Nemparametrikus tesztek április 25.
|
|
- Ödön Fábián
- 8 évvel ezelőtt
- Látták:
Átírás
1 Nemparametrikus tesztek Ismételt méréses ANOVA április 25.
2 Május 2-án, azaz jövő héten nem lesz óra, ennek a pótlása volt az április 10-i óra. Május 9-én az ismételt méréses MANOVÁ-t vesszük, ezután gyakorló feladatok megoldása, nyitott kérdések megválaszolása stb. Május 16-án ZH azoknak, akik jegyet akarnak szerezni. Laptopra nem lesz szükség, feladatlap lesz. A helyszín a 206-os szoba.
3 Nemparametrikus módszerek Alkalmazásuk: nominális adatok (gyakoriságok) esetén, ordinális adatok esetén, metrikus adatok esetén (intervallum és arányskála), ha nem normális eloszlásúak, vagy ha varianciahomogenitás feltétele nem teljesül. Az ún. Likert-skála (pl. természetességi ítéletek 1 5-ig terjedő skálán) megítélése nem egyöntetű: egyesek szerint ordinális, mások szerint metrikusnak is tekinthető.
4 χ 2 -próba Egy vagy két nominális skálájú minta eloszlásának illeszkedését teszteli. Várt érték cellánként legalább 5. Egy minta: khi-négyzet-próba eloszlásvizsgálatra. Megfigyelések gyakoriságát összehasonĺıtjuk a várt gyakorisággal, azaz n/k-val. Például: ugyanannyi gyerek születik-e minden hónapban? 100 fős minta esetén megfigyelt gyakoriságok és várt gyakoriságok száma: jan feb már ápr máj jún júl aug szept okt nov dec megf várt 8,3 8,3 8,3 8,3 8,3 8,3 8,3 8,3 8,3 8,3 8,3 8,3
5 Példa Illeszkednek-e a megfigyelt gyakoriságok a várt gyakorisághoz? szuletes = c(8,9,10,4,14,7,9,10,6,9,8,6) chisq.test(szuletes) eredmény: p = Mivel p > 0.05, az illeszkedés hipotézisét nem vetjük el. Akkor sem, ha májusban legalább néggyel több gyerek született, mint bármely más hónapban! Ha p < 0.05, a megfigyelt gyakoriságok nem illeszkednek a várt gyakoriságokhoz, azaz legalább egy érték kilóg (pl. májusban 20 gyerek született).
6 χ 2 -próba két mintára Khi-négyzet-próba függetlenségvizsgálatra: függetlenek-e a gyakoriságok a nominális skála szintjeitől? Itt a megfigyelt gyakoriságokat nem a várt gyakorisággal, hanem a másik mintával hasonĺıtjuk össze. Gyakoribb-e a hangsúlytalanodás fókuszos mondatokban posztverbális helyzetben, mint mondatfókusz esetén? mondatfókusz szűk fókusz kontrasztív fókusz hangsúlytalan hangsúlyos H 0 : az eloszlások függetlenek a nominális változó szintjeitől, azaz egyformán gyakori a hangsúlytalanodás mindegyik osztályban.
7 Példa deacc = cbind(c(11,31),c(17,25),c(14,28)) chisq.test(deacc) p = 0.38: az eloszlás nominális változótól való függetlenségének hipotézisét nincs okunk elvetni. A gyakoriságok tehát függetlenek a fókusztípustól. A teszt szerint a fókuszos mondatokban nem szignifikánsan gyakoribb az irtóhangsúly, mint a mondatfókuszosokban (vagy fókusz nélküliekben).
8 Rangpróbák (nemparaméteres próbák) Alapgondolat: a próbastatisztikát nem a megfigyelt értékekből, hanem azok rangszámából számoljuk ki (ld. Spearman-féle ρ). Felhasználásuk: ordinális függő változó esetén, nem normális eloszlású metrikus függő változó esetén. Feltétel: minták összehasonĺıthatósága, azaz a sűrűségfüggvények azonos alakja, ezáltal a szórások azonossága.
9 Próbák típusai Próbák: Mann-Whitney-próba, U-próba: a független mintás t-próba megfelelője: két ordinális vagy nem normális eloszlású független minta. Wilcoxon-próba: a páros t-próba megfelelője: két ordinális vagy nem normális eloszlású páros minta. Kruskal-Wallis-próba, H-próba: a független mintás egytényezős varianciaanaĺızis megfelelője: kettőnél több ordinális vagy nem normális eloszlású független minta. R-függvények: Mann-Whitney és Wilcoxon-próba: wilcox.test(paired=f vagy paired=t). Kruskal-Wallis-próba: kruskal.test().
10 Példa: Mann-Whitney-próba 7.18 példa a Reiczigel et al. könyvből: Hatékony-e egy tesztelt vaskészítmény a vérszegénység ellen? Az adatok a kezelés (szer és placebó) utáni hemoglobinszintet mutatják. kezelt = c(9.1, 10.3, 11.0, 11.5, 11.9, 9.5, 10.6, 9.3, 11.0, 9.8) kontroll = c(8.1, 8.4, 9.2, 9.4, 8.8, 9.8, 8.2, 10.3, 9.5) wilcox.test(kezelt,kontroll) p = 0.011, azaz a nullhipotézist elvetjük, a kezelt csoport hemoglobinszintje szignifikánsan magasabb.
11 Példa: Wilcoxon-próba Mennyire elfogadható a hotelba, ill. hotelbe alak? Egy 1-től 5-ig terjedő skálán kell értékelni, 1: egyáltalán nem elfogadható, 5: teljesen elfogadható. Tíz megkérdezett: hatsom = c(5,5,5,5,4,5,5,5,4,5) elsom = c(1,3,5,4,2,3,2,4,5,2). Itt a tíz megkérdezett mindkét alakot értékelte, ezért a páros Wilcoxon-próbát alkalmazzuk: wilcox.test(hatsom,elsom,paired=t) p = 0.017, a nullhipotézist, a minták rangsorának azonosságát elvetjük, és az ítéleteket különbözőnek tekintjük.
12 Példa: Kruskal-Wallis-próba longvow.rdata a clara.nytud.hu/ mady oldalról, 7. óra mellől. Ellenőrizzük, hogy a tartamok a három magánhangzócsoportban normális eloszlást mutatnak-e.
13 Példa: Kruskal-Wallis-próba longvow.rdata a clara.nytud.hu/ mady oldalról, 7. óra mellől. Ellenőrizzük, hogy a tartamok a három magánhangzócsoportban normális eloszlást mutatnak-e. tapply(longvow$dur,longvow$vowel,shapiro.test) p /u:/-ra és /a:/-ra szignifikáns, tehát nem teljesül a normális eloszlás feltétele. Ezért: kruskal.test(longvow$dur longvow$vowel) Hibajelzés. Miért?
14 Példa: Kruskal-Wallis-próba longvow.rdata a clara.nytud.hu/ mady oldalról, 7. óra mellől. Ellenőrizzük, hogy a tartamok a három magánhangzócsoportban normális eloszlást mutatnak-e. tapply(longvow$dur,longvow$vowel,shapiro.test) p /u:/-ra és /a:/-ra szignifikáns, tehát nem teljesül a normális eloszlás feltétele. Ezért: kruskal.test(longvow$dur longvow$vowel) Hibajelzés. Miért? longvow$vowel nem faktor, ezért: kruskal.test(longvow$dur as.factor(longvow$vowel)) p értéke jóval 0, alatt van, különbség szignifikáns.
15 Ismételt méréses módszerek Humán tudományok örök problémája: egy személytől általában nem egy, hanem többféle adatot gyűjtünk. Ennek elemzésére az egyszerű varianciaanaĺızis NEM alkalmas, mert ott alapfeltétel a minták függetlensége (ld. független mintás t-próba). A varianciaanaĺızis függő mintás megfelelője az ismételt méréses varianciaanaĺızis, angolul repeated measures ANOVA. Fontos: az ismételt mérés nem arra vonatkozik, hogy egyazon beszélőtől többször vesszük fel ugyanazt az adatot (pl. mondatokat öt ismétléssel olvasnak fel), hanem hogy egyazon személlyel ismételt méréseket végzünk. Például orvostudományban: egy bizonyos gyógyszer hatása kezelés előtt, a kezelés megkezdése után két héttel, egy hónappal stb.
16 Eljárás Egy függő és egy vagy több független változó tesztelése, ahol az ismétlés belső tényezői (személyek, növények, akiken/amiken az ismételt méréseket végeztük) közötti különbséget véletlen hatásnak tekintjük (within subjects factor). Az alanyok lehetnek két különböző csoport tagjai, amiket összehasonĺıtunk (pl. különböző nyelvek beszélői, egy növényfaj különböző fajtái stb.), ez a köztes tényező (between subjects factor). Alapfeltételek: legalább öt alany (személy, növény, tárgy, bármi, amin több mérést végzünk), faktorkombinációnként egyetlen adat - azaz ha egyazon faktort többször mértünk (pl. felolvasáskor több ismétlés), ezeket átlagolni kell minden egyes alanyra és cellára, kiegyensúlyozott dizájn, azaz ha az egyik faktor két szintjéhez két további faktor tartozik, akkor a másik faktornál is vizsgálni kell ugyanezt a két szintet.
17 Hátulütők R-ben nincs több faktor kombinációjára átlagoló beépített függvény, mivel átlagokkal számolunk, az egyes cellákon belüli varianciát nem tudjuk figyelembe venni (erre a mixed models kínál kiutat), nem tudunk több within subject tényezőt kombinálni ( mixed models), csak a szfericitási feltétel teljesülése esetén alkalmazható ( ismételt méréses többváltozós varianciaanaĺızis, lásd jövő órán) nincs post-hoc tesztje, csak t-próbák Bonferroni-korrektúrával (konfidenciaszint/összes lehetséges kombináció száma). A mixed models ld. Baayen (2008): Analizing linguistic data c. könyvéből, pdf elérhető itt: baayen/publications.html, 2008-as publikációk.
18 Cellánkénti átlagok számítása anova.mean.r nevű R-függvény letöltése innen: clara.nytud.hu/ mady Szkript és függvény közötti különbség: függvényben létrehozott változók (R-objektumok) nem jelennek meg a munkamemóriában. Szkript és függvény egyaránt betölthető a source("eleresiutvonal") paranccsal, szkriptet közvetlenül be is lehet másolni egy szövegszerkesztőből az R-be (copy-paste). Ha a függvényben szintaktikai hiba van, betöltés helyett hibajelzést kapunk. Függvény első sora: fuggvenynev = function(kotelezoargumentum1, kotelezoargumentum2,...), ahol három pont további opcionális számú opcionális argumentumot jelöl.
19 Példa Mondatvégi kétszótagú, /s/-re és /z/-re végződő szavakban megmértük a frikatíván belüli zöngés tartomány hosszát. Zöngésebbek-e a mondatvégi /z/-k, mint az /s/-ek? zfin.rdata, letöltés innen: clara.nytud.hu/ mady zmean = anova.mean(zfin$cvoice,zfin$subj,zfin$voiced) Kapott adatmátrix oszlopainak elnevezése: names(zmean) = c("cvoice","subj","voiced")
20 Ismételt méréses varianciaanaĺızis függvénye Függő változó: mássalhangzó zöngésségének tartama (cvoice). Független változó: zöngésség (voiced). Within subject factor: beszélő (subj). Between subject factor: nincs. summary(aov(cvoice voiced + Error(subj/voiced), data=zmean)) Releváns p-érték: Error: subj:voiced sor alatt (ez jelzi az alanyok szerinti interakciót). Ábrázolás: interaction.plot(x-tengely, ismételt mérés alanya, paraméter) interaction.plot(zmean$voiced,zmean$subj,zmean$cvoice)
21 Több tényező Többtényezős varianciaanaĺızis képlete, ha nincs between subject factor, pl. ha megelőző mássalhangzóra is kíváncsiak vagyunk: summary(aov(cvoice voiced*c1 + Error(subj/(voiced*c1)), data=zmean)) Ehhez a cellánkénti átlagokat újra kell számolni: zmean = anova.mean(zfin$cvoice, zfin$subj, zfin$voiced, zfin$c1)
22 Eredmények Értelmezés: Error: subj:voiced zöngésségi tartamok beszélőnként, zöngésség függvényében (a p-érték változott, mert az átlagokat újraszámoltuk). Error: subj:c1 zöngésségi tartamok beszélőnként, a megelőző mássalhangzó függvényében. Error: subj:voiced:c1 zöngésségi tartamok beszélőnként, zöngésség és megelőző mássalhangzó interakciója, azaz befolyásolja-e a megelőző mássalhangzó a zöngésség hatását?
23 Több csoport Férfi és női beszélők magánhangzónak 1. és 2. formánsa alapján kiszámoltuk az egyes magánhangzók artikulációs középponttól való távolságát (euklideszi távolság). Erősebben redukálnak-e a férfiak, mint a nők, azaz közelebb vannak-e a magánhangzóik a középponthoz? Adatok: euk.rdata, letöltés: clara.nytud.hu/ mady. summary(aov(et V.num * nem + Error(beszelo/V.num), data=euk)) beszélők csoportjára nem kapunk p-értéket. Miért?
24 Több csoport Férfi és női beszélők magánhangzónak 1. és 2. formánsa alapján kiszámoltuk az egyes magánhangzók artikulációs középponttól való távolságát (euklideszi távolság). Erősebben redukálnak-e a férfiak, mint a nők, azaz közelebb vannak-e a magánhangzóik a középponthoz? Adatok: euk.rdata, letöltés: clara.nytud.hu/ mady. summary(aov(et V.num * nem + Error(beszelo/V.num), data=euk)) beszélők csoportjára nem kapunk p-értéket. Miért? Mivel a kódolás számokkal történik, R az adatokat egész számokként (azaz numerikus változóként) értelmezi. Független változó csak faktor lehet! Változót át kell kódolni faktorrá: euk$nem = as.factor(euk$nem) euk$v.num = as.factor(euk$v.num)
25 Gyakorlás Hogyan hat a tág, szűk és kontrasztív fókusz a fókuszban levő szó hangsúlyos szótagjának tartamára, és a megelőző topik hangsúlyos szótagjának tartamára? Letöltés: accdur.rdata Feladat: ismételt méréses varianciaanaĺızis számolása, egyéni trendek megjelenítése az interaction.plot() függvénnyel. Tételezzük fel, hogy a beszélők egy része szelektíven gyűjti a hulladékot, míg mások az összes szemetet egy helyen gyűjtik (eco változó). Van-e különbség a csoportok között?
Nemparametrikus tesztek. 2014. december 3.
Nemparametrikus tesztek 2014. december 3. Nemparametrikus módszerek Alkalmazásuk: nominális adatok (gyakoriságok) esetén, ordinális adatok esetén, metrikus adatok esetén (intervallum és arányskála), ha
Varianciaanaĺızis november 19.
Varianciaanaĺızis 2014. november 19. Varianciaanaĺızis (analysis of variance, ANOVA) Kérdések: (1) van-e különbség a csoportok között (t-próba általánosítása), (2) van-e hatása a vizsgált tényezőnek (regressziószámítás:
Ismételt méréses multifaktoriális varianciaanaĺızis (repeated measures MANOVA) 2012. szeptember 19.
Ismételt méréses multifaktoriális varianciaanaĺızis (repeated measures MANOVA) 2012. szeptember 19. Varianciaanaĺızis Adott egy parametrikus függő változó és egy vagy több kategoriális független változó.
2012. április 18. Varianciaanaĺızis
2012. április 18. Varianciaanaĺızis Varianciaanaĺızis (analysis of variance, ANOVA) Ismételt méréses ANOVA Kérdések: (1) van-e különbség a csoportok között (t-próba általánosítása), (2) van-e hatása a
Varianciaanalízis 4/24/12
1. Feladat Egy póker kártya keverő gép a kártyákat random módon választja ki. A vizsgálatban 1600 választott kártya színei az alábbi gyakorisággal fordultak elő. Vizsgáljuk meg, hogy a kártyák kiválasztása
Biostatisztika Összefoglalás
Biostatisztika Összefoglalás A biostatisztika vizsga A biostatisztika vizsga az Orvosi fizika és statisztika I. fizika vizsgájával egy napon történik. A vizsga keretében 30 perc alatt 0 kérdésre kell válaszolni
y ij = µ + α i + e ij STATISZTIKA Sir Ronald Aylmer Fisher Példa Elmélet A variancia-analízis alkalmazásának feltételei Lineáris modell
Példa STATISZTIKA Egy gazdálkodó k kukorica hibrid termesztése között választhat. Jelöljük a fajtákat A, B, C, D-vel. Döntsük el, hogy a hibridek termesztése esetén azonos terméseredményre számíthatunk-e.
Hipotézis STATISZTIKA. Kétmintás hipotézisek. Munkahipotézis (H a ) Tematika. Tudományos hipotézis. 1. Előadás. Hipotézisvizsgálatok
STATISZTIKA 1. Előadás Hipotézisvizsgálatok Tematika 1. Hipotézis vizsgálatok 2. t-próbák 3. Variancia-analízis 4. A variancia-analízis validálása, erőfüggvény 5. Korreláció számítás 6. Kétváltozós lineáris
y ij = µ + α i + e ij
Elmélet STATISZTIKA 3. Előadás Variancia-analízis Lineáris modellek A magyarázat a függő változó teljes heterogenitásának két részre bontását jelenti. A teljes heterogenitás egyik része az, amelynek okai
A nyelvészeti kísérletekben egy személytől szinte mindig többféle. Ismert módszer az ismételt méréses ANOVA, ahol a független
Kevert modellek Ismételt méréses varianciaanaĺızis A nyelvészeti kísérletekben egy személytől szinte mindig többféle információt szokás begyűjteni ismételt méréses módszerek. Ismert módszer az ismételt
Biomatematika 15. Szent István Egyetem Állatorvos-tudományi Kar. Fodor János
Szent István Egyetem Állatorvos-tudományi Kar Biomatematikai és Számítástechnikai Tanszék Biomatematika 15. Nemparaméteres próbák Fodor János Copyright c Fodor.Janos@aotk.szie.hu Last Revision Date: November
[Biomatematika 2] Orvosi biometria. Visegrády Balázs
[Biomatematika 2] Orvosi biometria Visegrády Balázs 2016. 03. 27. Probléma: Klinikai vizsgálatban három különböző antiaritmiás gyógyszert (ß-blokkoló) alkalmaznak, hogy kipróbálják hatásukat a szívműködés
Adatelemzés az R-ben. 2014. április 25.
Adatelemzés az R-ben 2014. április 25. Kísérleti adatok elemzése Kísérlet célja: valamilyen álĺıtás vagy megfigyelés empirikus és szisztematikus tesztelése. Pl. a nők többet beszélnek, mint a férfiak,
biometria II. foglalkozás előadó: Prof. Dr. Rajkó Róbert Matematikai-statisztikai adatfeldolgozás
Kísérlettervezés - biometria II. foglalkozás előadó: Prof. Dr. Rajkó Róbert Matematikai-statisztikai adatfeldolgozás A matematikai-statisztika feladata tapasztalati adatok feldolgozásával segítséget nyújtani
Hipotézis, sejtés STATISZTIKA. Kétmintás hipotézisek. Tudományos hipotézis. Munkahipotézis (H a ) Nullhipotézis (H 0 ) 11. Előadás
STATISZTIKA Hipotézis, sejtés 11. Előadás Hipotézisvizsgálatok, nem paraméteres próbák Tudományos hipotézis Nullhipotézis felállítása (H 0 ): Kétmintás hipotézisek Munkahipotézis (H a ) Nullhipotézis (H
Hipotézis vizsgálatok
Hipotézis vizsgálatok Hipotézisvizsgálat Hipotézis: az alapsokaság paramétereire vagy az alapsokaság eloszlására vonatkozó feltevés. Hipotézis ellenőrzés: az a statisztikai módszer, amelynek segítségével
Adatok statisztikai értékelésének főbb lehetőségei
Adatok statisztikai értékelésének főbb lehetőségei 1. a. Egy- vagy kétváltozós eset b. Többváltozós eset 2. a. Becslési problémák, hipotézis vizsgálat b. Mintázatelemzés 3. Szint: a. Egyedi b. Populáció
Két diszkrét változó függetlenségének vizsgálata, illeszkedésvizsgálat
Két diszkrét változó függetlenségének vizsgálata, illeszkedésvizsgálat Szűcs Mónika SZTE ÁOK-TTIK Orvosi Fizikai és Orvosi Informatikai Intézet Orvosi fizika és statisztika I. előadás 2016.11.09 Orvosi
Biostatisztika Összefoglalás
Biostatisztika Összefoglalás A biostatisztika vizsga A biostatisztika vizsga az Orvosi fizika és statisztika I. fizika vizsgájával egy napon történik. A vizsga keretében 30 perc alatt 0 kérdésre kell válaszolni
Biomatematika 13. Varianciaanaĺızis (ANOVA)
Szent István Egyetem Állatorvos-tudományi Kar Biomatematikai és Számítástechnikai Tanszék Biomatematika 13. Varianciaanaĺızis (ANOVA) Fodor János Copyright c Fodor.Janos@aotk.szie.hu Last Revision Date:
1. Adatok kiértékelése. 2. A feltételek megvizsgálása. 3. A hipotézis megfogalmazása
HIPOTÉZIS VIZSGÁLAT A hipotézis feltételezés egy vagy több populációról. (pl. egy gyógyszer az esetek 90%-ában hatásos; egy kezelés jelentősen megnöveli a rákos betegek túlélését). A hipotézis vizsgálat
Normális eloszlás tesztje
Valószínűség, pontbecslés, konfidenciaintervallum Normális eloszlás tesztje Kolmogorov-Szmirnov vagy Wilk-Shapiro próba. R-funkció: shapiro.test(vektor) balra ferde eloszlás jobbra ferde eloszlás balra
STATISZTIKA. A maradék független a kezelés és blokk hatástól. Maradékok leíró statisztikája. 4. A modell érvényességének ellenőrzése
4. A modell érvényességének ellenőrzése STATISZTIKA 4. Előadás Variancia-analízis Lineáris modellek 1. Függetlenség 2. Normális eloszlás 3. Azonos varianciák A maradék független a kezelés és blokk hatástól
Kettőnél több csoport vizsgálata. Makara B. Gábor
Kettőnél több csoport vizsgálata Makara B. Gábor Három gyógytápszer elemzéséből az alábbi energia tartalom adatok származtak (kilokalória/adag egységben) Három gyógytápszer elemzésébô A B C 30 5 00 10
Bevezetés a hipotézisvizsgálatokba
Bevezetés a hipotézisvizsgálatokba Nullhipotézis: pl. az átlag egy adott µ becslése : M ( x -µ ) = 0 Alternatív hipotézis: : M ( x -µ ) 0 Szignifikancia: - teljes bizonyosság csak teljes enumerációra -
K oz ep ert ek es variancia azonoss ag anak pr ob ai: t-pr oba, F -pr oba m arcius 21.
Középérték és variancia azonosságának próbái: t-próba, F -próba 2012. március 21. Hipotézis álĺıtása Feltételezés: a minta egy adott szempont alapján más populációhoz tartozik, mint b minta. Nullhipotézis
Statisztika I. 10. előadás. Előadó: Dr. Ertsey Imre
Statisztika I. 10. előadás Előadó: Dr. Ertsey Imre Varianciaanalízis A különböző tényezők okozta szórás illetőleg szórásnégyzet összetevőire bontásán alapszik Segítségével egyszerre több mintát hasonlíthatunk
IV. Változók és csoportok összehasonlítása
IV. Változók és csoportok összehasonlítása Tartalom Összetartozó és független minták Csoportosító változók Két összetartozó minta összehasonlítása Két független minta összehasonlítása Több független minta
Logisztikus regresszió
Logisztikus regresszió Bekövetkezés esélye Valószínűség (P): 0 és 1 közötti valós szám, az esemény bekövetkezésének esélyét fejezi ki. Fej dobásának esélye: 1:2 = 1 2 = 0,5. Odds/esélyérték (O): a tét
Statisztika I. 9. előadás. Előadó: Dr. Ertsey Imre
Statisztika I. 9. előadás Előadó: Dr. Ertsey Imre Statisztikai hipotézis vizsgálatok elsősorban a biometriában alkalmazzák, újabban reprezentatív jellegű ökonómiai vizsgálatoknál, üzemi szinten élelmiszeripari
Egyszempontos variancia analízis. Statisztika I., 5. alkalom
Statisztika I., 5. alkalom Számos t-próba versus variancia analízis Kreativitás vizsgálata -nık -férfiak ->kétmintás t-próba I. Fajú hiba=α Kreativitás vizsgálata -informatikusok -építészek -színészek
[Biomatematika 2] Orvosi biometria
[Biomatematika 2] Orvosi biometria 2016.02.29. A statisztika típusai Leíró jellegű statisztika: összegzi egy adathalmaz jellemzőit. A középértéket jelemzi (medián, módus, átlag) Az adatok változékonyságát
Kiválasztás. A változó szerint. Rangok. Nem-paraméteres eljárások. Rang: Egy valamilyen szabály szerint felállított sorban elfoglalt hely.
Kiválasztás A változó szerint Egymintás t-próba Mann-Whitney U-test paraméteres nem-paraméteres Varianciaanalízis De melyiket válasszam? Kétmintás t-próba Fontos, hogy mindig a kérdésnek és a változónak
A konfidencia intervallum képlete: x± t( α /2, df )
1. feladat. Egy erdőben az egy fészekben levő tojásszámokat vizsgáltuk egy madárfajnál. A következő tojásszámokat találtuk: 1, 1, 1,,,,,,, 3, 3, 3, 3, 3, 4, 4, 5, 6, 7. Mi a mintának a minimuma, maximuma,
Kettőnél több csoport vizsgálata. Makara B. Gábor MTA Kísérleti Orvostudományi Kutatóintézet
Kettőnél több csoport vizsgálata Makara B. Gábor MTA Kísérleti Orvostudományi Kutatóintézet Gyógytápszerek (kilokalória/adag) Három gyógytápszer A B C 30 5 00 10 05 08 40 45 03 50 35 190 Kérdések: 1. Van-e
STATISZTIKA. András hármas. Éva ötös. Nóri négyes. 5 4,5 4 3,5 3 2,5 2 1,5 ANNA BÉLA CILI 0,5 MAGY. MAT. TÖRT. KÉM.
STATISZTIKA 5 4,5 4 3,5 3 2,5 2 1,5 1 0,5 0 MAGY. MAT. TÖRT. KÉM. ANNA BÉLA CILI András hármas. Béla Az átlag 3,5! kettes. Éva ötös. Nóri négyes. 1 mérés: dolgokhoz valamely szabály alapján szám rendelése
Gyakorlat 8 1xANOVA. Dr. Nyéki Lajos 2016
Gyakorlat 8 1xANOVA Dr. Nyéki Lajos 2016 A probléma leírása Azt vizsgáljuk, hogy milyen hatása van a család jövedelmének a tanulók szövegértés teszten elért tanulmányi eredményeire. A minta 59 iskola adatait
STATISZTIKA. Egymintás u-próba. H 0 : Kefir zsírtartalma 3% Próbafüggvény, alfa=0,05. Egymintás u-próba vagy z-próba
Egymintás u-próba STATISZTIKA 2. Előadás Középérték-összehasonlító tesztek Tesztelhetjük, hogy a valószínűségi változónk értéke megegyezik-e egy konkrét értékkel. Megválaszthatjuk a konfidencia intervallum
Segítség az outputok értelmezéséhez
Tanulni: 10.1-10.3, 10.5, 11.10. Hf: A honlapra feltett falco_exp.zip-ben lévő exploratív elemzések áttanulmányozása, érdekességek, észrevételek kigyűjtése. Segítség az outputok értelmezéséhez Leiro: Leíró
Több valószínűségi változó együttes eloszlása, korreláció
Tartalomjegzék Előszó... 6 I. Valószínűségelméleti és matematikai statisztikai alapok... 8 1. A szükséges valószínűségelméleti és matematikai statisztikai alapismeretek összefoglalása... 8 1.1. Alapfogalmak...
V. Gyakorisági táblázatok elemzése
V. Gyakorisági táblázatok elemzése Tartalom Diszkrét változók és eloszlásuk Gyakorisági táblázatok Populációk összehasonlítása diszkrét változók segítségével Diszkrét változók kapcsolatvizsgálata Példák
Hipotéziselmélet - paraméteres próbák. eloszlások. Matematikai statisztika Gazdaságinformatikus MSc szeptember 10. 1/58
u- t- Matematikai statisztika Gazdaságinformatikus MSc 2. előadás 2018. szeptember 10. 1/58 u- t- 2/58 eloszlás eloszlás m várható értékkel, σ szórással N(m, σ) Sűrűségfüggvénye: f (x) = 1 e (x m)2 2σ
Mintavétel fogalmai STATISZTIKA, BIOMETRIA. Mintavételi hiba. Statisztikai adatgyűjtés. Nem véletlenen alapuló kiválasztás
STATISZTIKA, BIOMETRIA. Előadás Mintavétel, mintavételi technikák, adatbázis Mintavétel fogalmai A mintavételt meg kell tervezni A sokaság elemei: X, X X N, lehet véges és végtelen Mintaelemek: x, x x
Hipotézis vizsgálatok
Hipotézis vizsgálatok Hipotézisvizsgálat Hipotézis: az alapsokaság paramétereire vagy az alapsokaság eloszlására vonatkozó feltevés. Hipotézis ellenőrzés: az a statisztikai módszer, amelynek segítségével
Nemparaméteres próbák
Nemparaméteres próbák Budapesti Mőszaki és Gazdaságtudományi Egyetem Gépészmérnöki Kar Hidrodinamikai Rendszerek Tanszék 1111, Budapest, Mőegyetem rkp. 3. D ép. 334. Tel: 463-16-80 Fax: 463-30-91 http://www.vizgep.bme.hu
4/24/12. Regresszióanalízis. Legkisebb négyzetek elve. Regresszióanalízis
1. feladat Regresszióanalízis. Legkisebb négyzetek elve 2. feladat Az iskola egy évfolyamába tartozó diákok átlagéletkora 15,8 év, standard deviációja 0,6 év. A 625 fős évfolyamból hány diák fiatalabb
Az első számjegyek Benford törvénye
Az első számjegyek Benford törvénye Frank Benford (1883-1948) A General Electric fizikusa Simon Newcomb (1835 1909) asztronómus 1. oldal 2. oldal A híres arizonai csekk sikkasztási eset http://www.aicpa.org/pubs/jofa/may1999/nigrini.htm
Kabos: Statisztika II. t-próba 9.1. Ha ismert a doboz szórása de nem ismerjük a
Kabos: Statisztika II. t-próba 9.1 Egymintás z-próba Ha ismert a doboz szórása de nem ismerjük a doboz várhatóértékét, akkor a H 0 : a doboz várhatóértéke = egy rögzített érték hipotézisről úgy döntünk,
Virág Katalin. Szegedi Tudományegyetem, Bolyai Intézet
Függetleségvizsgálat Virág Katali Szegedi Tudomáyegyetem, Bolyai Itézet Függetleség Függetleség Két változó függetle, ha az egyik változó megfigyelése a másik változóra ézve em szolgáltat iformációt; azaz
Normális eloszlás paramétereire vonatkozó próbák
Normális eloszlás paramétereire vonatkozó próbák Az alábbi próbák akkor használhatók, ha a meggyelések függetlenek, és feltételezhetjük, hogy normális eloszlásúak a meggyelések függetlenek, véges szórású
Biometria, haladó biostatisztika EA+GY biometub17vm Szerda 8:00-9:00, 9:00-11:00 Déli Tömb 0-804, Lóczy Lajos terem
Biometria, haladó biostatisztika EA+GY biometub17vm Szerda 8:00-9:00, 9:00-11:00 Déli Tömb 0-804, Lóczy Lajos terem Előadások-gyakorlatok 2018-ban (13 alkalom) IX.12, 19, 26, X. 3, 10, 17, 24, XI. 7, 14,
Hipotézisvizsgálat R-ben
Hipotézisvizsgálat R-ben 1-mintás u-próba Az elmúlt évben egy, az Antarktiszon talált királypingvinkolónia esetén a pingvinek átlagos testtömege 15.4 kg volt. Idén ugyanebből a kolóniából megmérték 35
Centura Szövegértés Teszt
Centura Szövegértés Teszt Megbízhatósági vizsgálata Tesztfejlesztők: Megbízhatósági vizsgálatot végezte: Copyright tulajdonos: Bóka Ferenc, Németh Bernadett, Selmeci Gábor Bodor Andrea Centura Kft. Dátum:
Biostatisztika 2. Dr. Dinya Elek Dr. Solymosi Róbert: Biometria a klinikumban Dr. Dinya Elek: Biostatisztika c. művei alapján
Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs rendszerek Tanszék Biostatisztika 2. Dr. Dinya Elek Dr. Solymosi Róbert: Biometria a klinikumban Dr. Dinya Elek: Biostatisztika
BIOMETRIA (H 0 ) 5. Előad. zisvizsgálatok. Hipotézisvizsg. Nullhipotézis
Hipotézis BIOMETRIA 5. Előad adás Hipotézisvizsg zisvizsgálatok Tudományos hipotézis Nullhipotézis feláll llítása (H ): Kétmintás s hipotézisek Munkahipotézis (H a ) Nullhipotézis (H ) > = 1 Statisztikai
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 8 VIII. REGREssZIÓ 1. A REGREssZIÓs EGYENEs Két valószínűségi változó kapcsolatának leírására az eddigiek alapján vagy egy numerikus
Statisztika elméleti összefoglaló
1 Statisztika elméleti összefoglaló Tel.: 0/453-91-78 1. Tartalomjegyzék 1. Tartalomjegyzék.... Becsléselmélet... 3 3. Intervallumbecslések... 5 4. Hipotézisvizsgálat... 8 5. Regresszió-számítás... 11
Reiczigel Jenő, 2006 1
Reiczigel Jenő, 2006 1 Egytényezős (egyszempontos) varianciaelemzés k független minta (k kezelés vagy k csoport), a célváltozó minden csoportban normális eloszlású, a szórások azonosak, az átlagok vagy
Többváltozós lineáris regressziós modell feltételeinek
Többváltozós lineáris regressziós modell feltételeinek tesztelése I. - A hibatagra vonatkozó feltételek tesztelése - Petrovics Petra Doktorandusz Többváltozós lineáris regressziós modell x 1, x 2,, x p
Egymintás próbák. Alapkérdés: populáció <paramétere/tulajdonsága> megegyezik-e egy referencia paraméter értékkel/tulajdonsággal?
Egymintás próbák σ s μ m Alapkérdés: A populáció egy adott megegyezik-e egy referencia paraméter értékkel/tulajdonsággal? egymintás t-próba Wilcoxon-féle előjeles
Khi-négyzet eloszlás. Statisztika II., 3. alkalom
Khi-négyzet eloszlás Statisztika II., 3. alkalom A khi négyzet eloszlást (Pearson) leggyakrabban kategorikus adatok elemzésére használjuk. N darab standard normális eloszlású változó négyzetes összegeként
Nem-paraméteres és paraméteres módszerek. Kontingencia tábla, rangtranszformálás, párosított minták, két független minta
Nem-paraméteres és paraméteres módszerek Kontingencia tábla, rangtranszformálás, párosított minták, két független minta Az előadások célja bemutatni a hipotézis vizsgálat elveinek alkalmazását a gyakorlatban
Biomatematika 12. Szent István Egyetem Állatorvos-tudományi Kar. Fodor János
Szent István Egyetem Állatorvos-tudományi Kar Biomatematikai és Számítástechnikai Tanszék Biomatematika 12. Regresszió- és korrelációanaĺızis Fodor János Copyright c Fodor.Janos@aotk.szie.hu Last Revision
GVMST22GNC Statisztika II. Keleti Károly Gazdasági Kar Vállalkozásmenedzsment Intézet
GVMST22GNC Statisztika II. 3. előadás: 8. Hipotézisvizsgálat Kóczy Á. László Keleti Károly Gazdasági Kar Vállalkozásmenedzsment Intézet Hipotézisvizsgálat v becslés Becslés Ismeretlen paraméter Közeĺıtő
Populációbecslés és monitoring. Eloszlások és alapstatisztikák
Populációbecslés és monitoring Eloszlások és alapstatisztikák Eloszlások Az eloszlás megadja, hogy milyen valószínűséggel kapunk egy adott intervallumba tartozó értéket, ha egy olyan populációból veszünk
Bevezetés az SPSS program használatába
Bevezetés az SPSS program használatába Statisztikai szoftver alkalmazás Géczi-Papp Renáta SPSS alapok Statistical Package for Social Sciences SPSS nézetek: Data View Variable View Output Viewer Sintax
Statisztika - bevezetés Méréselmélet PE MIK MI_BSc VI_BSc 1
Statisztika - bevezetés 00.04.05. Méréselmélet PE MIK MI_BSc VI_BSc Bevezetés Véletlen jelenség fogalma jelenséget okok bizonyos rendszere hozza létre ha mindegyik figyelembe vehető egyértelmű leírás általában
Modern műszeres analitika szeminárium Néhány egyszerű statisztikai teszt
Modern műszeres analitika szeminárium Néhány egyszerű statisztikai teszt Galbács Gábor KIUGRÓ ADATOK KISZŰRÉSE STATISZTIKAI TESZTEKKEL Dixon Q-tesztje Gyakori feladat az analitikai kémiában, hogy kiugrónak
STATISZTIKA ELŐADÁS ÁTTEKINTÉSE. Matematikai statisztika. Mi a modell? Binomiális eloszlás sűrűségfüggvény. Binomiális eloszlás
ELŐADÁS ÁTTEKINTÉSE STATISZTIKA 9. Előadás Binomiális eloszlás Egyenletes eloszlás Háromszög eloszlás Normális eloszlás Standard normális eloszlás Normális eloszlás mint modell 2/62 Matematikai statisztika
Eloszlás-független módszerek (folytatás) 14. elıadás ( lecke) 27. lecke khí-négyzet eloszlású statisztikák esetszámtáblázatok
Eloszlás-független módszerek (folytatás) 14. elıadás (7-8. lecke) Illeszkedés-vizsgálat 7. lecke khí-négyzet eloszlású statisztikák esetszámtáblázatok elemzésére Illeszkedés-vizsgálat Gyakorisági sorok
Kísérlettervezés alapfogalmak
Kísérlettervezés alapfogalmak Rendszermodellezés Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs Rendszerek Tanszék Kísérlettervezés Cél: a modell paraméterezése a valóság alapján
VIZSGADOLGOZAT. I. PÉLDÁK (60 pont)
VIZSGADOLGOZAT (100 pont) A megoldások csak szöveges válaszokkal teljes értékűek! I. PÉLDÁK (60 pont) 1. példa (13 pont) Az egyik budapesti könyvtárban az olvasókból vett 400 elemű minta alapján a következőket
Többváltozós lineáris regressziós modell feltételeinek tesztelése I.
Többváltozós lineáris regressziós modell feltételeinek tesztelése I. - A hibatagra vonatkozó feltételek tesztelése - Kvantitatív statisztikai módszerek Petrovics Petra Többváltozós lineáris regressziós
Hipotézisvizsgálat az Excel adatelemző eljárásaival. Dr. Nyéki Lajos 2018
Hipotézisvizsgálat az Excel adatelemző eljárásaival Dr. Nyéki Lajos 2018 Egymintás t-próba Az egymintás T-próba azt vizsgálja, hogy különbözik-e a változó M átlaga egy megadott m konstanstól. Az a feltételezés,
[Biomatematika 2] Orvosi biometria. Visegrády Balázs
[Biomatematika 2] Orvosi biometria Visegrády Balázs 2017. 03. 20. Khí-négyzet (χ 2 ) Próba Ha mérés során kapott adatokról eleve tudjuk, hogy nem követik a normális vagy más ismert eloszlást, akkor a korábban
1 Hipot ezisek, sk alat ıpusok Objektumok az R-ben
1 Hipotézisek, skálatípusok Objektumok az R-ben Félév beosztása 1. Hipotézisek, skálatípusok. 2. Eloszlások, szórás. 3. Korreláció (Kendall s tau, Spearman s rho, Pearson s r). 4. Normális eloszlás, standard
A bergengóc lakosság szemszín szerinti megoszlása a négy tartományban azonos:
A. Matematikai Statisztika 2.MINTA ZH. 2003 december Név (olvasható) :... A feladatmegoldásnak az alkalmazott matematikai modell valószínűségszámítási ill. statisztikai szóhasználat szerinti megfogalmazását,
Kutatásmódszertan és prezentációkészítés
Kutatásmódszertan és prezentációkészítés 8. rész: Statisztikai eszköztár: Alapfokú statisztikai ismeretek Szerző: Kmetty Zoltán Lektor: Fokasz Nikosz Nyolcadik rész Statisztikai eszköztár: Alapfokú statisztikai
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 4 IV. MINTA, ALAPsTATIsZTIKÁK 1. MATEMATIKAI statisztika A matematikai statisztika alapfeladatát nagy általánosságban a következőképpen
Biometria az orvosi gyakorlatban. Korrelációszámítás, regresszió
SZDT-08 p. 1/31 Biometria az orvosi gyakorlatban Korrelációszámítás, regresszió Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu Korrelációszámítás
Elemi statisztika. >> =weiszd= << december 20. Szerintem nincs sok szükségünk erre... [visszajelzés esetén azt is belerakom] x x = n
Elemi statisztika >> =weiszd=
A statisztika alapjai - Bevezetés az SPSS-be -
A statisztika alapjai - Bevezetés az SPSS-be - Kvantitatív statisztikai módszerek Petrovics Petra, Géczi-Papp Renáta SPSS alapok Statistical Package for Social Sciences SPSS nézetek: Data View Variable
SPSS ÉS STATISZTIKAI ALAPOK II.
SPSS ÉS STATISZTIKAI ALAPOK II. Bevezetés A második negyedéves anyag alapvetően olyan statisztikai elemzéseket tartalmaz, amelyek átlagok összehasonlítására alkalmasak. Tipikus kérdések: 1) Intelligensebbek-e
A biostatisztika alapfogalmai, hipotézisvizsgálatok. Dr. Boda Krisztina PhD SZTE ÁOK Orvosi Informatikai Intézet
A biostatisztika alapfogalmai, hipotézisvizsgálatok Dr. Boda Krisztina PhD SZTE ÁOK Orvosi Informatikai Intézet Hipotézis Állítás a populációról (vagy annak paraméteréről) Példák H1: p=0.5 (a pénzérme
kritikus érték(ek) (critical value).
Hipotézisvizsgálatok (hypothesis testing) A statisztikának egyik célja lehet a populáció tulajdonságainak, ismeretlen paramétereinek a becslése. A másik tipikus cél: valamely elmélet, hipotézis empirikus
Matematikai statisztika c. tárgy oktatásának célja és tematikája
Matematikai statisztika c. tárgy oktatásának célja és tematikája 2015 Tematika Matematikai statisztika 1. Időkeret: 12 héten keresztül heti 3x50 perc (előadás és szeminárium) 2. Szükséges előismeretek:
Biostatisztika VIII. Mátyus László. 19 October
Biostatisztika VIII Mátyus László 19 October 2010 1 Ha σ nem ismert A gyakorlatban ritkán ismerjük σ-t. Ha kiszámítjuk s-t a minta alapján, akkor becsülhetjük σ-t. Ez további bizonytalanságot okoz a becslésben.
Eloszlás-független módszerek 13. elıadás ( lecke)
Eloszlás-független módszerek 13. elıadás (25-26. lecke) Rangszámokon alapuló korrelációs együttható A t-próbák és a VA eloszlásmentes megfelelıi 25. lecke A Spearman-féle rangkorrelációs együttható A Kendall-féle
Statisztika Elıadások letölthetık a címrıl
Statisztika Elıadások letölthetık a http://www.cs.elte.hu/~arato/stat*.pdf címrıl Konfidencia intervallum Def.: 1-α megbízhatóságú konfidencia intervallum: Olyan intervallum, mely legalább 1-α valószínőséggel
TARTALOMJEGYZÉK. 1. téma Átlagbecslés (Barna Katalin) téma Hipotézisvizsgálatok (Nagy Mónika Zita)... 23
TARTALOMJEGYZÉK 1. téma Átlagbecslés (Barna Katalin).... 7 2. téma Hipotézisvizsgálatok (Nagy Mónika Zita)... 23 3. téma Összefüggések vizsgálata, korrelációanalízis (Dr. Molnár Tamás)... 73 4. téma Összefüggések
Biometria gyakorló feladatok BsC hallgatók számára
Biometria gyakorló feladatok BsC hallgatók számára 1. Egy üzem alkalmazottainak megoszlása az elért teljesítmény %-a szerint a következı: Norma teljesítmény % Dolgozók száma 60-80 30 81-90 70 91-100 90
Feladatok: pontdiagram és dobozdiagram. Hogyan csináltuk?
Feladatok: pontdiagram és dobozdiagram Hogyan csináltuk? Alakmutatók: ferdeség, csúcsosság Alakmutatók a ferdeség és csúcsosság mérésére Ez eloszlás centrumát (középérték) és az adatok centrum körüli terpeszkedését
Bevezetés a biometriába Dr. Dinya Elek egyetemi tanár. PhD kurzus
Bevezetés a biometriába Dr. Dinya Elek egyetemi tanár PhD kurzus Mi a statisztika? A sokaság (a sok valami) feletti áttekintés megszerzése, a sokaságról való információszerzés eszköze. Célja: - a sokaságot
Statisztikai következtetések Nemlineáris regresszió Feladatok Vége
[GVMGS11MNC] Gazdaságstatisztika 10. előadás: 9. Regressziószámítás II. Kóczy Á. László koczy.laszlo@kgk.uni-obuda.hu Keleti Károly Gazdasági Kar Vállalkozásmenedzsment Intézet A standard lineáris modell
ALÁÍRÁS NÉLKÜL A TESZT ÉRVÉNYTELEN!
A1 A2 A3 (8) A4 (12) A (40) B1 B2 B3 (15) B4 (11) B5 (14) Bónusz (100+10) Jegy NÉV (nyomtatott nagybetűvel) CSOPORT: ALÁÍRÁS: ALÁÍRÁS NÉLKÜL A TESZT ÉRVÉNYTELEN! 2011. december 29. Általános tudnivalók:
Dr. Nagy Zita Barbara igazgatóhelyettes KÖVET Egyesület a Fenntartható Gazdaságért november 15.
Dr. Nagy Zita Barbara igazgatóhelyettes KÖVET Egyesület a Fenntartható Gazdaságért 2018. november 15. PÉNZ a boldogság bitorlója? A jövedelemegyenlőtlenség természetes határa A boldog ember gondolata a
Leíró és matematikai statisztika el adásnapló Matematika alapszak, matematikai elemz szakirány 2016/2017. tavaszi félév
Leíró és matematikai statisztika el adásnapló Matematika alapszak, matematikai elemz szakirány 2016/2017. tavaszi félév A pirossal írt anyagrészeket nem fogom közvetlenül számon kérni a vizsgán, azok háttérismeretként,
Statisztikai módszerek alkalmazása az orvostudományban. Szentesi Péter
Statisztikai módszerek alkalmazása az orvostudományban Szentesi Péter Az orvosi munkahipotézis ellenőrzése statisztikai módszerekkel munkahipotézis mérlegelés differenciáldiagnosztika mi lehet ez a más
Leíró statisztika. Adatok beolvasása az R-be és ezek mentése
Leíró statisztika. Adatok beolvasása az R-be és ezek mentése Leíró statisztika Definíciója: populáció egy ismert részhalmazára vonatkozó megfigyelések leírása és összegzése. Jelentősége: nominális adatok
4. okt. 3.: statisztika: binomiális regresszió, saját kísérletek
Félév beosztása 1. szept. 12.: Általános infók, kísérletezés módszertana 2. szept. 19.: statisztika: repeated measures MANOVA, néhány kísérlet bemutatása irodalom alapján 3. szept. 26.: statisztika: mixed