Diszkrét Eseményű Rendszerek Diagnosztikája és Irányítása
|
|
- Gizella Somogyiné
- 8 évvel ezelőtt
- Látták:
Átírás
1 Diszkrét és hibrid diagnosztikai és irányítórendszerek Diszkrét Eseményű Rendszerek Diagnosztikája és Irányítása Hangos Katalin Közlekedésautomatika Tanszék Rendszer- és Irányításelméleti Kutató Laboratórium MTA Számítástechnikai és Automatizálási Kutató Intézete DesHyb-05 p. 1/32
2 Modellezés diagnosztikai és irányítási célra DesHyb-05 p. 2/32
3 Automaták szinkron kompozíciója Adott: két automata (állapot-leírása) A 1 = (Q 1,Σ 1,δ 1 ;q I1 ), A 2 = (Q 2,Σ 2,δ 2 ;q I2 ) Az A = A 1 A 2 automata A = (Q,Σ,δ;q I ) formális leírása: Q = Q 1 Q 2 Σ = Σ 1 Σ 2 q I = [q I1,q I2 ] állapot-átmeneti függvény δ(σ,[q 1,q 2 ]) = [δ 1 (σ,q 1 ),δ 2 (σ,q 2 )] if σ e 1 (q 1 ) e 2 (q 2 ) [δ 1 (σ,q 1 ),q 2 ] if σ e 1 (q 1 ) \ Σ 2 [q 1,δ 2 (σ,q 2 )] if σ e 2 (q 2 ) \ Σ 1 undefined otherwise DesHyb-05 p. 3/32
4 Automata modellek kimenettel Moore automata: a ϕ : Q Σ O kimeneti függvénnyel megadva A Moore = (Q,Σ,δ;q I ;Σ O,ϕ) Mealy automata: a Σ ABC módosításával megadva, Σ Mealy = Σ {Σ O ε}, ahol ε az üres esemény Konverzió A Mealy = (Q,Σ Mealy,δ;q I ) 01 a 02 1 b b 2 a 1 a / 02 b / 01 2 c b / 02 a / 03 3 c / DesHyb-05 p. 4/32
5 Példa: Egyszerű szelep Moore automata leírás NO_FLOW Valve_closed emergency shut_off open one_turn close one_turn PARTIAL_FLOW Valve_partially open close one_turn Valve_open open one_turn MAXIMUM_FLOW DesHyb-05 p. 5/32
6 Petri hálók kimenettel Rendszerelméleti leírás: állapot: jelölés (egy adott időpillanatban) bemenet: nulla be-fokú hely (forrás hely) nulla be-fokú átmenet (forrás átmenet) kimenet: (megfigyelhető) események, azaz tüzelő átmenetek Egy Petri háló működési sorozat nyoma: egy átmenetekből (mint szimbólumokból) álló string. DesHyb-05 p. 6/32
7 Nem-determinisztikus automaták Formális leírás: A nd = (Q,Σ ε,δ nd ;Q I,Q F ) üres esemény nem egyértelmű hatású esemény δ nd (q i,σ j ) Q Átmeneti (függvény) reláció string inputra: s string, σ szimbólum δ nd (q,sσ) = {q : q = δ nd (y,σ), y δ nd (q,s) Q} Értéke állapotok halmaza Argumentuma is lehet állapotok halmaza DesHyb-05 p. 7/32
8 Egyszerű példa Nem determinisztikus automata a a 0 1 b Állapot átmeneti függvény δ nd (0,a) = {0,1} δ nd (0,ab) = {0} δ nd (0,aa) = {0,1} δ nd (0,aab) = {0} DesHyb-05 p. 8/32
9 Egyszerű szelep hibaállapotokkal Moore automata leírás 01 b 1h 2ah a a ε 1 a a ε 2 b ε 2fh 01 b b a b a c 3 ε 3h b DesHyb-05 p. 9/32
10 Állapotbecslés DesHyb-05 p. 10/32
11 LTI rendszerek megfigyelhetősége Problémafelvetés Adott: állapottér modell (A, B, C) (vagy (Φ, Γ, C)) paraméterekkel u és y jelek véges időintervallumon mért értékei Kiszámítandó: az állapotváltozó vektor (x) értékei a véges időintervallumon Elegendő kiszámítani: x(t 0 ) = x 0 DesHyb-05 p. 11/32
12 Állapot megfigyelő automata Adott: (nem-determinisztikus) automata kezdőállapot megfigyelt eseménysorozatok (stringek), természetes projekció P(ε) := ; P(σ) := σ ha σ ε P(sσ) := P(s)P(σ) ha σ Σ, s Σ Meghatározandó: egy olyan automata, A obs, amely minden lehetséges s = P(s) megfigyelésre meghatározza az azzal összeegyeztethető állapotokat. Algoritmus: 1. q obs 0 = {q 0 } 2. q obs i = δ nd ( q obs i 1,εε...s i ε...ε) Q DesHyb-05 p. 12/32
13 Hibás szelep állapot megfigyelő automata Az automata állapot átmeneti gráfjának része 13/32 p. DesHyb-05
14 Jelölés megfigyelés Petri hálókra Feladatkitűzés Adott: egy PN = (P,T,I,O) Petri háló szerkezete, n = P makro-jelölés, azaz V(V,b) = {µ N n V T µ = b} a V hely-súlyokkal megfigyelt tüzelési sorozat (string): w = t i1 t i2...t ik Meghatározandó: egy olyan µ jelölés, amelyet a valódi µ(k) jelölés lefed (µ l (k) µ l(k), l = 1,...,n) és összeegyeztethető a megfigyelt stringgel. Algoritmus: 1. µ (0) = 0, j = 1, B 0 = b 2. t ij tüzel 3. javítjuk a becslést: µ p(j) = max{µ p(j 1),I(p,t ij )}, majd µ (j) = µ (j) + µ O(tij ) µ I(tij ) 4. javítjuk a korlátot: B j = B j 1 V T (µ (j) µ (j 1)) DesHyb-05 p. 14/32
15 Jelölés megfigyelés Petri hálókra 2 Egyszerű példa: makro-jelölés V T = [1 1 1] és b = 3 (3 jelölő pontunk van) 0. lépés: µ (1) = [0 0 0], B 0 = 3 1. lépés: w 1 = t 1, µ (1) = [0 0 1] T, µ (1) = [1 0 0], B 1 = 2 DesHyb-05 p. 15/32
16 Jelölés megfigyelés Petri hálókra 3 Megfigyelő lefedhetőségi gráf (OCG) korlátos Petri hálókra Csúcsok: (µ /u) pároknak feleltethetők meg, ahol µ jelölés (a kezdeti valódi µ(0) jelölés nem ismert) u a becslési hiba (kezdetben u(0) = µ (0)) Élek: az engedélyezett átmenetek tüzelésének feleltethetők meg, élsúly az átmenet azonosítója Az OCG az állapot megfigyelő automata állapot átmeneti gráfjának felel meg egy adott (kísérleti) µ (0) kezdeti becslés mellett. DesHyb-05 p. 16/32
17 ! "! "! " DesHyb-05 p. 17/32! # # "!! Jelölés megfigyelés Petri hálókra 4 Egyszerű példa OCG gráfja!!" " # "!" "!"
18 Diagnosztika DesHyb-05 p. 18/32
19 Diagnosztika állapot megfigyeléssel 1 Automata modellel: az állapot megfigyelő automata módosításával Adott: (nem-determinisztikus) automata (=rendszer modell) Mealy leírása kezdőállapot nem-megfigyelhető események halmaza (Σ uo Σ, ε Σ uo ) megfigyelt eseménysorozatok (stringek): Σ \ Σ uo -beli karakterekkel diagnosztizálandó nem-megfigyelhető esemény e d Meghatározandó: egy olyan automata, A diag, amely minden lehetséges megfigyelésre meghatározza, hogy biztosan megtörtént-e, illetve megtörténhetett-e e d. DesHyb-05 p. 19/32
20 Diagnosztika állapot megfigyeléssel 2 Módosított természetes projekció P(e) := ha e Σ uo ; P(e) := e ha e (Σ \ Σ uo ) P(se) := P(s)P(e) ha e Σ, s Σ Példa: szelep automata c nem megfigyelhető diagnosztizálandó eseménnyel Σ uo = {ε,c} a 1 b 2 b a c 3 egy megfigyelés: y = P(aacaacaa) = aaaaaa DesHyb-05 p. 20/32
21 Diagnosztika állapot megfigyeléssel 3 A A diag diagnosztizáló automata: az állapot megfigyelő automata olyan módosítása, ahol címkékkel látjuk el az állapotokat (e d nem megfigyelhető diagnosztizálandó esemény) "N" címkét kapnak azok az állapotok, amelyeket a Q I kezdőállapotból a (Σ uo \ e d )-beli nem-megfigyelhető karaktereket is tartalmazó stringekkel lehet elérni "Y" címkét kapnak azok, amelyekhez vezető stringekben az e d legalább egyszer szerepel ha egy állapot mind "N" mind "Y" féleképpen elérhető, akkor mindkét címkéjű változatot szerepeltetjük. A diag -nak (sokkal) több állapota lehet, mint A obs -nek DesHyb-05 p. 21/32
22 Diagnosztika állapot megfigyeléssel 4 Diagnosztikai eredmény a k-adik lépésben: ha a A diag kurrens állapotabeli valamennyi állapot "N" címkéjű, akkor e d biztos nem következett be (eddig) "Y" címkéjű, akkor e d legalább egyszer bekövetkezett valamikor a múltban DesHyb-05 p. 22/32
23 ./, , DesHyb-05 p. 23/32 ( & $ 2 & % 0 1 ( $ 2 & % 2 1 ( $ 2 a b 3 ) ) * + ) * ) ) ) * + 1 a b c & ' $ & 0 ' $ 2 & ' $ Egyszerű szelep példa ) & % $ * ) & 0 % $ * ) 2 & % $ * Σuo = {ε,c}, ed = c
24 Diagnosztika következtetéssel 1 Rendszermodell: 1. lokális ok-okozati összefüggések leírása szabályokkal 2. Petri háló reprezentáció helyek: predikátumok átmenetek: szabályok, előfeltétel és következmény rész leírása az előfeltételi és következmény függvénnyel DesHyb-05 p. 24/32
25 Diagnosztika következtetéssel 2 Egyszerű példa: autó indítási probléma (nem indul) Szabályok: Gyújtáskapcsoló rossz Nincs gyújtás (t 3 ) Biztosíték kiégett Nem ég a lámpa (t 1 ) Akku üres Nem ég a lámpa (t 2 ) Akku üres Nincs gyújtás (t 2 ) Benzin hiány Nem indul a motor (t 4 ) Nincs gyújtás Nem indul a motor (t 5 ) Helyek: gyökér okok: Gyújtáskapcsoló rossz, Biztosíték kiégett, Akku üres, Benzin hiány. szimptómák: Nincs gyújtás, Nem ég a lámpa, Nem indul a motor. DesHyb-05 p. 25/32
26 Diagnosztika következtetéssel 3 DesHyb-05 p. 26/32 Egyszerű példa: autó indítási probléma Petri háló reprezentáció >?@A I T N NP OD U G S?T 9 < 9 = O NPNJA KD LMJN H IDJ F EG HID SB 9 ; QK GGP?J 9 : I KB?R? K BI? I NJ >B A OD TLD S?T?RD 7 8
27 Felügyelő irányítás DesHyb-05 p. 27/32
28 Irányítás: az általános probléma Adott rendszermodell irányítási cél Kiszámítandó bemeneti jelsorozat, amellyel teljesül az irányítási cél Néhány irányítási cél: stabilizálás zavarelhárítás optimális irányítás DesHyb-05 p. 28/32
29 Automata irányítási probléma Rendszer leírás: automata modellel Irányítási cél: irányítás nélküli (open-loop) viselkedés: L(A) megadásával kívánt (closed-loop) viselkedés: L a specifikáció megadásával, ahol L r L a L(A) Felügyelő szabályozó: S rendszer kimenetek: megfigyelhető események rendszer bemenetek: Σ ABC feletti stringek (esemény sorozatok) beavatkozások: irányítható események szabályozó működése dinamikus: S minden lépésben kijelöli, hogy a lehetséges események közül melyik engedélyezett (csak tiltani tud a lehetőségek közül) DesHyb-05 p. 29/32
30 Irányítás Petri háló modellel 1 Irányítási cél: specifikáció előírt feltételek a megengedett/megkívánt jelölésekre (pl. elérhetőségi feladat optimális irányítás) nem kívánt jelölések tiltása Szabályozó: kiegészítés a szabályozás nélküli Petri hálóhoz (állapot visszacsatolásos szabályozó) rendszer állapotok: jelölések beavatkozások: "irányítható" átmenetek tüzelési feltételeinek módosítása belső (slack) változók, dinamikus visszacsatolás DesHyb-05 p. 30/32
31 Irányítás Petri háló modellel 2 Specifikáció: a p 2 és p 3 helyeken ne legyen több két jelzőpontnál (µ(p 2 ) + µ(p 3 ) 2) X ] X Z X Y X Z X Y V Y V Z V W V Y V Z V W X \ V [ V \ X [ X \ V [ V \ X [ DesHyb-05 p. 31/32
32 Köszönöm a figyelmet! DesHyb-05 p. 32/32
folyamatrendszerek modellezése
Diszkrét eseményű folyamatrendszerek modellezése Hangos Katalin Számítástudomány Alkalmazása Tanszék Veszprémi Egyetem Haladó Folyamatmodellezés és modell analízis PhD kurzus p. 1/36 Tartalom Diszkrét
Diagnosztika Petri háló modellek felhasználásával
Diagnosztika - Ea9. p. 1/2 Modell Alapú Diagnosztika Diszkrét Módszerekkel Diagnosztika Petri háló modellek felhasználásával Hangos Katalin PE Villamosmérnöki és Információs Rendszerek Tanszék Diagnosztika
Dinamikus modellek szerkezete, SDG modellek
Diagnosztika - 3. p. 1/2 Modell Alapú Diagnosztika Diszkrét Módszerekkel Dinamikus modellek szerkezete, SDG modellek Hangos Katalin PE Villamosmérnöki és Információs Rendszerek Tanszék Diagnosztika - 3.
Elérhetőségi analízis Petri hálók dinamikus tulajdonságai
Elérhetőségi analízis Petri hálók dinamikus tulajdonságai dr. Bartha Tamás Dr. Pataricza András BME Méréstechnika és Információs Rendszerek Tanszék Petri hálók vizsgálata Az elemzés mélysége szerint: Vizsgálati
Bevezetés az informatikába
Bevezetés az informatikába 6. előadás Dr. Istenes Zoltán Eötvös Loránd Tudományegyetem Informatikai Kar Programozáselmélet és Szoftvertechnológiai Tanszék Matematikus BSc - I. félév / 2008 / Budapest Dr.
Irányításelmélet és technika II.
Irányításelmélet és technika II. Legkisebb négyzetek módszere Magyar Attila Pannon Egyetem Műszaki Informatikai Kar Villamosmérnöki és Információs Rendszerek Tanszék amagyar@almos.vein.hu 200 november
Irányítástechnika GÁSPÁR PÉTER. Prof. BOKOR JÓZSEF útmutatásai alapján
Irányítástechnika GÁSPÁR PÉTER Prof. BOKOR JÓZSEF útmutatásai alapján Irányítástechnika rendszerek Irányítástechnika Budapest, 2008 2 Az előadás felépítése 1. 2. 3. 4. Irányítástechnika Budapest, 2008
Számítógépvezérelt irányítás és szabályozás elmélete (Bevezetés a rendszer- és irányításelméletbe, Computer Controlled Systems) 9.
Számítógépvezérelt irányítás és szabályozás elmélete (Bevezetés a rendszer- és irányításelméletbe, Computer Controlled Systems) 9. előadás Szederkényi Gábor Pázmány Péter Katolikus Egyetem Információs
A Formális nyelvek vizsga teljesítése. a) Normál A vizsgán 60 pont szerezhet, amely két 30 pontos részb l áll össze az alábbi módon:
A Formális nyelvek vizsga teljesítése a) Normál A vizsgán 60 pont szerezhet, amely két 30 pontos részb l áll össze az alábbi módon: 1. Öt rövid kérdés megválaszolása egyenként 6 pontért, melyet minimum
Diszkrét állapotú rendszerek modellezése. Petri-hálók
Diszkrét állapotú rendszerek modellezése Petri-hálók Diszkrét eseményű rendszerek Discret Event (Dynamic) Systems DES, DEDS állapotterük diszkrét halmaz állapotváltozásuk kizárólag az időben aszinkron
Diszkrét állapotú rendszerek modellezése. Petri-hálók
Diszkrét állapotú rendszerek modellezése Petri-hálók Diszkrét eseményű rendszerek Discret Event (Dynamic) Systems DES, DEDS állapotterük diszkrét halmaz állapotváltozásuk kizárólag az időben aszinkron
Kiterjesztések sek szemantikája
Kiterjesztések sek szemantikája Példa D Integer = {..., -1,0,1,... }; D Boolean = { true, false } D T1... T n T = D T 1... D Tn D T Az összes függvf ggvény halmaza, amelyek a D T1,..., D Tn halmazokból
Véges automaták, reguláris nyelvek
Véges automaták, reguláris nyelvek Kiegészítő anyag az lgoritmuselmélet tárgyhoz (a Rónyai Ivanyos Szabó: lgoritmusok könyv mellé) Friedl Katalin BME SZIT friedl@cs.bme.hu 27. augusztus 3. véges automata
Számítógépvezérelt irányítás és szabályozás elmélete (Bevezetés a rendszer- és irányításelméletbe, Computer Controlled Systems) 8.
Számítógépvezérelt irányítás és szabályozás elmélete (Bevezetés a rendszer- és irányításelméletbe, Computer Controlled Systems) 8. előadás Szederkényi Gábor Pázmány Péter Katolikus Egyetem Információs
Tartalom. Állapottér reprezentációk tulajdonságai stabilitás irányíthatóság megfigyelhetőség minimalitás
Tartalom Állapottér reprezentációk tulajdonságai stabilitás irányíthatóság megfigyelhetőség minimalitás 2018 1 Állapottér reprezentációk tulajdonságai Általánosan egy lineáris, SISO dinamikus rendszer
Alapszintű formalizmusok
Alapszintű formalizmusok dr. Majzik István BME Méréstechnika és Információs Rendszerek Tanszék 1 Mit szeretnénk elérni? Informális tervek Informális követelmények Formális modell Formalizált követelmények
LTI Rendszerek Dinamikus Analízise és Szabályozásának Alapjai
Diszkrét és hibrid diagnosztikai és irányítórendszerek LTI Rendszerek Dinamikus Analízise és Szabályozásának Alapjai Hangos Katalin Közlekedésautomatika Tanszék Rendszer- és Irányításelméleti Kutató Laboratórium
Sztochasztikus temporális logikák
Sztochasztikus temporális logikák Teljesítmény és szolgáltatásbiztonság jellemzők formalizálása és ellenőrzése Majzik István Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs
A digitális számítás elmélete
A digitális számítás elmélete 8. előadás ápr. 16. Turing gépek és nyelvtanok A nyelvosztályok áttekintése Turing gépek és a természetes számokon értelmezett függvények Áttekintés Dominó Bizonyítások: L
Formális módszerek GM_IN003_1 Program verifikálás, formalizmusok
Formális módszerek GM_IN003_1 Program verifikálás, formalizmusok Program verifikálás Konkurens programozási megoldások terjedése -> verifikálás szükséges, (nehéz) logika Legszélesebb körben alkalmazott
Deníciók és tételek a beugró vizsgára
Deníciók és tételek a beugró vizsgára (a szóbeli viszgázás jogáért) Utolsó módosítás: 2008. december 2. 2 Bevezetés Számítási problémának nevezünk egy olyan, a matematika nyelvén megfogalmazott kérdést,
Elérhetőségi probléma egyszerűsítése: Állapottér és struktúra redukció Petri-háló alosztályok
Elérhetőségi probléma egyszerűsítése: Állapottér és struktúra redukció Petri-háló alosztályok dr. Bartha Tamás Dr. Pataricza András BME Méréstechnika és Információs Rendszerek Tanszék Elérhetőségi probléma
Számítógépvezérelt irányítás és szabályozás elmélete (Bevezetés a rendszer- és irányításelméletbe, Computer Controlled Systems) 7.
Számítógépvezérelt irányítás és szabályozás elmélete (Bevezetés a rendszer- és irányításelméletbe, Computer Controlled Systems) 7. előadás Szederkényi Gábor Pázmány Péter Katolikus Egyetem Információs
Jelek és rendszerek 1. 10/9/2011 Dr. Buchman Attila Informatikai Rendszerek és Hálózatok Tanszék
Jelek és rendszerek 1 10/9/2011 Dr. Buchman Attila Informatikai Rendszerek és Hálózatok Tanszék 1 Ajánlott irodalom: FODOR GYÖRGY : JELEK ÉS RENDSZEREK EGYETEMI TANKÖNYV Műegyetemi Kiadó, Budapest, 2006
ZH feladatok megoldásai
ZH feladatok megoldásai A CSOPORT 5. Írja le, hogy milyen szabályokat tartalmazhatnak az egyes Chomskynyelvosztályok (03 típusú nyelvek)! (4 pont) 3. típusú, vagy reguláris nyelvek szabályai A ab, A a
Irányításelmélet és technika I.
Irányításelmélet és technika I Folytonos idejű rendszerek leírása az állapottérben Állapotvisszacsatolást alkalmazó szabályozási körök Magyar Attila Pannon Egyetem Műszaki Informatikai Kar Villamosmérnöki
Formális nyelvek - 9.
Formális nyelvek - 9. Csuhaj Varjú Erzsébet Algoritmusok és Alkalmazásaik Tanszék Informatikai Kar Eötvös Loránd Tudományegyetem H-1117 Budapest Pázmány Péter sétány 1/c E-mail: csuhaj@inf.elte.hu 1 Véges
Algoritmusok Tervezése. Fuzzy rendszerek Dr. Bécsi Tamás
Algoritmusok Tervezése Fuzzy rendszerek Dr. Bécsi Tamás Bevezetés Mese a homokkupacról és a hidegről és a hegyekről Bevezetés, Fuzzy történet Két értékű logika, Boole algebra Háromértékű logika n értékű
Dicsőségtabló Beadós programozási feladatok
Dicsőségtabló Beadós programozási feladatok Hallgatói munkák 2017 2018 Szavak kiírása ábécé felett Készítő: Maurer Márton (GI, nappali, 2017) Elméleti háttér Adott véges Ʃ ábécé felett megszámlálhatóan
A modellellenőrzés érdekes alkalmazása: Tesztgenerálás modellellenőrzővel
A modellellenőrzés érdekes alkalmazása: Tesztgenerálás modellellenőrzővel Majzik István Micskei Zoltán BME Méréstechnika és Információs Rendszerek Tanszék 1 Modell alapú fejlesztési folyamat (részlet)
Diszkrét matematika 2. estis képzés
Diszkrét matematika 2. estis képzés 2018. tavasz 1. Diszkrét matematika 2. estis képzés 11. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék
Hardver és szoftver rendszerek verifikációja Röviden megválaszolható kérdések
Hardver és szoftver rendszerek verifikációja Röviden megválaszolható kérdések 1. Az informatikai rendszereknél mit ellenőriznek validációnál és mit verifikációnál? 2. A szoftver verifikációs technikák
Szoftver-modellellenőrzés absztrakciós módszerekkel
Szoftver-modellellenőrzés absztrakciós módszerekkel Hajdu Ákos Formális módszerek 2017.03.22. Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs Rendszerek Tanszék 1 BEVEZETŐ 2
Diszkrét matematika 2.C szakirány
Diszkrét matematika 2.C szakirány 2017. tavasz 1. Diszkrét matematika 2.C szakirány 4. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék 2017.
A modellellenőrzés érdekes alkalmazása: Tesztgenerálás modellellenőrzővel
A modellellenőrzés érdekes alkalmazása: Tesztgenerálás modellellenőrzővel Majzik István Micskei Zoltán BME Méréstechnika és Információs Rendszerek Tanszék 1 Modell alapú fejlesztési folyamat (részlet)
Számításelmélet. Második előadás
Számításelmélet Második előadás Többszalagos Turing-gép Turing-gép k (konstans) számú szalaggal A szalagok mindegyike rendelkezik egy független író / olvasó fejjel A bemenet az első szalagra kerül, a többi
Gyártórendszerek irányítási struktúrái
GyRDin-10 p. 1/2 Gyártórendszerek Dinamikája Gyártórendszerek irányítási struktúrái Hangos Katalin Villamosmérnöki és Információs Rendszerek Tanszék e-mail: hangos@scl.sztaki.hu GyRDin-10 p. 2/2 Tartalom
A számítógépes nyelvészet elmélete és gyakorlata. Automaták
A számítógépes nyelvészet elmélete és gyakorlata Automaták Nyelvek és automaták A nyelvek automatákkal is jellemezhetőek Automaták hierarchiája Chomsky-féle hierarchia Automata: új eszköz a nyelvek komplexitásának
Kriptográfia 0. A biztonság alapja. Számítás-komplexitási kérdések
Kriptográfia 0 Számítás-komplexitási kérdések A biztonság alapja Komplexitás elméleti modellek független, egyenletes eloszlású véletlen változó értéke számítással nem hozható kapcsolatba más információval
Turing-gép május 31. Turing-gép 1. 1
Turing-gép 2007. május 31. Turing-gép 1. 1 Témavázlat Turing-gép Determinisztikus, 1-szalagos Turing-gép A gép leírása, példák k-szalagos Turing-gép Univerzális Turing-gép Egyéb Turing-gépek Nemdeterminisztikus
Szekvenciális hálózatok és automaták
Szekvenciális hálózatok a kombinációs hálózatokból jöhetnek létre tárolási tulajdonságok hozzáadásával. A tárolás megvalósítása történhet a kapcsolás logikáját képező kombinációs hálózat kimeneteinek visszacsatolásával
Tartalom. 1. Állapotegyenletek megoldása 2. Állapot visszacsatolás (pólusallokáció)
Tartalom 1. Állapotegyenletek megoldása 2. Állapot visszacsatolás (pólusallokáció) 2015 1 Állapotgyenletek megoldása Tekintsük az ẋ(t) = ax(t), x(0) = 1 differenciálegyenletet. Ismert, hogy a megoldás
Dinamikus modellek felállítása mérnöki alapelvek segítségével
IgyR - 3/1 p. 1/20 Integrált Gyártórendszerek - MSc Dinamikus modellek felállítása mérnöki alapelvek segítségével Hangos Katalin PE Villamosmérnöki és Információs Rendszerek Tanszék IgyR - 3/1 p. 2/20
Soros felépítésű folytonos PID szabályozó
Soros felépítésű folytonos PID szabályozó Főbb funkciók: A program egy PID szabályozót és egy ez által szabályozott folyamatot szimulál, a kimeneti és a beavatkozó jel grafikonon való ábrázolásával. A
"Flat" rendszerek. definíciók, példák, alkalmazások
"Flat" rendszerek definíciók, példák, alkalmazások Hangos Katalin, Szederkényi Gábor szeder@scl.sztaki.hu, hangos@scl.sztaki.hu 2006. október 18. flatness - p. 1/26 FLAT RENDSZEREK: Elméleti alapok 2006.
Petri hálók strukturális tulajdonságai Invariánsok és számításuk
Petri hálók strukturális tulajdonságai Invariánsok és számításuk dr. Bartha Tamás Dr. Pataricza András BME Méréstechnika és Információs Rendszerek Tanszék Az elemzés mélysége szerint: Vizsgálati lehetőségek
Informatika 1 2. el adás: Absztrakt számítógépek
Informatika 1 2. el adás: Budapesti M szaki és Gazdaságtudományi Egyetem 2015-09-08 1 2 3 A egy M = Q, Γ, b, Σ, δ, q 0, F hetes, ahol Q az 'állapotok' nem üres halmaza, Γ a 'szalag ábécé' véges, nem üres
Ha ismert (A,b,c T ), akkor
Az eddigiekben feltételeztük, hogy a rendszer állapotát mérni tudjuk. Az állapot ismerete szükséges az állapot-visszacsatolt szabályzó tervezéséhez. Ha nem ismerjük az x(t) állapotvektort, akkor egy olyan
A Számítástudomány alapjai
Mechatronika, Optika és Gépészeti Informatika Tanszék A Számítástudomány alapjai Szemelvények az Elméleti Számítástudomány területéről Fogalmak: Számítástechnika Realizáció, technológia Elméleti számítástudomány
Logikai hálózatok. Dr. Bede Zsuzsanna St. I. em. 104.
Logikai hálózatok Dr. Bede Zsuzsanna bede.zsuzsanna@mail.bme.hu St. I. em. 04. Tanszéki honlap: www.kjit.bme.hu/hallgatoknak/bsc-targyak-3/logikai-halozatok Gyakorlatok: hétfő + 08:5-0:00 J 208 HF: 4.
Stratégiák tanulása az agyban
Statisztikai tanulás az idegrendszerben, 2019. Stratégiák tanulása az agyban Bányai Mihály banyai.mihaly@wigner.mta.hu http://golab.wigner.mta.hu/people/mihaly-banyai/ Kortárs MI thispersondoesnotexist.com
2. Visszalépéses keresés
2. Visszalépéses keresés Visszalépéses keresés A visszalépéses keresés egy olyan KR, amely globális munkaterülete: egy út a startcsúcsból az aktuális csúcsba (az útról leágazó még ki nem próbált élekkel
2. Rekurzió. = 2P2(n,n) 2 < 2P2(n,n) 1
2. Rekurzió Egy objektum definícióját rekurzívnak nevezünk, ha a definíció tartalmazza a definiálandó objektumot. Egy P eljárást (vagy függvényt) rekurzívnak nevezünk, ha P utasításrészében előfordul magának
Markov-láncok stacionárius eloszlása
Markov-láncok stacionárius eloszlása Adatbányászat és Keresés Csoport, MTA SZTAKI dms.sztaki.hu Kiss Tamás 2013. április 11. Tartalom Markov láncok definíciója, jellemzése Visszatérési idők Stacionárius
2. Visszalépéses stratégia
2. Visszalépéses stratégia A visszalépéses keres rendszer olyan KR, amely globális munkaterülete: út a startcsúcsból az aktuális csúcsba (ezen kívül a még ki nem próbált élek nyilvántartása) keresés szabályai:
definiálunk. Legyen egy konfiguráció, ahol és. A következő három esetet különböztetjük meg. 1. Ha, akkor 2. Ha, akkor, ahol, ha, és egyébként.
Számításelmélet Kiszámítási problémának nevezünk egy olyan, a matematika nyelvén megfogalmazott kérdést, amire számítógéppel szeretnénk megadni a választ. (A matematika nyelvén precízen megfogalmazott
Házi feladatok megoldása. Nyelvek használata adatszerkezetek, képek leírására
Nyelvek használata adatszerkezetek, képek leírására Formális nyelvek, 2. gyakorlat 1. feladat Módosított : belsejében lehet _ jel is. Kezdődhet, de nem végződhet vele, két aláhúzás nem lehet egymás mellett.
Turing-gépek. Számításelmélet (7. gyakorlat) Turing-gépek 2009/10 II. félév 1 / 1
Turing-gépek Logika és számításelmélet, 7. gyakorlat 2009/10 II. félév Számításelmélet (7. gyakorlat) Turing-gépek 2009/10 II. félév 1 / 1 A Turing-gép Az algoritmus fogalmának egy intuitív definíciója:
Programkonstrukciók A programkonstrukciók programfüggvényei Levezetési szabályok. 6. előadás. Programozás-elmélet. Programozás-elmélet 6.
Programkonstrukciók Definíció Legyen π feltétel és S program A-n. A DO A A relációt az S-ből a π feltétellel képezett ciklusnak nevezzük, és (π, S)-sel jelöljük, ha 1. a / [π] : DO (a) = { a }, 2. a [π]
Időzített átmeneti rendszerek
Időzített átmeneti rendszerek Legyen A egy ábécé, A = A { (d) d R 0 }. A feletti (valós idejű) időzített átmeneti rendszer olyan A = (S, T,,, ) címkézett átmeneti rendszert ( : T A ), melyre teljesülnek
Kalman-féle rendszermodell Méréselmélet PE MIK MI, VI BSc 1
alman-féle rendszermodell.4.. Méréselmélet PE MI MI, VI BSc álmán Rudolf Rudolf Emil alman was born in Budapest, Hungar, on Ma 9, 93. He received the bachelor's degree (S.B.) and the master's degree (S.M.)
NEM-DETERMINISZTIKUS PROGRAMOK HELYESSÉGE. Szekvenciális programok kategóriái. Hoare-Dijkstra-Gries módszere
Szekvenciális programok kategóriái strukturálatlan strukturált NEM-DETERMINISZTIKUS PROGRAMOK HELYESSÉGE Hoare-Dijkstra-Gries módszere determinisztikus valódi korai nem-determinisztikus általános fejlett
A félév során előkerülő témakörök
A félév során előkerülő témakörök rekurzív algoritmusok rendező algoritmusok alapvető adattípusok, adatszerkezetek, és kapcsolódó algoritmusok dinamikus programozás mohó algoritmusok gráf algoritmusok
Irányításelmélet és technika II.
Irányításelmélet és technika II. Modell-prediktív szabályozás Magyar Attila Pannon Egyetem Műszaki Informatikai Kar Villamosmérnöki és Információs Rendszerek Tanszék amagyar@almos.vein.hu 2010 november
Számítógépvezérelt irányítás és szabályozás elmélete (Bevezetés a rendszer- és irányításelméletbe, Computer Controlled Systems) 9. el?
Számítógépvezérelt irányítás és szabályozás elmélete (Bevezetés a rendszer- és irányításelméletbe, Computer Controlled Systems) 9. el?adás Szederkényi Gábor Pázmány Péter Katolikus Egyetem Információs
Valószínűségi modellellenőrzés Markov döntési folyamatokkal
Valószínűségi modellellenőrzés Markov döntési folyamatokkal Hajdu Ákos Szoftver verifikáció és validáció 2015.12.09. Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs Rendszerek
5. Hét Sorrendi hálózatok
5. Hét Sorrendi hálózatok Digitális technika 2015/2016 Bevezető példák Példa 1: Italautomata Legyen az általunk vizsgált rendszer egy italautomata, amelyről az alábbi dolgokat tudjuk: 150 Ft egy üdítő
Programozási módszertan
1 Programozási módszertan 1. Alapfogalmak Feldhoffer Gergely 2012 Féléves tananyag terve 2 Program helyességének bizonyítása Reprezentáció Logikai-matematikai eszköztár Programozási tételek bizonyítása
Előfeltétel: legalább elégséges jegy Diszkrét matematika II. (GEMAK122B) tárgyból
ÜTEMTERV Programozás-elmélet c. tárgyhoz (GEMAK233B, GEMAK233-B) BSc gazdaságinformatikus, programtervező informatikus alapszakok számára Óraszám: heti 2+0, (aláírás+kollokvium, 3 kredit) 2019/20-es tanév
Algoritmuselmélet. Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem. 13.
Algoritmuselmélet NP-teljes problémák Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem 13. előadás Katona Gyula Y. (BME SZIT) Algoritmuselmélet
A digitális számítás elmélete
A digitális számítás elmélete 1. előadás szept. 19. Determinisztikus véges automaták 1. Példa: Fotocellás ajtó m m m k b s = mindkét helyen = kint = bent = sehol k k b s m csukva b nyitva csukva nyitva
A Formális nyelvek vizsga teljesítése. a) Normál A vizsgán 60 pont szerezhet, amely két 30 pontos részb l áll össze az alábbi módon:
A Formális nyelvek vizsga teljesítése a) Normál A vizsgán 60 pont szerezhet, amely két 30 pontos részb l áll össze az alábbi módon: 1. Öt kis kérdés megválaszolása egyenként 6 pontért, melyet minimum 12
Intelligens irányítások
Intelligens irányítások Fuzzy halmazok Ballagi Áron Széchenyi István Egyetem Automatizálási Tsz. Arisztotelészi szi logika 2 Taichi Yin-Yang Yang logika 3 Hagyományos és Fuzzy halmaz Egy hagyományos halmaz
Miskolci Egyetem Gépészmérnöki és Informatikai Kar Informatikai Intézet Alkalmazott Informatikai Intézeti Tanszék
Miskolci Egyetem Gépészmérnöki és Informatikai Kar Informatikai Intézet Alkalmazott Informatikai Intézeti Tanszék 06/7. félév 7. Előadás Dr. Kulcsár Gyula egyetemi docens Tartalom. A projektütemezés alapjai..
9. előadás. Programozás-elmélet. Programozási tételek Elemi prog. Sorozatszámítás Eldöntés Kiválasztás Lin. keresés Megszámolás Maximum.
Programozási tételek Programozási feladatok megoldásakor a top-down (strukturált) programtervezés esetén három vezérlési szerkezetet használunk: - szekvencia - elágazás - ciklus Eddig megismertük az alábbi
Megerősítéses tanulás
Megerősítéses tanulás elméleti kognitív neurális Introduction Knowledge representation Probabilistic models Bayesian behaviour Approximate inference I (computer lab) Vision I Approximate inference II:
Összeállította Horváth László egyetemi tanár
Óbudai Egyetem Neumann János Informatikai Kar Intelligens Mérnöki Rendszerek Intézet Intelligens Mérnöki Rendszerek Szakirány a Mérnök informatikus alapszakon Összeállította Horváth László Budapest, 2011
Haszongépj. Németh. Huba. és s Fejlesztési Budapest. Kutatási. Knorr-Bremse. 2004. November 17. Knorr-Bremse 19.11.
Haszongépj pjármű fékrendszer intelligens vezérl rlése Németh Huba Knorr-Bremse Kutatási és s Fejlesztési si Központ, Budapest 2004. November 17. Knorr-Bremse 19.11.2004 Huba Németh 1 Tartalom Motiváció
Bevezetés a méréstechnikába és jelfeldolgozásba. Tihanyi Attila április 17.
Bevezetés a méréstechnikába és jelfeldolgozásba Tihanyi Attila 2007. április 17. ALAPOK Töltés 1 elektron töltése 1,602 10-19 C 1 C (coulomb) = 6,24 10 18 elemi elektromos töltés. Áram Feszültség I=Q/t
Petri hálók: Alapelemek és kiterjesztések
Petri hálók: Alapelemek és kiterjesztések dr. Bartha Tamás dr. Pataricza András dr. Majzik István BME Méréstechnika és Információs Rendszerek Tanszék Modellek a formális ellenőrzéshez Mivel nyújt többet
XVII. econ Konferencia és ANSYS Felhasználói Találkozó
XVII. econ Konferencia és ANSYS Felhasználói Találkozó Hazay Máté, Bakos Bernadett, Bojtár Imre hazay.mate@epito.bme.hu PhD hallgató Budapesti Műszaki és Gazdaságtudományi Egyetem Tartószerkezetek Mechanikája
Híradástechikai jelfeldolgozás
Híradástechikai jelfeldolgozás 13. Előadás 015. 04. 4. Jeldigitalizálás és rekonstrukció 015. április 7. Budapest Dr. Gaál József docens BME Hálózati Rendszerek és SzolgáltatásokTanszék gaal@hit.bme.hu
A szimplex algoritmus
A szimplex algoritmus Ismétlés: reprezentációs tétel, az optimális megoldás és az extrém pontok kapcsolata Alapfogalmak: bázisok, bázismegoldások, megengedett bázismegoldások, degenerált bázismegoldás
Modellezési esettanulmányok. elosztott paraméterű és hibrid példa
Modellezési esettanulmányok elosztott paraméterű és hibrid példa Hangos Katalin Számítástudomány Alkalmazása Tanszék Veszprémi Egyetem Haladó Folyamatmodellezés és modell analízis PhD kurzus p. 1/38 Tartalom
Szabályalapú diagnosztika - Diagnosztika HAZID információk felhasználásával
Diagnosztika 5 p. 1/2 Modell Alapú Diagnosztika Disztkrét Módszerekkel Szabályalapú diagnosztika - Diagnosztika HAZID információk felhasználásával Hangos Katalin PE Villamosmérnöki és Információs Rendszerek
Alap-ötlet: Karl Friedrich Gauss ( ) valószínűségszámítási háttér: Andrej Markov ( )
Budapesti Műszaki és Gazdaságtudományi Egyetem Gépészmérnöki Kar Hidrodinamikai Rendszerek Tanszék, Budapest, Műegyetem rkp. 3. D ép. 334. Tel: 463-6-80 Fa: 463-30-9 http://www.vizgep.bme.hu Alap-ötlet:
Részletes szoftver tervek ellenőrzése
Részletes szoftver tervek ellenőrzése Majzik István Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs Rendszerek Tanszék http://www.mit.bme.hu/~majzik/ Tartalomjegyzék A részletes
Diszkrét matematika 1. estis képzés
Diszkrét matematika 1. estis képzés 2019. tavasz 1. Diszkrét matematika 1. estis képzés 11. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján
Programozási módszertan. Dinamikus programozás: Nyomtatási feladat A leghosszabb közös részsorozat
PM-04 p. 1/18 Programozási módszertan Dinamikus programozás: Nyomtatási feladat A leghosszabb közös részsorozat Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu
Petri hálók: Alapelemek és kiterjesztések
Petri hálók: Alapelemek és kiterjesztések dr. Bartha Tamás dr. Pataricza András dr. Majzik István BME Méréstechnika és Információs Rendszerek Tanszék Modellek a formális ellenőrzéshez Mivel nyújt többet
Idő-ütemterv hálók - I. t 5 4
Építésikivitelezés-Vállalkozás / : Hálós ütemtervek - I lőadás:folia.doc Idő-ütemterv hálók - I. t s v u PRT time/cost : ( Program valuation & Review Technique ) ( Program Értékelő és Áttekintő Technika
Statisztika - bevezetés Méréselmélet PE MIK MI_BSc VI_BSc 1
Statisztika - bevezetés 00.04.05. Méréselmélet PE MIK MI_BSc VI_BSc Bevezetés Véletlen jelenség fogalma jelenséget okok bizonyos rendszere hozza létre ha mindegyik figyelembe vehető egyértelmű leírás általában
Információk. Ismétlés II. Ismétlés. Ismétlés III. A PROGRAMOZÁS ALAPJAI 2. Készítette: Vénné Meskó Katalin. Algoritmus. Algoritmus ábrázolása
1 Információk 2 A PROGRAMOZÁS ALAPJAI 2. Készítette: Vénné Meskó Katalin Elérhetőség mesko.katalin@tfk.kefo.hu Fogadóóra: szerda 9:50-10:35 Számonkérés időpontok Április 25. 9 00 Május 17. 9 00 Június
x, x R, x rögzített esetén esemény. : ( ) x Valószínűségi Változó: Feltételes valószínűség: Teljes valószínűség Tétele: Bayes Tétel:
Feltételes valószínűség: Teljes valószínűség Tétele: Bayes Tétel: Valószínűségi változó általános fogalma: A : R leképezést valószínűségi változónak nevezzük, ha : ( ) x, x R, x rögzített esetén esemény.
1. Házi feladat. Határidő: I. Legyen f : R R, f(x) = x 2, valamint. d : R + 0 R+ 0
I. Legyen f : R R, f(x) = 1 1 + x 2, valamint 1. Házi feladat d : R + 0 R+ 0 R (x, y) f(x) f(y). 1. Igazoljuk, hogy (R + 0, d) metrikus tér. 2. Adjuk meg az x {0, 3} pontok és r {1, 2} esetén a B r (x)
konvergensek-e. Amennyiben igen, számítsa ki határértéküket!
1. Határértékek 1. Állapítsa meg az alábbi sorozatokról, hogy van-e határértékük, konvergensek-e. Amennyiben igen, számítsa ki határértéküket! 2 2...2 2 (n db gyökjel), lim a) lim n b) lim n (sin(1)) n,
1. Alapfogalmak Algoritmus Számítási probléma Specifikáció Algoritmusok futási ideje
1. Alapfogalmak 1.1. Algoritmus Az algoritmus olyan elemi műveletekből kompozíciós szabályok szerint felépített összetett művelet, amelyet megadott feltételt teljesítő bemeneti adatra végrehajtva, a megkívánt
Segédanyagok. Formális nyelvek a gyakorlatban. Szintaktikai helyesség. Fordítóprogramok. Formális nyelvek, 1. gyakorlat
Formális nyelvek a gyakorlatban Formális nyelvek, 1 gyakorlat Segédanyagok Célja: A programozási nyelvek szintaxisának leírására használatos eszközök, módszerek bemutatása Fogalmak: BNF, szabály, levezethető,
Specifikáció. B logikai formula, a bemeneti feltétel, K logikai formula, a kimeneti feltétel, A az algoritmus, amelyre az állítás vonatkozik.
Algoritmus Az algoritmus olyan elemi műveletekből kompozíciós szabályok szerint felépített összetett művelet, amelyet megadott feltételt teljesítő bemeneti adatra végrehajtva, a megkívánt kimeneti adatot
Tesztsorozat generálás. Csöndes Tibor Ericsson Kft., R&D, BME-TMIT
Tesztsorozat generálás Csöndes Tibor Ericsson Kft., R&D, BME-TMIT Tibor.Csondes@ericsson.com, csondes@tmit.bme.hu 1 Miről lesz szó? Mealy modell Gráfelméleti alapfogalmak FSM (gráf és táblázatos reprezentáció)