Ismételt méréses multifaktoriális varianciaanaĺızis (repeated measures MANOVA) szeptember 19.
|
|
- Dénes Kerekes
- 9 évvel ezelőtt
- Látták:
Átírás
1 Ismételt méréses multifaktoriális varianciaanaĺızis (repeated measures MANOVA) szeptember 19.
2 Varianciaanaĺızis Adott egy parametrikus függő változó és egy vagy több kategoriális független változó. Pl. függő változó: vércukorszint, kategoriális (= nominális) változók: (1) kezelés (inzulin, placebó), (2) napszak (reggel, délben, este), Vizsgált kérdések: (1) van-e különbség a csoportok átlaga között (t-próba általánosítása), (2) van-e hatása a vizsgált tényezőnek (regressziószámítás: magyarázó változók hatása a függő változóra). Előfeltétel: minta normális eloszlása és csoportokon belüli varianciák homogenitása (nagyjábóli megegyezése). Tesztek: Kolmogrov-Smirnov-próba, Levene-próba stb. (ld. előző félév 5. és 6. óra).
3 Varianciaanaĺızis típusai: egyváltozós próbák Egytényezős varianciaanaĺızis (one-way ANOVA): egy függő változó (vércukorszint), egy független változó (kezelés): 200 kísérleti személy (ksz) vércukorszintje, a fele inzulint kap, a másik fele placebót. Kéttényezős varianciaanaĺızis (two-way ANOVA): egy függő változó (vércukorszint), két független változó (kezelés, napszak): 600 kísérleti személy, 300 inzulint kap, 300 placebót, ezek közül csoportonként 100 ksz értékeit reggel mérik, 100-ét délben, 100-ét este. Többtényezős varianciaanaĺızis (n-way ANOVA): egy függő változó (vércukorszint), n független változó (vércukorszint, napszak, nem, korosztály, bőrszín stb.). Minden csoportban eltérő személy vércukorszintjét mérik.
4 Varianciaanaĺızis típusai: egyváltozós, ismételt méréses tesztek Nem tudunk/akarunk faktorkombináció * 100 kísérleti személyt felhajtani, ezért a kísérleti személyeket reggel, délben és este megvizsgáljuk kéttényezős dizájnban 600 helyett elég 200 ksz. Belső tényező (within-subjects factor): egy személyen belül napszakonként több mérés. Köztes tényező (between-subjects factor): csoportok tagjainak összehasonĺıtása, azaz inzulinnal, ill. placebóval kezelt csoport. További előfeltétel: szfericitás, azaz a feltételek függetlensége. Bármely két feltétel közötti összefüggésnek azonosnak kell lennie bármely másik két feltétel közötti összefüggésse, pl. reggel és délben mért vércukorszintek különbségeinek varianciája azonos délben és este, valamint este és reggel mért vércukorszintek különbségeinek varianciájával.)
5 Ismételt méréses többváltozós varianciaanaĺızis Teszt Mauchly-próbával, korrektúra Greenhouse-Geisser-próba segítségével (SPSS-felhasználók előnyben). Elegánsabb megoldás: többváltozós varianciaanaĺızis. Itt az egyik függő változó továbbra is a vércukorszint, a másik pedig a különböző szintek közötti kovariancia. R-ben szükséglet: car csomag, plusz két további szkript (anova.mean.r és Anova.prepare.r), letölthető innen: clara.ntyud.hu/ mady Emlékeztetőül: az ismételt mérés nem azt jelenti, hogy egyazon embertől tízszer veszünk vért reggel, egyazon beszélővel ötször mondatjuk el ugyanazt a mondatot stb.! Az ilyen ismétlés nem kerül bele az ismételt méréses varianciaanaĺızisbe, ehelyett az ismétlések átlagát vesszük.
6 Példa Mondatvégi kétszótagú, /s/-re és /z/-re végződő szavakban megmértük a frikatíván belüli zöngés tartomány hosszát. Zöngésebbek-e a mondatvégi /z/-k, mint az /s/-ek? zfin.rdata, letöltés innen: clara.nytud.hu/ mady Egyazon beszélő azonos feltételen belüli ismételt felolvasásainak átlaga: zmean = anova.mean(zfin$cvoice,zfin$subj,zfin$voiced) Kapott adatmátrix oszlopainak elnevezése: names(zmean) = c("cvoice","subj","voiced")
7 Ismételt méréses ANOVA summary(aov(cvoice voiced + Error(subj/voiced), data=zmean)) Releváns p-érték: Error: subj:voiced sor alatt (ez jelzi az alanyok szerinti interakciót). Ábrázolás: interaction.plot(x-tengely, ismételt mérés alanya, paraméter) interaction.plot(zmean$voiced,zmean$subj,zmean$cvoice)
8 Ismételt méréses MANOVA R-kód library(car) code = c("d","s","w") d = zmean[,c("cvoice","subj","voiced")] d.t = Anova.prepare(d,code) d.lm = lm(d.t$d 1) Anova(d.lm,idata=d.t$w,idesign= voiced) code: d: függő változó (dependent variable), s: ismételt mérés tárgya (subject), w: belső tényező (within-subject factor), b: csoportok közötti tényező (between-subject factor). Az Anova.prepare függvény kizárólag a d, s, w és b változókat tudja értelmezni! Csak a w változóból lehet több, ha több tényezőnk van.
9 Többtényezős MANOVA Többtényezős ismételt méréses többváltozós varianciaanaĺızis képlete, ha nincs between subject factor, pl. ha megelőző mássalhangzóra is kíváncsiak vagyunk. Először a cellánkénti átlagokat újra kell számolni: zmean.c = anova.mean(zfin$cvoice, zfin$subj, zfin$voiced, zfin$c1) names(zmean.c) = c("cvoice","subj","voiced","c1") code = c("d","s","w","w") d = zmean.c[,c("cvoice","subj","voiced","c1")] d.t = Anova.prepare(d,code) d.lm = lm(d.t$d 1) Anova(d.lm,idata=d.t$w,idesign= voiced*c1) Megegyeznek az eredmények az ismételt méréses ANOVA által kiadottal?
10 Ismételt méréses MANOVA, több csoport Hogyan hat a tág, szűk és kontrasztív fókusz a fókuszban levő szó hangsúlyos szótagjának tartamára, és a megelőző topik hangsúlyos szótagjának tartamára? Hatással van-e a szelektív szemétgyűjtés a hangsúlyos szótag tartamára (eco változó)? Letöltés: accdur.rdata hangsúlyos szótag tartama: acc2 változó, milliszekundumokban. Először egy mérések átlagát tartalmazó táblázatot kell létrehozni az anova.mean függvénnyel (accmean). code = c("d","s","w","b") d = accmean[,c("acc2","subj","focus","eco")] d.t = Anova.prepare(d,code) d.lm = lm(d.t$d factor(d.t$b)) Anova(d.lm,idata=d.t$w,idesign= focus)
Nemparametrikus tesztek április 25.
Nemparametrikus tesztek Ismételt méréses ANOVA 2012. április 25. Május 2-án, azaz jövő héten nem lesz óra, ennek a pótlása volt az április 10-i óra. Május 9-én az ismételt méréses MANOVÁ-t vesszük, ezután
Varianciaanaĺızis november 19.
Varianciaanaĺızis 2014. november 19. Varianciaanaĺızis (analysis of variance, ANOVA) Kérdések: (1) van-e különbség a csoportok között (t-próba általánosítása), (2) van-e hatása a vizsgált tényezőnek (regressziószámítás:
2012. április 18. Varianciaanaĺızis
2012. április 18. Varianciaanaĺızis Varianciaanaĺızis (analysis of variance, ANOVA) Ismételt méréses ANOVA Kérdések: (1) van-e különbség a csoportok között (t-próba általánosítása), (2) van-e hatása a
Varianciaanalízis 4/24/12
1. Feladat Egy póker kártya keverő gép a kártyákat random módon választja ki. A vizsgálatban 1600 választott kártya színei az alábbi gyakorisággal fordultak elő. Vizsgáljuk meg, hogy a kártyák kiválasztása
Nemparametrikus tesztek. 2014. december 3.
Nemparametrikus tesztek 2014. december 3. Nemparametrikus módszerek Alkalmazásuk: nominális adatok (gyakoriságok) esetén, ordinális adatok esetén, metrikus adatok esetén (intervallum és arányskála), ha
y ij = µ + α i + e ij
Elmélet STATISZTIKA 3. Előadás Variancia-analízis Lineáris modellek A magyarázat a függő változó teljes heterogenitásának két részre bontását jelenti. A teljes heterogenitás egyik része az, amelynek okai
y ij = µ + α i + e ij STATISZTIKA Sir Ronald Aylmer Fisher Példa Elmélet A variancia-analízis alkalmazásának feltételei Lineáris modell
Példa STATISZTIKA Egy gazdálkodó k kukorica hibrid termesztése között választhat. Jelöljük a fajtákat A, B, C, D-vel. Döntsük el, hogy a hibridek termesztése esetén azonos terméseredményre számíthatunk-e.
A nyelvészeti kísérletekben egy személytől szinte mindig többféle. Ismert módszer az ismételt méréses ANOVA, ahol a független
Kevert modellek Ismételt méréses varianciaanaĺızis A nyelvészeti kísérletekben egy személytől szinte mindig többféle információt szokás begyűjteni ismételt méréses módszerek. Ismert módszer az ismételt
Feladatok: pontdiagram és dobozdiagram. Hogyan csináltuk?
Feladatok: pontdiagram és dobozdiagram Hogyan csináltuk? Alakmutatók: ferdeség, csúcsosság Alakmutatók a ferdeség és csúcsosság mérésére Ez eloszlás centrumát (középérték) és az adatok centrum körüli terpeszkedését
Hipotézis vizsgálatok
Hipotézis vizsgálatok Hipotézisvizsgálat Hipotézis: az alapsokaság paramétereire vagy az alapsokaság eloszlására vonatkozó feltevés. Hipotézis ellenőrzés: az a statisztikai módszer, amelynek segítségével
Több valószínűségi változó együttes eloszlása, korreláció
Tartalomjegzék Előszó... 6 I. Valószínűségelméleti és matematikai statisztikai alapok... 8 1. A szükséges valószínűségelméleti és matematikai statisztikai alapismeretek összefoglalása... 8 1.1. Alapfogalmak...
Kettőnél több csoport vizsgálata. Makara B. Gábor
Kettőnél több csoport vizsgálata Makara B. Gábor Három gyógytápszer elemzéséből az alábbi energia tartalom adatok származtak (kilokalória/adag egységben) Három gyógytápszer elemzésébô A B C 30 5 00 10
IV. Változók és csoportok összehasonlítása
IV. Változók és csoportok összehasonlítása Tartalom Összetartozó és független minták Csoportosító változók Két összetartozó minta összehasonlítása Két független minta összehasonlítása Több független minta
[Biomatematika 2] Orvosi biometria. Visegrády Balázs
[Biomatematika 2] Orvosi biometria Visegrády Balázs 2016. 03. 27. Probléma: Klinikai vizsgálatban három különböző antiaritmiás gyógyszert (ß-blokkoló) alkalmaznak, hogy kipróbálják hatásukat a szívműködés
Hipotézis STATISZTIKA. Kétmintás hipotézisek. Munkahipotézis (H a ) Tematika. Tudományos hipotézis. 1. Előadás. Hipotézisvizsgálatok
STATISZTIKA 1. Előadás Hipotézisvizsgálatok Tematika 1. Hipotézis vizsgálatok 2. t-próbák 3. Variancia-analízis 4. A variancia-analízis validálása, erőfüggvény 5. Korreláció számítás 6. Kétváltozós lineáris
Adatelemzés az R-ben. 2014. április 25.
Adatelemzés az R-ben 2014. április 25. Kísérleti adatok elemzése Kísérlet célja: valamilyen álĺıtás vagy megfigyelés empirikus és szisztematikus tesztelése. Pl. a nők többet beszélnek, mint a férfiak,
Biostatisztika Összefoglalás
Biostatisztika Összefoglalás A biostatisztika vizsga A biostatisztika vizsga az Orvosi fizika és statisztika I. fizika vizsgájával egy napon történik. A vizsga keretében 30 perc alatt 0 kérdésre kell válaszolni
Statisztika I. 10. előadás. Előadó: Dr. Ertsey Imre
Statisztika I. 10. előadás Előadó: Dr. Ertsey Imre Varianciaanalízis A különböző tényezők okozta szórás illetőleg szórásnégyzet összetevőire bontásán alapszik Segítségével egyszerre több mintát hasonlíthatunk
STATISZTIKA. A maradék független a kezelés és blokk hatástól. Maradékok leíró statisztikája. 4. A modell érvényességének ellenőrzése
4. A modell érvényességének ellenőrzése STATISZTIKA 4. Előadás Variancia-analízis Lineáris modellek 1. Függetlenség 2. Normális eloszlás 3. Azonos varianciák A maradék független a kezelés és blokk hatástól
Minitab 17 újdonságai. Lakat Károly L.K.Quality Bt. 2014.szept. 23. www.lkq.hu/szigma
Minitab 17 újdonságai Lakat Károly L.K.Quality Bt. 2014.szept. 23. www.lkq.hu/szigma Minitab 17! Minitab 17 számos újdonságot és fejlesztést nyújt beleértve a következőket: Regression DOE Assistant Példák
Reiczigel Jenő, 2006 1
Reiczigel Jenő, 2006 1 Egytényezős (egyszempontos) varianciaelemzés k független minta (k kezelés vagy k csoport), a célváltozó minden csoportban normális eloszlású, a szórások azonosak, az átlagok vagy
Biomatematika 15. Szent István Egyetem Állatorvos-tudományi Kar. Fodor János
Szent István Egyetem Állatorvos-tudományi Kar Biomatematikai és Számítástechnikai Tanszék Biomatematika 15. Nemparaméteres próbák Fodor János Copyright c Fodor.Janos@aotk.szie.hu Last Revision Date: November
Biometria az orvosi gyakorlatban. Korrelációszámítás, regresszió
SZDT-08 p. 1/31 Biometria az orvosi gyakorlatban Korrelációszámítás, regresszió Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu Korrelációszámítás
Khi-négyzet eloszlás. Statisztika II., 3. alkalom
Khi-négyzet eloszlás Statisztika II., 3. alkalom A khi négyzet eloszlást (Pearson) leggyakrabban kategorikus adatok elemzésére használjuk. N darab standard normális eloszlású változó négyzetes összegeként
Statisztikai szoftverek esszé
Statisztikai szoftverek esszé Dávid Nikolett Szeged 2011 1 1. Helyzetfelmérés Adott egy kölcsön.txt nevű adatfájl, amely információkkal rendelkezik az ügyfelek életkoráról, családi állapotáról, munkaviszonyáról,
VARIANCIAANALÍZIS (szóráselemzés, ANOVA)
VARIANCIAANAÍZIS (szóráselemzés, ANOVA) Varancaanalízs. Varancaanalízs (szóráselemzés, ANOVA) Adott: egy vagy több tetszőleges skálájú független változó és egy legalább ntervallum skálájú függő változó.
Esetelemzés az SPSS használatával
Esetelemzés az SPSS használatával A gepj.sav fileban négy különböző típusú, összesen 80 db gépkocsi üzemanyag fogyasztási adatai találhatók. Vizsgálja meg, hogy befolyásolja-e az üzemanyag fogyasztás mértékét
Biomatematika 13. Varianciaanaĺızis (ANOVA)
Szent István Egyetem Állatorvos-tudományi Kar Biomatematikai és Számítástechnikai Tanszék Biomatematika 13. Varianciaanaĺızis (ANOVA) Fodor János Copyright c Fodor.Janos@aotk.szie.hu Last Revision Date:
Gyakorlat 8 1xANOVA. Dr. Nyéki Lajos 2016
Gyakorlat 8 1xANOVA Dr. Nyéki Lajos 2016 A probléma leírása Azt vizsgáljuk, hogy milyen hatása van a család jövedelmének a tanulók szövegértés teszten elért tanulmányi eredményeire. A minta 59 iskola adatait
STATISZTIKA. Egymintás u-próba. H 0 : Kefir zsírtartalma 3% Próbafüggvény, alfa=0,05. Egymintás u-próba vagy z-próba
Egymintás u-próba STATISZTIKA 2. Előadás Középérték-összehasonlító tesztek Tesztelhetjük, hogy a valószínűségi változónk értéke megegyezik-e egy konkrét értékkel. Megválaszthatjuk a konfidencia intervallum
A bergengóc lakosság szemszín szerinti megoszlása a négy tartományban azonos:
A. Matematikai Statisztika 2.MINTA ZH. 2003 december Név (olvasható) :... A feladatmegoldásnak az alkalmazott matematikai modell valószínűségszámítási ill. statisztikai szóhasználat szerinti megfogalmazását,
Matematikai statisztika c. tárgy oktatásának célja és tematikája
Matematikai statisztika c. tárgy oktatásának célja és tematikája 2015 Tematika Matematikai statisztika 1. Időkeret: 12 héten keresztül heti 3x50 perc (előadás és szeminárium) 2. Szükséges előismeretek:
Bevezetés a Korreláció &
Bevezetés a Korreláció & Regressziószámításba Petrovics Petra Doktorandusz Statisztikai kapcsolatok Asszociáció 2 minőségi/területi ismérv között Vegyes kapcsolat minőségi/területi és egy mennyiségi ismérv
Diszkriminancia-analízis
Diszkriminancia-analízis az SPSS-ben Petrovics Petra Doktorandusz Diszkriminancia-analízis folyamata Feladat Megnyitás: Employee_data.sav Milyen tényezőktől függ a dolgozók beosztása? Nem metrikus Független
Statisztika - bevezetés Méréselmélet PE MIK MI_BSc VI_BSc 1
Statisztika - bevezetés 00.04.05. Méréselmélet PE MIK MI_BSc VI_BSc Bevezetés Véletlen jelenség fogalma jelenséget okok bizonyos rendszere hozza létre ha mindegyik figyelembe vehető egyértelmű leírás általában
ANOVA,MANOVA. Márkus László március 30. Márkus László ANOVA,MANOVA március / 26
ANOVA,MANOVA Márkus László 2013. március 30. Márkus László ANOVA,MANOVA 2013. március 30. 1 / 26 ANOVA / MANOVA One-Way ANOVA (Egyszeres ) Analysis of Variance (ANOVA) = szóráselemzés A szórásokat elemezzük,
Statisztika elméleti összefoglaló
1 Statisztika elméleti összefoglaló Tel.: 0/453-91-78 1. Tartalomjegyzék 1. Tartalomjegyzék.... Becsléselmélet... 3 3. Intervallumbecslések... 5 4. Hipotézisvizsgálat... 8 5. Regresszió-számítás... 11
Typotex Kiadó. Tartalomjegyzék
Tartalomjegyzék Bevezetés... 11 A hasznos véletlen hiba... 13 I. Adatredukciós módszerek... 17 1. Fıkomponens-elemzés... 18 1.1. A fıkomponens jelentése... 25 1.2. Mikor használjunk fıkomponens-elemzést?...
Többváltozós lineáris regressziós modell feltételeinek tesztelése I.
Többváltozós lineáris regressziós modell feltételeinek tesztelése I. - A hibatagra vonatkozó feltételek tesztelése - Kvantitatív statisztikai módszerek Petrovics Petra Többváltozós lineáris regressziós
Az első számjegyek Benford törvénye
Az első számjegyek Benford törvénye Frank Benford (1883-1948) A General Electric fizikusa Simon Newcomb (1835 1909) asztronómus 1. oldal 2. oldal A híres arizonai csekk sikkasztási eset http://www.aicpa.org/pubs/jofa/may1999/nigrini.htm
Centura Szövegértés Teszt
Centura Szövegértés Teszt Megbízhatósági vizsgálata Tesztfejlesztők: Megbízhatósági vizsgálatot végezte: Copyright tulajdonos: Bóka Ferenc, Németh Bernadett, Selmeci Gábor Bodor Andrea Centura Kft. Dátum:
Kísérlettervezés alapfogalmak
Kísérlettervezés alapfogalmak Rendszermodellezés Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs Rendszerek Tanszék Kísérlettervezés Cél: a modell paraméterezése a valóság alapján
ANOVA összefoglaló. Min múlik?
ANOVA összefoglaló Min múlik? Kereszt vagy beágyazott? Rögzített vagy véletlen? BIOMETRIA_ANOVA5 1 I. Kereszt vagy beágyazott Két faktor viszonyát mondja meg. Ha több, mint két faktor van, akkor bármely
Kiválasztás. A változó szerint. Rangok. Nem-paraméteres eljárások. Rang: Egy valamilyen szabály szerint felállított sorban elfoglalt hely.
Kiválasztás A változó szerint Egymintás t-próba Mann-Whitney U-test paraméteres nem-paraméteres Varianciaanalízis De melyiket válasszam? Kétmintás t-próba Fontos, hogy mindig a kérdésnek és a változónak
Gazdasági matematika II. vizsgadolgozat, megoldással,
Gazdasági matematika II. vizsgadolgozat, megoldással, levelező képzés Definiálja az alábbi fogalmakat! 1. Kvadratikus mátrix invertálhatósága és inverze. (4 pont) Egy A kvadratikus mátrixot invertálhatónak
biometria II. foglalkozás előadó: Prof. Dr. Rajkó Róbert Matematikai-statisztikai adatfeldolgozás
Kísérlettervezés - biometria II. foglalkozás előadó: Prof. Dr. Rajkó Róbert Matematikai-statisztikai adatfeldolgozás A matematikai-statisztika feladata tapasztalati adatok feldolgozásával segítséget nyújtani
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 8 VIII. REGREssZIÓ 1. A REGREssZIÓs EGYENEs Két valószínűségi változó kapcsolatának leírására az eddigiek alapján vagy egy numerikus
Logisztikus regresszió
Logisztikus regresszió Bekövetkezés esélye Valószínűség (P): 0 és 1 közötti valós szám, az esemény bekövetkezésének esélyét fejezi ki. Fej dobásának esélye: 1:2 = 1 2 = 0,5. Odds/esélyérték (O): a tét
Kettőnél több csoport vizsgálata. Makara B. Gábor MTA Kísérleti Orvostudományi Kutatóintézet
Kettőnél több csoport vizsgálata Makara B. Gábor MTA Kísérleti Orvostudományi Kutatóintézet Gyógytápszerek (kilokalória/adag) Három gyógytápszer A B C 30 5 00 10 05 08 40 45 03 50 35 190 Kérdések: 1. Van-e
Matematikai geodéziai számítások 6.
Matematikai geodéziai számítások 6. Lineáris regresszió számítás elektronikus távmérőkre Dr. Bácsatyai, László Matematikai geodéziai számítások 6.: Lineáris regresszió számítás elektronikus távmérőkre
Populációbecslés és monitoring. Eloszlások és alapstatisztikák
Populációbecslés és monitoring Eloszlások és alapstatisztikák Eloszlások Az eloszlás megadja, hogy milyen valószínűséggel kapunk egy adott intervallumba tartozó értéket, ha egy olyan populációból veszünk
Matematikai geodéziai számítások 6.
Nyugat-magyarországi Egyetem Geoinformatikai Kara Dr. Bácsatyai László Matematikai geodéziai számítások 6. MGS6 modul Lineáris regresszió számítás elektronikus távmérőkre SZÉKESFEHÉRVÁR 2010 Jelen szellemi
Az emberi vér vizsgálata. Vércsoportmeghatározás, kvalitatív és kvantitatív vérképelemzés és vércukormérés A mérési adatok elemzése és értékelése
Az emberi vér vizsgálata Vércsoportmeghatározás, kvalitatív és kvantitatív vérképelemzés és vércukormérés A mérési adatok elemzése és értékelése Biológia BSc. B gyakorlat fehérvérsejt (granulocita) vérplazma
Adatok statisztikai értékelésének főbb lehetőségei
Adatok statisztikai értékelésének főbb lehetőségei 1. a. Egy- vagy kétváltozós eset b. Többváltozós eset 2. a. Becslési problémák, hipotézis vizsgálat b. Mintázatelemzés 3. Szint: a. Egyedi b. Populáció
Kabos: Statisztika II. ROC elemzések 10.1. Szenzitivitás és specificitás a jelfeldolgozás. és ilyenkor riaszt. Máskor nem.
Kabos: Statisztika II. ROC elemzések 10.1 ROC elemzések Szenzitivitás és specificitás a jelfeldolgozás szóhasználatával A riasztóberendezés érzékeli, ha támadás jön, és ilyenkor riaszt. Máskor nem. TruePositiveAlarm:
Kísérlettervezés alapfogalmak
Kísérlettervezés alapfogalmak Rendszermodellezés Budapest University of Technology and Economics Fault Tolerant Systems Research Group Budapest University of Technology and Economics Department of Measurement
Bevezetés a hipotézisvizsgálatokba
Bevezetés a hipotézisvizsgálatokba Nullhipotézis: pl. az átlag egy adott µ becslése : M ( x -µ ) = 0 Alternatív hipotézis: : M ( x -µ ) 0 Szignifikancia: - teljes bizonyosság csak teljes enumerációra -
Grafikonok az R-ben március 7.
Normális eloszlás Grafikonok az R-ben 2012. március 7. Vendégelőadás módosított és végleges időpontja 2012. április 10., 3 óra. Új könyv a tankönyvtárban! Dalgaard, Peter (2008). Introductory statistics
STATISZTIKA. András hármas. Éva ötös. Nóri négyes. 5 4,5 4 3,5 3 2,5 2 1,5 ANNA BÉLA CILI 0,5 MAGY. MAT. TÖRT. KÉM.
STATISZTIKA 5 4,5 4 3,5 3 2,5 2 1,5 1 0,5 0 MAGY. MAT. TÖRT. KÉM. ANNA BÉLA CILI András hármas. Béla Az átlag 3,5! kettes. Éva ötös. Nóri négyes. 1 mérés: dolgokhoz valamely szabály alapján szám rendelése
BIOMATEMATIKA ELŐADÁS
BIOMATEMATIKA ELŐADÁS 9. Együttes eloszlás, kovarianca, nevezetes eloszlások Debreceni Egyetem, 2015 Dr. Bérczes Attila, Bertók Csanád A diasor tartalma 1 Bevezetés, definíciók Együttes eloszlás Függetlenség
Többváltozós lineáris regressziós modell feltételeinek
Többváltozós lineáris regressziós modell feltételeinek tesztelése I. - A hibatagra vonatkozó feltételek tesztelése - Petrovics Petra Doktorandusz Többváltozós lineáris regressziós modell x 1, x 2,, x p
Hipotézis, sejtés STATISZTIKA. Kétmintás hipotézisek. Tudományos hipotézis. Munkahipotézis (H a ) Nullhipotézis (H 0 ) 11. Előadás
STATISZTIKA Hipotézis, sejtés 11. Előadás Hipotézisvizsgálatok, nem paraméteres próbák Tudományos hipotézis Nullhipotézis felállítása (H 0 ): Kétmintás hipotézisek Munkahipotézis (H a ) Nullhipotézis (H
STATISZTIKA ELŐADÁS ÁTTEKINTÉSE. Matematikai statisztika. Mi a modell? Binomiális eloszlás sűrűségfüggvény. Binomiális eloszlás
ELŐADÁS ÁTTEKINTÉSE STATISZTIKA 9. Előadás Binomiális eloszlás Egyenletes eloszlás Háromszög eloszlás Normális eloszlás Standard normális eloszlás Normális eloszlás mint modell 2/62 Matematikai statisztika
[Biomatematika 2] Orvosi biometria
[Biomatematika 2] Orvosi biometria 2016.02.29. A statisztika típusai Leíró jellegű statisztika: összegzi egy adathalmaz jellemzőit. A középértéket jelemzi (medián, módus, átlag) Az adatok változékonyságát
Gazdasági matematika II. vizsgadolgozat megoldása, június 10
Gazdasági matematika II. vizsgadolgozat megoldása, 204. június 0 A dolgozatírásnál íróeszközön kívül más segédeszköz nem használható. A dolgozat időtartama: 90 perc. Ha a dolgozat első részéből szerzett
A maximum likelihood becslésről
A maximum likelihood becslésről Definíció Parametrikus becsléssel foglalkozunk. Adott egy modell, mellyel elképzeléseink szerint jól leírható a meghatározni kívánt rendszer. (A modell típusának és rendszámának
1. Adatok kiértékelése. 2. A feltételek megvizsgálása. 3. A hipotézis megfogalmazása
HIPOTÉZIS VIZSGÁLAT A hipotézis feltételezés egy vagy több populációról. (pl. egy gyógyszer az esetek 90%-ában hatásos; egy kezelés jelentősen megnöveli a rákos betegek túlélését). A hipotézis vizsgálat
Segítség az outputok értelmezéséhez
Tanulni: 10.1-10.3, 10.5, 11.10. Hf: A honlapra feltett falco_exp.zip-ben lévő exploratív elemzések áttanulmányozása, érdekességek, észrevételek kigyűjtése. Segítség az outputok értelmezéséhez Leiro: Leíró
Logisztikus regresszió
Logisztikus regresszió 9. előadás Kvantitatív statisztikai módszerek Dr. Szilágyi Roland Függő változó (y) Nem metrikus Metri kus Gazdaságtudományi Kar Független változó () Nem metrikus Metrikus Kereszttábla
i p i p 0 p 1 p 2... i p i
. vizsga, 06--9, Feladatok és megoldások. (a) Adja meg az diszkrét eloszlás várható értékének a definícióját! i 0... p i p 0 p p... i p i (b) Tegyük fel, hogy a rigófészkekben található tojások X száma
Döntési fák. (Klasszifikációs és regressziós fák: (Classification And Regression Trees: CART ))
Döntési fák (Klasszifikációs és regressziós fák: (Classification And Regression Trees: CART )) Rekurzív osztályozó módszer, Klasszifikációs és regressziós fák folytonos, kategóriás, illetve túlélés adatok
Kabos: Statisztika II. t-próba 9.1. Ha ismert a doboz szórása de nem ismerjük a
Kabos: Statisztika II. t-próba 9.1 Egymintás z-próba Ha ismert a doboz szórása de nem ismerjük a doboz várhatóértékét, akkor a H 0 : a doboz várhatóértéke = egy rögzített érték hipotézisről úgy döntünk,
A konfidencia intervallum képlete: x± t( α /2, df )
1. feladat. Egy erdőben az egy fészekben levő tojásszámokat vizsgáltuk egy madárfajnál. A következő tojásszámokat találtuk: 1, 1, 1,,,,,,, 3, 3, 3, 3, 3, 4, 4, 5, 6, 7. Mi a mintának a minimuma, maximuma,
Abszolút folytonos valószín ségi változó (4. el adás)
Abszolút folytonos valószín ségi változó (4. el adás) Deníció (Abszolút folytonosság és s r ségfüggvény) Az X valószín ségi változó abszolút folytonos, ha van olyan f : R R függvény, melyre P(X t) = t
K oz ep ert ek es variancia azonoss ag anak pr ob ai: t-pr oba, F -pr oba m arcius 21.
Középérték és variancia azonosságának próbái: t-próba, F -próba 2012. március 21. Hipotézis álĺıtása Feltételezés: a minta egy adott szempont alapján más populációhoz tartozik, mint b minta. Nullhipotézis
Korrelációs kapcsolatok elemzése
Korrelációs kapcsolatok elemzése 1. előadás Kvantitatív statisztikai módszerek Két változó közötti kapcsolat Független: Az X ismérv szerinti hovatartozás ismerete nem ad semmilyen többletinformációt az
(Independence, dependence, random variables)
Két valószínűségi változó együttes vizsgálata Feltételes eloszlások Két diszkrét változó együttes eloszlása a lehetséges értékpárok és a hozzájuk tartozó valószínűségek (táblázat) Példa: Egy urna 3 fehér,
Biometria az orvosi gyakorlatban. Regresszió Túlélésanalízis
SZDT-09 p. 1/36 Biometria az orvosi gyakorlatban Regresszió Túlélésanalízis Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu Logisztikus regresszió
2013 ŐSZ. 1. Mutassa be az egymintás z-próba célját, alkalmazásának feltételeit és módszerét!
GAZDASÁGSTATISZTIKA KIDOLGOZOTT ELMÉLETI KÉRDÉSEK A 3. ZH-HOZ 2013 ŐSZ Elméleti kérdések összegzése 1. Mutassa be az egymintás z-próba célját, alkalmazásának feltételeit és módszerét! 2. Mutassa be az
Statisztikai következtetések Nemlineáris regresszió Feladatok Vége
[GVMGS11MNC] Gazdaságstatisztika 10. előadás: 9. Regressziószámítás II. Kóczy Á. László koczy.laszlo@kgk.uni-obuda.hu Keleti Károly Gazdasági Kar Vállalkozásmenedzsment Intézet A standard lineáris modell
11. modul: LINEÁRIS FÜGGVÉNYEK
MATEMATIK A 9. évfolyam 11. modul: LINEÁRIS FÜGGVÉNYEK KÉSZÍTETTE: CSÁKVÁRI ÁGNES Matematika A 9. évfolyam. 11. modul: LINEÁRIS FÜGGVÉNYEK Tanári útmutató 2 A modul célja Időkeret Ajánlott korosztály Modulkapcsolódási
Tartalomjegyzék I. RÉSZ: KÍSÉRLETEK MEGTERVEZÉSE
Tartalomjegyzék 5 Tartalomjegyzék Előszó I. RÉSZ: KÍSÉRLETEK MEGTERVEZÉSE 1. fejezet: Kontrollált kísérletek 21 1. A Salk-oltás kipróbálása 21 2. A porta-cava sönt 25 3. Történeti kontrollok 27 4. Összefoglalás
Biostatisztika 2. Dr. Dinya Elek Dr. Solymosi Róbert: Biometria a klinikumban Dr. Dinya Elek: Biostatisztika c. művei alapján
Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs rendszerek Tanszék Biostatisztika 2. Dr. Dinya Elek Dr. Solymosi Róbert: Biometria a klinikumban Dr. Dinya Elek: Biostatisztika
Több laboratórium összehasonlítása, körmérés
Több oratórium összehasonlítása, körmérés colorative test, round robin a rendszeres hibák ellenőrzése, számszerűsítése Statistical Manual of AOAC, W. J. Youden: Statistical Techniques for Colorative Tests,
Eseményalgebra. Esemény: minden amirl a kísérlet elvégzése során eldönthet egyértelmen hogy a kísérlet során bekövetkezett-e vagy sem.
Eseményalgebra. Esemény: minden amirl a kísérlet elvégzése során eldönthet egyértelmen hogy a kísérlet során bekövetkezett-e vagy sem. Elemi esemény: a kísérlet egyes lehetséges egyes lehetséges kimenetelei.
FIT-jelentés. Budapest XXI. Kerületi Kölcsey Ferenc Általános Iskola 1214 Budapest XXI. kerület, Iskola tér 45. OM azonosító:
Országos kompetenciamérés 2017 FIT-jelentés Budapest XXI. Kerületi Kölcsey Ferenc Általános Iskola 1214 Budapest XXI. kerület, Iskola tér 45. FIGYELEM! Kérjük, tartsa szem előtt, hogy a 2016/2017. tanévtől
GVMST22GNC Statisztika II. Keleti Károly Gazdasági Kar Vállalkozásmenedzsment Intézet
GVMST22GNC Statisztika II. 3. előadás: 8. Hipotézisvizsgálat Kóczy Á. László Keleti Károly Gazdasági Kar Vállalkozásmenedzsment Intézet Hipotézisvizsgálat v becslés Becslés Ismeretlen paraméter Közeĺıtő
Hipotézisvizsgálat az Excel adatelemző eljárásaival. Dr. Nyéki Lajos 2018
Hipotézisvizsgálat az Excel adatelemző eljárásaival Dr. Nyéki Lajos 2018 Egymintás t-próba Az egymintás T-próba azt vizsgálja, hogy különbözik-e a változó M átlaga egy megadott m konstanstól. Az a feltételezés,
FIT-jelentés. Budapest XXI. Kerületi Kölcsey Ferenc Általános Iskola 1214 Budapest XXI. kerület, Iskola tér 45. OM azonosító:
Országos kompetenciamérés 2018 FIT-jelentés Budapest XXI. Kerületi Kölcsey Ferenc Általános Iskola 1214 Budapest XXI. kerület, Iskola tér 45. FIGYELEM! Kérjük, tartsa szem előtt, hogy a 2016/2017. tanévtől
Az ANOVA feltételeire vonatkozó vizsgálatok és adatkezelési technikák
Az ANOVA feltételeire vonatkozó vizsgálatok és adatkezelési technikák Esettanulmány Budapesti Corvinus a mentafélék Egyetem illóolaja Ramularia menthicola Prezentáció kórokozó cím elleni in vivo hatékonyságának
Bevezetés az ökonometriába
Bevezetés az ökonometriába Többváltozós regresszió: nemlineáris modellek Ferenci Tamás MSc 1 tamas.ferenci@medstat.hu 1 Statisztika Tanszék Budapesti Corvinus Egyetem Hetedik előadás, 2010. november 10.
FIT-jelentés. Kempelen Farkas Gimnázium 1223 Budapest XXII. kerület, Közgazdász utca OM azonosító: Intézményi jelentés. 8.
Országos kompetenciamérés 2017 FIT-jelentés Kempelen Farkas Gimnázium 1223 Budapest XXII. kerület, Közgazdász utca 9-11. FIGYELEM! Kérjük, tartsa szem előtt, hogy a 2016/2017. tanévtől a képzési formák
4. okt. 3.: statisztika: binomiális regresszió, saját kísérletek
Félév beosztása 1. szept. 12.: Általános infók, kísérletezés módszertana 2. szept. 19.: statisztika: repeated measures MANOVA, néhány kísérlet bemutatása irodalom alapján 3. szept. 26.: statisztika: mixed
1. Példa. A gamma függvény és a Fubini-tétel.
. Példa. A gamma függvény és a Fubini-tétel.. Az x exp x + t )) függvény az x, t tartományon folytonos, és nem negatív, ezért alkalmazható rá a Fubini-tétel. I x exp x + t )) dxdt + t dt π 4. [ exp x +
Matematikai geodéziai számítások 5.
Matematikai geodéziai számítások 5 Hibaterjedési feladatok Dr Bácsatyai László Matematikai geodéziai számítások 5: Hibaterjedési feladatok Dr Bácsatyai László Lektor: Dr Benedek Judit Ez a modul a TÁMOP
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 4 IV. MINTA, ALAPsTATIsZTIKÁK 1. MATEMATIKAI statisztika A matematikai statisztika alapfeladatát nagy általánosságban a következőképpen
Ökonometria. Dummy változók használata. Ferenci Tamás 1 tamas.ferenci@medstat.hu. Hetedik fejezet. Budapesti Corvinus Egyetem. 1 Statisztika Tanszék
Dummy változók használata Ferenci Tamás 1 tamas.ferenci@medstat.hu 1 Statisztika Tanszék Budapesti Corvinus Egyetem Hetedik fejezet Tartalom IV. esettanulmány 1 IV. esettanulmány Uniós országok munkanélkülisége
Variancia-analízis (folytatás)
Variancia-analízis (folytatás) 7. elıadás (13-14. lecke) Egytényezıs VA blokk-képzés nélkül és blokk-képzéssel 13. lecke Egytényezıs variancia-analízis blokkképzés nélkül Az átlagok páronkénti összehasonlítása(1)
Kockázatkezelés a rezgésdiagnosztikában többváltozós szabályozó kártya segítségével
Kockázatkezelés a rezgésdiagnosztikában többváltozós szabályozó kártya segítségével Hazai hallgatói, illetve kutatói személyi támogatást biztosító rendszer kidolgozása és működtetése konvergencia program
Korreláció számítás az SPSSben
Korreláció számítás az SPSSben Kvantitatív statisztikai módszerek Petrovics Petra Statisztikai kapcsolatok Asszociáció 2 minőségi/területi ismérv között Vegyes kapcsolat minőségi/területi és egy mennyiségi