanszék Biostatisztika 2. Dr. Dinya Elek Dr. Solymosi Róbert: Biometria a klinikumban Dr. Dinya Elek: Biostatisztika
Gyakorlat 8 1xANOVA. Dr. Nyéki Lajos 2016
Gyakorlat 8 1xANOVA Dr. Nyéki Lajos 2016 A probléma leírása Azt vizsgáljuk, hogy milyen hatása van a család jövedelmének a tanulók szövegértés teszten elért tanulmányi eredményeire. A minta 59 iskola adatait
2013 ŐSZ. 1. Mutassa be az egymintás z-próba célját, alkalmazásának feltételeit és módszerét!
GAZDASÁGSTATISZTIKA KIDOLGOZOTT ELMÉLETI KÉRDÉSEK A 3. ZH-HOZ 2013 ŐSZ Elméleti kérdések összegzése 1. Mutassa be az egymintás z-próba célját, alkalmazásának feltételeit és módszerét! 2. Mutassa be az
Biomatematika 12. Szent István Egyetem Állatorvos-tudományi Kar. Fodor János
Szent István Egyetem Állatorvos-tudományi Kar Biomatematikai és Számítástechnikai Tanszék Biomatematika 12. Regresszió- és korrelációanaĺızis Fodor János Copyright c Fodor.Janos@aotk.szie.hu Last Revision
Biomatematika 13. Varianciaanaĺızis (ANOVA)
Szent István Egyetem Állatorvos-tudományi Kar Biomatematikai és Számítástechnikai Tanszék Biomatematika 13. Varianciaanaĺızis (ANOVA) Fodor János Copyright c Fodor.Janos@aotk.szie.hu Last Revision Date:
Hipotézis STATISZTIKA. Kétmintás hipotézisek. Munkahipotézis (H a ) Tematika. Tudományos hipotézis. 1. Előadás. Hipotézisvizsgálatok
STATISZTIKA 1. Előadás Hipotézisvizsgálatok Tematika 1. Hipotézis vizsgálatok 2. t-próbák 3. Variancia-analízis 4. A variancia-analízis validálása, erőfüggvény 5. Korreláció számítás 6. Kétváltozós lineáris
ELTE TáTK Közgazdaságtudományi Tanszék GAZDASÁGSTATISZTIKA. Készítette: Bíró Anikó. Szakmai felelős: Bíró Anikó június
GAZDASÁGSTATISZTIKA GAZDASÁGSTATISZTIKA Készült a TÁMOP-4.1.2-08/2/A/KMR-2009-0041pályázati projekt keretében Tartalomfejlesztés az ELTE TátK Közgazdaságtudományi Tanszékén az ELTE Közgazdaságtudományi
Több mint egy változót jegyzünk fel a megfigyelési egységekről (objektumok).
Többváltozós roblémák Több mint egy változót jegyzünk fel a megfigyelési egységekről (objektumok). Volt: Több magyarázó változó: többszörös regresszió, több faktoros ANOVA, ANCOVA. Most: több független
Korreláció számítás az SPSSben
Korreláció számítás az SPSSben Kvantitatív statisztikai módszerek Petrovics Petra Statisztikai kapcsolatok Asszociáció 2 minőségi/területi ismérv között Vegyes kapcsolat minőségi/területi és egy mennyiségi
Logisztikus regresszió
Logisztikus regresszió 9. előadás Kvantitatív statisztikai módszerek Dr. Szilágyi Roland Függő változó (y) Nem metrikus Metri kus Gazdaságtudományi Kar Független változó () Nem metrikus Metrikus Kereszttábla
Hipotézis vizsgálatok
Hipotézis vizsgálatok Hipotézisvizsgálat Hipotézis: az alapsokaság paramétereire vagy az alapsokaság eloszlására vonatkozó feltevés. Hipotézis ellenőrzés: az a statisztikai módszer, amelynek segítségével
Miskolci Egyetem Gazdaságtudományi Kar Üzleti Információgazdálkodási és Módszertani Intézet
Fkt Faktoranalízis líi Olyan többváltozós statisztikai módszer, amely adattömörítésre, a változók számának csökkentésére, az adatstruktúra feltárására szolgál. A kiinduló változók számát úgynevezett faktorváltozókba
Regresszió számítás az SPSSben
Regresszió számítás az SPSSben Kvantitatív statisztikai módszerek Petrovics Petra Lineáris regressziós modell X és Y közötti kapcsolatot ábrázoló egyenes. Az Y függ: x 1, x 2,, x p p db magyarázó változótól
[Biomatematika 2] Orvosi biometria
[Biomatematika 2] Orvosi biometria Bódis Emőke 2016. 04. 25. J J 9 Korrelációanalízis Regresszióanalízis: hogyan változik egy vizsgált változó értéke egy másik változó változásának függvényében. Korrelációs
Gazdaságtudományi Kar. Gazdaságelméleti és Módszertani Intézet. Faktoranalízis előadás. Kvantitatív statisztikai módszerek
Faktoranalízis 6.-7. előadás Kvantitatív statisztikai módszerek Faktoranalízis Olyan többváltozós statisztikai módszer, amely adattömörítésre, a változók számának csökkentésére, az adatstruktúra feltárására
2012. április 18. Varianciaanaĺızis
2012. április 18. Varianciaanaĺızis Varianciaanaĺızis (analysis of variance, ANOVA) Ismételt méréses ANOVA Kérdések: (1) van-e különbség a csoportok között (t-próba általánosítása), (2) van-e hatása a
c adatpontok és az ismeretlen pont közötti kovariancia vektora
1. MELLÉKLET: Alkalmazott jelölések A mintaterület kiterjedése, területe c adatpontok és az ismeretlen pont közötti kovariancia vektora C(0) reziduális komponens varianciája C R (h) C R Cov{} d( u, X )
Likelihood, deviancia, Akaike-féle információs kritérium
Többváltozós statisztika (SZIE ÁOTK, 2011. ősz) 1 Likelihood, deviancia, Akaike-féle információs kritérium Likelihood függvény Az adatokhoz paraméteres modellt illesztünk. A likelihood függvény a megfigyelt
Többváltozós lineáris regresszió 3.
Többváltozós lineáris regresszió 3. Orlovits Zsanett 2018. október 10. Alapok Kérdés: hogyan szerepeltethetünk egy minőségi (nominális) tulajdonságot (pl. férfi/nő, egészséges/beteg, szezonális hatások,
1., Egy területen véletlenszerűen kihelyezet kvadrátokban megszámlálták az Eringium maritimum (tengerparti ördögszekér) egyedeit.
1., Egy területen véletlenszerűen kihelyezet kvadrátokban megszámlálták az Eringium maritimum (tengerparti ördögszekér) egyedeit. 1., Határozza meg az átlagos egyedszámot és a szórást. Egyedszám (x i )
Korreláció és lineáris regresszió
Korreláció és lineáris regresszió Két folytonos változó közötti összefüggés vizsgálata Szűcs Mónika SZTE ÁOK-TTIK Orvosi Fizikai és Orvosi Informatikai Intézet Orvosi Fizika és Statisztika I. előadás 2016.11.02.
Principal Component Analysis
Principal Component Analysis Principal Component Analysis Principal Component Analysis Definíció Ortogonális transzformáció, amely az adatokat egy új koordinátarendszerbe transzformálja úgy, hogy a koordináták
A leíró statisztikák
A leíró statisztikák A leíró statisztikák fogalma, haszna Gyakori igény az, hogy egy adathalmazt elemei egyenkénti felsorolása helyett néhány jellemző tulajdonságának megadásával jellemezzünk. Ezeket az
Regressziós vizsgálatok
Regressziós vizsgálatok Regresszió (regression) Általános jelentése: visszaesés, hanyatlás, visszafelé mozgás, visszavezetés. Orvosi területen: visszafejlődés, involúció. A betegség tünetei, vagy maga
Az első számjegyek Benford törvénye
Az első számjegyek Benford törvénye Frank Benford (1883-1948) A General Electric fizikusa Simon Newcomb (1835 1909) asztronómus 1. oldal 2. oldal A híres arizonai csekk sikkasztási eset http://www.aicpa.org/pubs/jofa/may1999/nigrini.htm
Nagy-György Judit. Szegedi Tudományegyetem, Bolyai Intézet
Többváltozós statisztika Szegedi Tudományegyetem, Bolyai Intézet Többváltozós módszerek Ezek a módszerek több változó együttes vizsgálatára vonatkoznak. Alapvető típusaik: többdimenziós eloszlásokra vonatkozó
Miért fontos számunkra az előző gyakorlaton tárgyalt lineáris algebrai ismeretek
Az november 23-i szeminárium témája Rövid összefoglaló Miért fontos számunkra az előző gyakorlaton tárgyalt lineáris algebrai ismeretek felfrissítése? Tekintsünk ξ 1,..., ξ k valószínűségi változókat,
Biostatisztika VIII. Mátyus László. 19 October
Biostatisztika VIII Mátyus László 19 October 2010 1 Ha σ nem ismert A gyakorlatban ritkán ismerjük σ-t. Ha kiszámítjuk s-t a minta alapján, akkor becsülhetjük σ-t. Ez további bizonytalanságot okoz a becslésben.
Logisztikus regresszió
Logisztikus regresszió Kvantitatív statisztikai módszerek Dr. Szilágyi Roland Függő változó (y) Nem metrikus Metri kus Gazdaságtudományi Kar Független változó (x) Nem metrikus Metrikus Kereszttábla elemzés
1. zárthelyi,
1. zárthelyi, 2009.10.20. 1. Írjuk fel a tér P = (0,2,4) és Q = (6, 2,2) pontjait összekötő szakasz felezőmerőleges síkjának egyenletét. 2. Tekintsük az x + 2y + 3z = 14, a 2x + 6y + 10z = 24 és a 4x+2y
Problémás regressziók
Universitas Eotvos Nominata 74 203-4 - II Problémás regressziók A közönséges (OLS) és a súlyozott (WLS) legkisebb négyzetes lineáris regresszió egy p- változós lineáris egyenletrendszer megoldása. Az egyenletrendszer
Vektorterek. =a gyakorlatokon megoldásra ajánlott
Vektorterek =a gyakorlatokon megoldásra ajánlott 40. Alteret alkotnak-e a valós R 5 vektortérben a megadott részhalmazok? Ha igen, akkor hány dimenziósak? (a) L = { (x 1, x 2, x 3, x 4, x 5 ) x 1 = x 5,
Feladatok a Gazdasági matematika II. tárgy gyakorlataihoz
Debreceni Egyetem Közgazdaságtudományi Kar Feladatok a Gazdasági matematika II tárgy gyakorlataihoz a megoldásra ajánlott feladatokat jelöli e feladatokat a félév végére megoldottnak tekintjük a nehezebb
Kettőnél több csoport vizsgálata. Makara B. Gábor MTA Kísérleti Orvostudományi Kutatóintézet
Kettőnél több csoport vizsgálata Makara B. Gábor MTA Kísérleti Orvostudományi Kutatóintézet Gyógytápszerek (kilokalória/adag) Három gyógytápszer A B C 30 5 00 10 05 08 40 45 03 50 35 190 Kérdések: 1. Van-e
Statisztikai következtetések Nemlineáris regresszió Feladatok Vége
[GVMGS11MNC] Gazdaságstatisztika 10. előadás: 9. Regressziószámítás II. Kóczy Á. László koczy.laszlo@kgk.uni-obuda.hu Keleti Károly Gazdasági Kar Vállalkozásmenedzsment Intézet A standard lineáris modell
Az fmri alapjai Statisztikai analízis II. Dr. Kincses Tamás Szegedi Tudományegyetem Neurológiai Klinika
Az fmri alapjai Statisztikai analízis II. Dr. Kincses Tamás Szegedi Tudományegyetem Neurológiai Klinika Autokorreláció white noise Autokorreláció: a függvény önnmagával számított korrelációja különböző
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 10 X. SZIMULÁCIÓ 1. VÉLETLEN számok A véletlen számok fontos szerepet játszanak a véletlen helyzetek generálásában (pénzérme, dobókocka,
Matematikai geodéziai számítások 6.
Matematikai geodéziai számítások 6. Lineáris regresszió számítás elektronikus távmérőkre Dr. Bácsatyai, László Matematikai geodéziai számítások 6.: Lineáris regresszió számítás elektronikus távmérőkre
Segítség az outputok értelmezéséhez
Tanulni: 10.1-10.3, 10.5, 11.10. Hf: A honlapra feltett falco_exp.zip-ben lévő exploratív elemzések áttanulmányozása, érdekességek, észrevételek kigyűjtése. Segítség az outputok értelmezéséhez Leiro: Leíró
STATISZTIKA. Fogalom. A standard lineáris regressziós modell mátrixalgebrai jelölése. A standard lineáris modell. Eredménytáblázat
Fogalom STATISZTIKA 8 Előadás Többszörös lineáris regresszió Egy jelenség vizsgálata során általában az adott jelenséget több tényező befolyásolja, vagyis többnyire nem elegendő a kétváltozós modell elemzése
11. Előadás. 11. előadás Bevezetés a lineáris programozásba
11. Előadás Gondolkodnivalók Sajátérték, Kvadratikus alak 1. Gondolkodnivaló Adjuk meg, hogy az alábbi A mátrixnak mely α értékekre lesz sajátértéke a 5. Ezen α-ák esetén határozzuk meg a 5 sajátértékhez
STATISZTIKA. András hármas. Éva ötös. Nóri négyes. 5 4,5 4 3,5 3 2,5 2 1,5 ANNA BÉLA CILI 0,5 MAGY. MAT. TÖRT. KÉM.
STATISZTIKA 5 4,5 4 3,5 3 2,5 2 1,5 1 0,5 0 MAGY. MAT. TÖRT. KÉM. ANNA BÉLA CILI András hármas. Béla Az átlag 3,5! kettes. Éva ötös. Nóri négyes. 1 mérés: dolgokhoz valamely szabály alapján szám rendelése
Módszertani Intézeti Tanszéki Osztály. A megoldás részletes mellékszámítások hiányában nem értékelhető!
BGF KKK Módszertani Intézeti Tanszéki Osztály Budapest, 2012.. Név:... Neptun kód:... Érdemjegy:..... STATISZTIKA II. VIZSGADOLGOZAT Feladatok 1. 2. 3. 4. 5. 6. Összesen Szerezhető pontszám 21 20 7 22
Standardizálás, transzformációk
Standardizálás, transzformációk A transzformációk ugynúgy mennek, mint egyváltozós esetben. Itt még fontosabbak a linearitás miatt. Standardizálás átskálázás. Centrálás: kivonjuk minden változó átlagát,
Korreláció és Regresszió
Korreláció és Regresszió 9. elıadás (17-18. lecke) Korrelációs együtthatók 17. lecke Áttekintés (korreláció és regresszió) A Pearson-féle korrelációs együttható Korreláció és Regresszió (témakörök) Kapcsolat
Elemi statisztika. >> =weiszd= << december 20. Szerintem nincs sok szükségünk erre... [visszajelzés esetén azt is belerakom] x x = n
Elemi statisztika >> =weiszd=
9. Előadás. (9. előadás) Lineáris egyr.(3.), Sajátérték április / 35
9. Előadás (9. előadás) Lineáris egyr.(3.), Sajátérték 2019. április 24. 1 / 35 Portfólió-analízis Tegyük fel, hogy egy bank 4 különböző eszközbe fektet be (réz, búza, arany és kakaó). Az ügyfeleinek ezen
Faktoranalízis az SPSS-ben
Faktoranalízis az SPSS-ben Kvantitatív statisztikai módszerek Petrovics Petra Feladat Megnyitás: faktor.sav Fogyasztók materialista vonásai (Richins-skála) Forrás: Sajtos-Mitev, 250.oldal Faktoranalízis
Faktoranalízis az SPSS-ben
Faktoranalízis az SPSS-ben = Adatredukciós módszer Petrovics Petra Doktorandusz Feladat Megnyitás: faktoradat_msc.sav Forrás: Sajtos-Mitev 250.oldal Fogyasztók materialista vonásai (Richins-skála) Faktoranalízis
y ij e ij BIOMETRIA let A variancia-anal telei Alapfogalmak 2. Alapfogalmak 1. ahol: 7. Előad Variancia-anal Lineáris modell ltozó bontását t jelenti.
Elmélet let BIOMETRIA 7. Előad adás Variancia-anal Lineáris modellek A magyarázat a függf ggő változó teljes heterogenitásának nak két k t részre r bontását t jelenti. A teljes heterogenitás s egyik része
Szinguláris értékek. Wettl Ferenc április 12. Wettl Ferenc Szinguláris értékek április / 35
Szinguláris értékek Wettl Ferenc 2016. április 12. Wettl Ferenc Szinguláris értékek 2016. április 12. 1 / 35 Tartalom 1 Szinguláris érték 2 Norma 3 Mátrixnorma 4 Alkalmazások Wettl Ferenc Szinguláris értékek
Szinguláris értékek. Wettl Ferenc április 3. Wettl Ferenc Szinguláris értékek április 3. 1 / 28
Szinguláris értékek Wettl Ferenc 2015. április 3. Wettl Ferenc Szinguláris értékek 2015. április 3. 1 / 28 Tartalom 1 Szinguláris érték 2 Alkalmazások 3 Norma 4 Mátrixnorma Wettl Ferenc Szinguláris értékek
Alap-ötlet: Karl Friedrich Gauss ( ) valószínűségszámítási háttér: Andrej Markov ( )
Budapesti Műszaki és Gazdaságtudományi Egyetem Gépészmérnöki Kar Hidrodinamikai Rendszerek Tanszék, Budapest, Műegyetem rkp. 3. D ép. 334. Tel: 463-6-80 Fa: 463-30-9 http://www.vizgep.bme.hu Alap-ötlet:
Fogalom STATISZTIKA. Alkalmazhatósági feltételek. A standard lineáris modell. Projekciós mátrix, P
Fogalom STATISZTIKA 8 Előadás Többszörös lineáris regresszió Egy jelenség vizsgálata során általában az adott jelenséget több tényező befolyásolja, vagyis többnyire nem elegendő a kétváltozós modell elemzése
Matematikai statisztika c. tárgy oktatásának célja és tematikája
Matematikai statisztika c. tárgy oktatásának célja és tematikája 2015 Tematika Matematikai statisztika 1. Időkeret: 12 héten keresztül heti 3x50 perc (előadás és szeminárium) 2. Szükséges előismeretek:
Mérnökgeodéziai hálózatok feldolgozása
Mérnökgeodéziai hálózatok feldolgozása dr. Siki Zoltán siki@agt.bme.hu XIV. Földmérő Találkozó Gyergyószentmiklós 2013.05.09-12. Mérnökgeodéziai hálózatok nagy relatív pontosságú hálózatok (1/100 000,
Populációbecslés és monitoring. Eloszlások és alapstatisztikák
Populációbecslés és monitoring Eloszlások és alapstatisztikák Eloszlások Az eloszlás megadja, hogy milyen valószínűséggel kapunk egy adott intervallumba tartozó értéket, ha egy olyan populációból veszünk
BIOMETRIA_ANOVA_2 1 1
Két faktor szerinti ANOVA Az A faktor minden szintjét kombináljuk a B faktor minden szintjével, minden cellában azonos számú ismétlés (kiegyensúlyozott terv). A terv szerkezete miatt a faktorok hatását
6. Előadás. Vereb György, DE OEC BSI, október 12.
6. Előadás Visszatekintés: a normális eloszlás Becslés, mintavételezés Reprezentatív minta A statisztika, mint változó Paraméter és Statisztika Torzítatlan becslés A mintaközép eloszlása - centrális határeloszlás
Matematikai geodéziai számítások 6.
Nyugat-magyarországi Egyetem Geoinformatikai Kara Dr. Bácsatyai László Matematikai geodéziai számítások 6. MGS6 modul Lineáris regresszió számítás elektronikus távmérőkre SZÉKESFEHÉRVÁR 2010 Jelen szellemi
KISTERV2_ANOVA_
Két faktor szerinti ANOVA Az A faktor minden szintjét kombináljuk a B faktor minden szintjével, minden cellában azonos számú ismétlés (kiegyensúlyozott terv). A terv szerkezete miatt a faktorok hatását
Esetelemzés az SPSS használatával
Esetelemzés az SPSS használatával A gepj.sav fileban négy különböző típusú, összesen 80 db gépkocsi üzemanyag fogyasztási adatai találhatók. Vizsgálja meg, hogy befolyásolja-e az üzemanyag fogyasztás mértékét
Ismételt méréses multifaktoriális varianciaanaĺızis (repeated measures MANOVA) 2012. szeptember 19.
Ismételt méréses multifaktoriális varianciaanaĺızis (repeated measures MANOVA) 2012. szeptember 19. Varianciaanaĺızis Adott egy parametrikus függő változó és egy vagy több kategoriális független változó.
Regressziós vizsgálatok
Regressziós vizsgálatok Regresszió (regression) Általános jelentése: visszaesés, hanyatlás, visszafelé mozgás, visszavezetés. Orvosi területen: visszafejlődés, involúció. A betegség tünetei, vagy maga
Least Squares becslés
Least Squares becslés A négyzetes hibafüggvény: i d i ( ) φx i A négyzetes hibafüggvény mellett a minimumot biztosító megoldás W=( d LS becslés A gradiens számítása és nullává tétele eredményeképp A megoldás
Módszertani hozzájárulás a Szegénység
Módszertani hozzájárulás a Szegénység Többváltozós Statisztikai Méréséhez MTA doktori értekezés főbb eredményei Hajdu ottó BCE KTK Statisztika Tanszék BME GTK Pénzügyek Tanszék Hajdu Ottó 1 Egyváltozós
Statisztika I. 12. előadás. Előadó: Dr. Ertsey Imre
Statisztika I. 1. előadás Előadó: Dr. Ertsey Imre Regresszió analízis A korrelációs együttható megmutatja a kapcsolat irányát és szorosságát. A kapcsolat vizsgálata során a gyakorlatban ennél messzebb
Statisztika - bevezetés Méréselmélet PE MIK MI_BSc VI_BSc 1
Statisztika - bevezetés 00.04.05. Méréselmélet PE MIK MI_BSc VI_BSc Bevezetés Véletlen jelenség fogalma jelenséget okok bizonyos rendszere hozza létre ha mindegyik figyelembe vehető egyértelmű leírás általában
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 9 IX. ROBUsZTUs statisztika 1. ROBUsZTUssÁG Az eddig kidolgozott módszerek főleg olyanok voltak, amelyek valamilyen értelemben optimálisak,
Biometria, haladó biostatisztika EA+GY biometub17vm Szerda 8:00-9:00, 9:00-11:00 Déli Tömb 0-804, Lóczy Lajos terem
Biometria, haladó biostatisztika EA+GY biometub17vm Szerda 8:00-9:00, 9:00-11:00 Déli Tömb 0-804, Lóczy Lajos terem Előadások-gyakorlatok 2018-ban (13 alkalom) IX.12, 19, 26, X. 3, 10, 17, 24, XI. 7, 14,
Sajátértékek és sajátvektorok. mf1n1a06- mf1n2a06 Csabai István
Sajátértékek és sajátvektorok A fizika numerikus módszerei I. mf1n1a06- mf1n2a06 Csabai István Lineáris transzformáció Vektorok lineáris transzformációja: általános esetben az x vektor iránya és nagysága
Többváltozós lineáris regressziós modell feltételeinek tesztelése II.
Többváltozós lineáris regressziós modell feltételeinek tesztelése II. - A magyarázó változóra vonatkozó feltételek tesztelése - Optimális regressziós modell kialakítása - Kvantitatív statisztikai módszerek
Vektorok, mátrixok, lineáris egyenletrendszerek
a Matematika mérnököknek I. című tárgyhoz Vektorok, mátrixok, lineáris egyenletrendszerek Vektorok A rendezett valós számpárokat kétdimenziós valós vektoroknak nevezzük. Jelölésükre latin kisbetűket használunk.
VIK A2 Matematika - BOSCH, Hatvan, 3. Gyakorlati anyag. Mátrix rangja
VIK A2 Matematika - BOSCH, Hatvan, 3. Gyakorlati anyag 2019. március 21. Mátrix rangja 1. Számítsuk ki az alábbi mátrixok rangját! (d) 1 1 2 2 4 5 1 1 1 1 1 1 1 1 2 1 2 1 1 0 1 1 2 1 0 1 1 1 1 2 3 1 3
Véletlen jelenség: okok rendszere hozza létre - nem ismerhetjük mind, ezért sztochasztikus.
Valószín ségelméleti és matematikai statisztikai alapfogalmak összefoglalása (Kemény Sándor - Deák András: Mérések tervezése és eredményeik értékelése, kivonat) Véletlen jelenség: okok rendszere hozza
Biostatisztika Összefoglalás
Biostatisztika Összefoglalás A biostatisztika vizsga A biostatisztika vizsga az Orvosi fizika és statisztika I. fizika vizsgájával egy napon történik. A vizsga keretében 30 perc alatt 0 kérdésre kell válaszolni
Sztochasztikus kapcsolatok
Sztochasztikus kapcsolatok Petrovics Petra PhD Hallgató Ismérvek közötti kapcsolat (1) Függvényszerű az egyik ismérv szerinti hovatartozás egyértelműen meghatározza a másik ismérv szerinti hovatartozást.
Egymintás próbák. Alapkérdés: populáció <paramétere/tulajdonsága> megegyezik-e egy referencia paraméter értékkel/tulajdonsággal?
Egymintás próbák σ s μ m Alapkérdés: A populáció egy adott megegyezik-e egy referencia paraméter értékkel/tulajdonsággal? egymintás t-próba Wilcoxon-féle előjeles