FAKT(n) P = VARIÁCIÓK(n;n) = VARIÁCIÓK(n;k) = KOMBINÁCIÓK(n;k) b) = factorial(n) P = factorial(n)
|
|
- Klára Papné
- 9 évvel ezelőtt
- Látták:
Átírás
1 A biomatematia alapjai és a apcsolódó feladato megoldása számítógép segítségével Aboyi-Tóth Zsolt, Miért fotos a valószíűségszámítás és a statisztia? Mert el szereté dötei, hogy egy-egy orét esetbe szerecsé volt-e, pechü volt-e, vagy épp a várható módo törtét mide. o Ahogy odaértü a megállóba, fél perce belül jött a busz. o Öt percet ellett váru a megállóba a buszra. észült Haros Adrea, Reiczigel Jeő zoológus előadásaia valamit Fodor Jáos és Solymosi Norbert taayagaia a felhaszálásával Mert el szereté dötei, miért meyit érdemes ocáztati. o Mide másodi telefoáló 500 Ft-os öyvutalváyt ap. A szerecsés yertes pedig millió forittal lesz gazdagabb. A hívás díja 800 Ft + ÁFA. o Melyi az a légitársaság, amelyiel a legolcsóbba juto el Lodoba úgy, hogy em ésem le a ocertet? Mert el szereté dötei, elhiggyü-e valamit, amit olvasu, vagy hogy észrevegyü, hol va bee a hiba. o A megérdezette 40%-a egyetért az Öormáyzat dötésével, 45%-a ellezi azt, 0%-u pedig em yilatozott a érdésről. o Az itelligeciateszte sorá a gyeree mide megyébe jobb eredméyt érte el az országos átlagál. o A vizsgálati eredméye em álla elletmodásba azzal a feltételezéssel, hogy az új és a hagyomáyos módszer eseté azoos a gyógyulási aráy. Mert a vizsgálatai alapjá olya állításoat szereté megfogalmazi, amelye megfelele a valósága. o Hatásosabb-e az éppe tesztelt új gyógyszer? o Javítja-e a cuorbeteg utyá állapotát a vizsgált táplálé-iegészítő? o A májezimszite vizsgálatával előre megadható, hogy az állat reagál-e a gyógyszeres ezelésre? alószíűségszámítás So egyformá valószíű imeetel eseté a imeetele számától függ egy eseméy valószíűsége. edvező esete / összes esete (éha em éppe edvező ) Példá: ocadobás : 6 szám, mid egyformá valószíű mide 6 a valószíűsége ét oca: számpár midegyie 36 a valószíűsége ét ocá a ét szám összege 0, aa 36 3 a valószíűsége (4+6, 5+5, 6+4) o Miért va a 4+6 és a 6+4 így is, úgy is, és az 5+5 csa egyszer?! tételhúzás (I. rész 9, II rész 8 tétel): pár mide pára a valósz. 72
2 alószíűségi modelle Modelle evezzü azoa a feltételezésee az együttesét, amelye a eretet adjá egy valószíűségszámítási vagy statisztiai probléma megoldásához, vagyis amelyee a számoláso alapula. Ezeet gyara csa hallgatólagosa feltételezzü (azoba helyesebb, ha imodju). Példa: Meyi a valószíűsége, hogy égy ővér özül először a legidősebb megy férjhez, másodszor a másodi legidősebb, és így tovább? Hallgatólagos feltételezés: mide lehetséges sorred egyformá valószíű A feltételezése alapuló megoldás: 24 Példa: Meyi a valószíűsége, hogy egy pézérmével egymás utá égy fejet dobu? Hallgatólagos feltételezése: az érme szabályos, azaz a fej valószíűsége mide egyes dobásál 2 az egyes dobáso eredméye egymástól függetle A feltételezésee alapuló megoldás: Realisztius? Elfogadható? Ha már megva a modell, a számításo em eheze (egy matematius is segíthet), ehezebb egy valósághű modellt találi (abba a matematius sem soat tud segítei). A legfotosabb modell-típuso (hallgatólagos feltételezése) A lasszius valószíűségi modell Feltesszü, hogy va éháy véges so olya eseméy (atom, imeetel, elemi eseméy), amelyeből a ísérlettel apcsolatos összes eseméy felépíthető, feltesszü továbbá, hogy eze mid egyelőe valószíűe. Lásd a feti példáat (ocadobás, tételhúzás, sorred). Gyara szimmetria-megfotoláso alapjá választju ezt a modellt. Itt az esete összeszámlálására a ombiatoria módszereit és eredméyeit haszálju: lasszius ~ elemi ~ ombiatorius valószíűségszámítás. A tapasztalati (empirius) valószíűségi modell Soszor megfigyeljü a törtéést vagy soszor megismételjü a ísérletet, és az egyes eseméyehez a megfigyelt relatív gyaoriságu szerit redelü hozzá valószíűségeet. Szubjetív valószíűsége Ha sem a lasszius modell em haszálható (mert semmi ou ics feltételezi, hogy egyelő valószíűségű elemi eseméye leée a vizsgált folyamatba), sem pedig ismételt megfigyelésre ics módu (ilye helyzete például: tőzsdei dötése, állás elyerésée, háború itörésée esélyei stb.) aor jobb híjá iidulhatu az esélye szubjetív megítéléséből is.
3 Kombiatoria éges so objetum (em midig egy halmaz elemei, éha egyelő is lehete özöttü!) özül bizoyosa iválasztása és/vagy sorba redezése. Midig godolhatju úgy, hogy az objetumo természetes számo (hisze megszámozhatju őet). Permutáció (csa sorba redezés, az összes objetumot felhaszálju) Ismétlés élüli a permutáció, ha az objetumo mid ülöböző. Ismétléses a permutáció, ha az objetumo özött vaa azoosa. Példá: Az, 2, 3, 4, 5 számo egy permutációja: 2,, 5, 3, 4 (ismétlés élüli) Az,, 2, 3, 4, 4 számo egy permutációja:, 2, 4,, 3, 4 (ismétléses) Kombiáció (csa iválasztás, sorba redezés élül) Ismétlés élüli a ombiáció, ha mide objetumot csa egyszer választhatu i. Ismétléses a ombiáció, ha ugyaazt az objetumot többször is iválaszthatju. Példá: az, 2,..., 0 számo egy harmadosztályú ismétlés élüli ombiációja:, 5, 8 o az, 5, 8, az, 8, 5, az 5,, 8, az 5, 8,, a 8,, 5 és a 8, 5, ugyaaz a ombiáció (mert ugyaazo a számo vaa iválasztva) egy ötödosztályú ismétléses ombiációja: 3, 3, 6, 6, 9 o ugyaaz pl. a 3, 6, 9, 6, 3 is (ugyaazo a számo, mid ugyaayiszor) ariáció (iválasztás és a iválasztotta sorba redezése, vagy sorba egymás utái iválasztás) Ismétlés élüli a variáció, ha mide objetumot csa egyszer választhatu. Ismétléses a variáció, ha ugyaazt az objetumot többször is iválaszthatju. Példá: az, 2,..., 0 számo egy harmadosztályú ismétlés élüli variációja:, 5, 8 o az, 5, 8, az, 8, 5, az 5,, 8, az 5, 8,, a 8,, 5 és a 8, 5, mid ülöböző variáció (bár a iválasztás ugyaaz, a sorba redezés más) egy ötödosztályú ismétléses variációja: 3, 3, 6, 6, 9 o a 3, 6, 9, 6, 3 em azoos vele (ugyaazo a számo, de más a sorred) FIGYELEM! Az agol szóhaszálat más, ott a variációat is permutációa evezi, és em említi az ismétléses változatoat. elem összes ismétlés élüli permutációia száma P! (ituitív, matematiailag em teljese precíz a övetezőre is ugyaez érvéyes): Az első elem számára hely özül választhatu, a másodi elem számára bármelyiet is választottu elsőre a megmaradó - hely özül,... végül az -i elem számára már csa egyetle szabad hely marad. elem összes ismétléses permutációia száma, ha az eleme özött azoos, 2! szité azoos, de az előzőetől ülöböző, stb. található: P, 2, L,! 2! K! Ha mid az elem ülöböze, aor! számú permutációju vola. Azoba most midazo a permutáció megegyeze, ahol azoos eleme egymás özött vaa permutálva, eze száma pedig! 2!.
4 elem összes -adosztályú ismétlés élüli variációia száma:! ( )! elem összes -adosztályú ismétlés élüli ombiációia száma! ( )!! Az első helyre az elem bármelyiét választhatju, a másodi helyre a megmaradó - elem bármelyiét,... végül a -i helyre ( +) elem özül választhatu. i elem összes -adosztályú ismétléses variációia száma:,,, P, hisze a variáció azt jeleti, hogy iválasztu elemet és sorba redezzü őet. A zsebszámológépee helyett eressü -t vagy r -t! Ha sorba egymás utá -szor választu, és az ismételhetőség miatt mid a alalommal mid az elem választható, aor az összes lehetősége száma. Nyilvávaló, hogy P,. A zsebszámológépee (mert a yelvü agol) helyett P, sőt, még gyarabba P vagy Pr szerepel., P, Modellezzü az elem özül darab iválasztását úgy, hogy sorba felírju az elemet, és midegyi alá + vagy jelet íru, aszerit, hogy választju, vagy em. Tehát db + jelet és ( ) db jelet haszálu. Például: ( ) Láthatóa egy ilye jelsorozat ölcsööse egyértelműe megfelel egy iválasztása (a megfeleltetés oda-vissza egyértelmű). a lehetséges iválasztáso, P, a jelsorozato száma, tehát egyelő. elem összes -adosztályú ismétléses ombiációia száma i, +, Bizoyítás vázlata: Mide ismétléses ombiációa megfeleltetü egy db jelből és db jelből álló jelsorozatot, például ha 5 (az eleme, 2, 3, 4, 5) és 8, aor ~ ~ ~ stb. Ez ölcsööse egyértelmű megfeleltetés, tehát ugyaayia ell, hogy legyee.
5 Biomiális együttható Egy mási megszoott jelölés és elevezés a biomiális együttható Az elevezés hátterébe a biomiális tétel áll: ( a+ b) 0 a b -ra: (olvasd: alatt a ), Excel! FAKT() P ARIÁIÓK(;) R ARIÁIÓK(;) KOMBINÁIÓK(;)! factorial() P factorial() Számítógép factorial()/factorial(-) factorial()/(factorial(-)*factorial())
n akkor az n elem összes ismétléses ... k l k 3 k 1! k 2!... k l!
KOMBINATORIKAI ALAPFOGALMAK A ombiatoria általába a véges halmazora voatozó redezési és leszámlálási feladatoal foglalozi. Az elemi ombiatoria legtöbb esetbe a övetező ét érdés egyiére eresi a választ:
HÁZI FELADAT NÉV:.. Beadási határidı: az elsı ZH-ig (2010. március 30. 8:00). Olvassa el az útmutatást is! KOMBINATORIKA
HÁZI FELADAT NÉV:.. NEPTUN KÓD: CSOPORT: Beadási határidı: az elsı ZH-ig (010. március 0. 8:00). Olvassa el az útmutatást is! KOMBINATORIKA 1. Egy irádulás sorá tizeöt tauló elhelyezésére három szoba áll
Lineáris algebra gyakorlat
Lineáris algebra gyakorlat 3 gyakorlat Gyakorlatvezet : Bogya Norbert 2012 február 27 Bogya Norbert Lineáris algebra gyakorlat (3 gyakorlat) Tartalom Egyenletrendszerek Cramer-szabály 1 Egyenletrendszerek
FELADATOK a Bevezetés a matematikába I tárgyhoz
FELADATOK a Bevezetés a matematiába I tárgyhoz a számítástechia taár főisolai és a programozó matematius szao számára 2004 ovember 4 FIGYELEM: a számtech szaosoa csa a övetező feladato ellee: 2,6,7,8,9-13,16-25,27,31-33
Pályázat címe: Pályázati azonosító: Kedvezményezett: Szegedi Tudományegyetem Cím: 6720 Szeged, Dugonics tér 13. www.u-szeged.hu www.palyazat.gov.
Pályázat címe: Új geerációs sorttudomáyi kézés és tartalomfejlesztés, hazai és emzetközi hálózatfejlesztés és társadalmasítás a Szegedi Tudomáyegyeteme Pályázati azoosító: TÁMOP-4...E-5//KONV-05-000 Sortstatisztika
2011. március 9. Dr. Vincze Szilvia
. márius 9. Dr. Vinze Szilvia Tartalomjegyzék.) Elemi bázistranszformáió.) Elemi bázistranszformáió alkalmazásai.) Lineáris függőség/függetlenség meghatározása.) Kompatibilitás vizsgálata.) Mátri/vektorrendszer
A döntő feladatai. valós számok!
OKTV 006/007. A döntő feladatai. Legyenek az x ( a + d ) x + ad bc 0 egyenlet gyökei az x és x valós számok! Bizonyítsa be, hogy ekkor az y ( a + d + abc + bcd ) y + ( ad bc) 0 egyenlet gyökei az y x és
Rudas Tamás: A hibahatár a becsült mennyiség függvényében a mért pártpreferenciák téves értelmezésének egyik forrása
Rudas Tamás: A hibahatár a becsült meyiség függvéyébe a mért ártrefereciák téves értelmezéséek egyik forrása Megjelet: Agelusz Róbert és Tardos Róbert szerk.: Mérésről mérésre. A választáskutatás módszertai
Kombinatorika. 9. előadás. Farkas István. DE ATC Gazdaságelemzési és Statisztikai Tanszék. Kombinatorika p. 1/
Kombinatorika 9. előadás Farkas István DE ATC Gazdaságelemzési és Statisztikai Tanszék Kombinatorika p. 1/ Permutáció Definíció. Adott n különböző elem. Az elemek egy meghatározott sorrendjét az adott
A biomatematika alapjai és a kapcsolódó feladatok megoldása számítógép segítségével Abonyi-Tóth Zsolt, 2005-2006 készült Harnos Andrea, Reiczigel Jenő zoológus előadásainak valamint Fodor János és Solymosi
Ingatlanfinanszírozás és befektetés
Nyugat-Magyarországi Egyetem Geoiformatikai Kar Igatlameedzser 8000 Székesfehérvár, Pirosalma u. 1-3. Szakiráyú Továbbképzési Szak Igatlafiaszírozás és befektetés 2. Gazdasági matematikai alapok Szerzı:
Dr. Balogh Albert: A statisztikai adatfeldolgozás néhány érdekessége
Dr. Balogh Albert: A statszta adatfeldolgozás éháy érdeessége Kérdése:. Hogya becsüljü a tapasztalat eloszlásfüggvéyt? 2. M az a redezett mta? 3. M az a medá rag és mlye becslése vaa?. Hogya becsüljü a
Párhuzamos programozás
Párhuzamos programozás Rendezések Készítette: Györkő Péter EHA: GYPMABT.ELTE Nappali tagozat Programtervező matematikus szak Budapest, 2009 május 9. Bevezetés A számítástechnikában felmerülő problémák
Tartalomjegyzék. Pemutáció 5 Ismétléses permutáció 8 Variáció 9 Ismétléses variáció 11 Kombináció 12 Ismétléses kombináció 13
Tartalomjegyzék I Kombiatorika Pemutáció Ismétléses permutáció 8 Variáció 9 Ismétléses variáció Kombiáció Ismétléses kombiáció II Valószíségszámítás M/veletek eseméyek között 6 A valószí/ség fogalma 8
Az aktiválódásoknak azonban itt még nincs vége, ugyanis az aktiválódások 30 évenként ismétlődnek!
1 Mindannyiunk életében előfordulnak jelentős évek, amikor is egy-egy esemény hatására a sorsunk új irányt vesz. Bár ezen események többségének ott és akkor kevésbé tulajdonítunk jelentőséget, csak idővel,
5. Kombinatorika. 8. Legfeljebb hány pozitív egész számot adhatunk meg úgy, hogy semelyik kettő összege és különbsége se legyen osztható 2015-tel?
5. Kombiatorika I. Feladatok. Háyféleképpe olvashatók ki az alábbi ábrákról a PAPRIKAJANCSI, a FELADAT és a MATEMATIKASZAKKÖR szavak, ha midig a bal felső sarokból kell iduluk, és mide lépésük csak jobbra
Dr. Tóth László, Kombinatorika (PTE TTK, 2007) nem vagyunk tekintettel a kiválasztott elemek sorrendjére. Mennyi a lehetőségek száma?
Dr Tóth László, Kombiatoria (PTE TTK, 7 5 Kombiáció 5 Feladat Az,, 3, 4 számo özül válasszu i ettőt (ét ülöbözőt és írju fel ezeet úgy, hogy em vagyu teitettel a iválasztott eleme sorredjére Meyi a lehetősége
Távközlő hálózatok és szolgáltatások Kapcsolástechnika
Távözlő hálózato és szolgáltatáso Kapcsolástechia émeth Krisztiá BME TMIT 015. ot. 1-8. A tárgy felépítése 1. Bevezetés. IP hálózato elérése távözlő és ábel-tv hálózatoo 3. VoIP, beszédódoló 4. Kapcsolástechia
VI.Kombinatorika. Permutációk, variációk, kombinációk
VI.ombiatorika. ermutációk, variációk, kombiációk VI..ermutációk ismétlés élkül és ismétléssel (sorredi kérdések) l..) Az,, számjegyekből, ismétlés élkül, háy háromjegyű szám írható? F. 6 db. va. A feti
A teveszabály és alkalmazásai
A teveszabály és alalmazásai Tuzso Zoltá, Széelyudvarhely Godolá-e valai, hogy a matematiáa lehete-e valami öze a tevéhez? Ha em aor a továbbiaba meggyzzü errl, mégpedig arról, hogy a matematiába ige is
KOVÁCS BÉLA, MATEMATIKA I.
KOVÁCS BÉLA, MATEmATIkA I 10 X DETERmINÁNSOk 1 DETERmINÁNS ÉRTELmEZÉSE, TULAJdONSÁGAI A másodrendű determináns értelmezése: A harmadrendű determináns értelmezése és annak első sor szerinti kifejtése: A
BOLYAI MATEMATIKA CSAPATVERSENY ORSZÁGOS DÖNTŐ SZÓBELI (2012. NOVEMBER 24.) 3. osztály
3. osztály Két szám összege 33. Mennyi ennek a két számnak a különbsége, ha az egyik kétszerese a másiknak? Hány olyan háromjegyű szám van, amelyben a számjegyek összege legalább 25? 4. osztály A Zimrili
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 5 V. BECsLÉsELMÉLET 1. STATIsZTIKAI becslés A becsléselméletben gyakran feltesszük, hogy a megfigyelt mennyiségek független valószínűségi
A Hozzárendelési feladat megoldása Magyar-módszerrel
A Hozzárendelési feladat megoldása Magyar-módszerrel Virtuális vállalat 2013-2014/1. félév 3. gyakorlat Dr. Kulcsár Gyula A Hozzárendelési feladat Adott meghatározott számú gép és ugyanannyi független
Azonosító jel: Matematika emelt szint
I. 1. Hatjegyű pozitív egész számokat képezünk úgy, hogy a képzett számban szereplő számjegy annyiszor fordul elő, amekkora a számjegy. Hány ilyen hatjegyű szám képezhető? 11 pont írásbeli vizsga 1012
FANTASZTIKUS KOMBINATORIKA. Adva van n különböző elem. A kiválasztás sorrendje számít VARIÁCIÓ. mateking.hu
FANTASZTIKUS KOMBINATORIKA Adva va külöböző elem Kiválasztuk k darabot Vesszük az összes elemet és sorba rakjuk A kiválasztás sorredje számít A kiválasztás sorredje em számít PERMUTÁCIÓ P matekig.hu Ha
MAGISTER GIMNÁZIUM TANMENET 2012-2013 11. OSZTÁLY
MAGISTER GIMNÁZIUM TANMENET 2012-2013 11. OSZTÁLY Heti 3 óra Évi 111 óra Készítette: Ellenőrizte: Literáti Márta matematika tanár.. igazgató Másodfokú egyenletek. Ismétlés 1. óra: Másodfokú egyenletek,
Javítóvizsga témakörei matematika tantárgyból
9.osztály Halmazok: - ismerje és használja a halmazok megadásának különböző módjait, a halmaz elemének fogalmát - halmazműveletek : ismerje és alkalmazza gyakorlati és matematikai feladatokban a következő
10. évfolyam, harmadik epochafüzet
0. évfolyam, harmadik epochafüzet (Sorozatok, statisztika, valószíűség) Tulajdoos: MÁSODIK EPOCHAFÜZET TARTALOM I. Sorozatok... 4 I.. Sorozatok megadása, defiíciója... 4 I.. A számtai sorozat... 0 I...
1. forduló. MEGOLDÁSOK Pontszerző Matematikaverseny 2015/2016-os tanév
MEGOLDÁSOK Pontszerző Matematikaverseny 2015/2016-os tanév 1. forduló 1. feladat: Jancsi és Juliska Matematikai Memory-t játszik. A játék lényege, hogy négyzet alakú kártyákra vagy műveletsorokat írnak
MBLK12: Relációk és műveletek (levelező) (előadásvázlat) Maróti Miklós, Kátai-Urbán Kamilla
MBLK12: Relációk és műveletek (levelező) (előadásvázlat) Maróti Miklós, Kátai-Urbán Kamilla Jelölje Z az egész számok halmazát, N a pozitív egészek halmazát, N 0 a nem negatív egészek halmazát, Q a racionális
BOLYAI MATEMATIKA CSAPATVERSENY FŐVÁROSI DÖNTŐ SZÓBELI (2005. NOVEMBER 26.) 5. osztály
5. osztály Írd be az ábrán látható hat üres körbe a 10, 30, 40, 60, 70 és 90 számokat úgy, hogy a háromszög mindhárom oldala mentén a számok összege 200 legyen! 50 20 80 Egy dobozban háromféle színű: piros,
Érettségi feladatok Algoritmusok egydimenziós tömbökkel (vektorokkal) 1/6. Alapműveletek
Érettségi feladatok Algoritmusok egydimenziós tömbökkel (vektorokkal) 1/6 A tömbök deklarálásakor Pascal és C/C++ nyelvekben minden esetben meg kell adni az indexelést (Pascal) vagy az elemszámot (C/C++).
Orosz Gyula: Markov-láncok. 2. Sorsolások visszatevéssel
Orosz Gyula: Marov-láco 2. orsoláso visszatevéssel Néháy orét feladat segítségével vezetjü be a Marov-láco fogalmát és a hozzáju acsolódó megoldási módszereet, tiius eljárásoat. Ahol lehet, több megoldást
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Trigonometria
005-05 MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Trigonometria A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett
Koordináta - geometria I.
Koordináta - geometria I. DEFINÍCIÓ: (Helyvektor) A derékszögű koordináta - rendszerben a pont helyvektora az origóból a pontba mutató vektor. TÉTEL: Ha i az (1; 0) és j a (0; 1) pont helyvektora, akkor
ÁFA felhasználói dokumentum Lezárva: 2015.11.10.
ÁFA felhasználói dokumentum Lezárva: 2015.11.10. Griffsoft Informatikai Zrt. 6723 Szeged, Felső-Tisza part 31-34 M lph. fszt.2. Telefon: (62) 549-100 Telefax: (62) 401-417 TARTALOM 1 ÁFA... 2 1.1 HALASZTOTT
Áramlástechnikai gépek soros és párhuzamos üzeme, grafikus és numerikus megoldási módszerek (13. fejezet)
Áramlástechnikai gépek soros és párhuzamos üzeme, grafikus és numerikus megoldási módszerek (3. fejezet). Egy H I = 70 m - 50000 s /m 5 Q jelleggörbéjű szivattyú a H c = 0 m + 0000 s /m 5 Q jelleggörbéjű
Matematika III. 1. Kombinatorika Prof. Dr. Závoti, József
Matematika III. 1. Kombinatorika Prof. Dr. Závoti, József Matematika III. 1. : Kombinatorika Prof. Dr. Závoti, József Lektor : Bischof, Annamária Ez a modul a TÁMOP - 4.1.2-08/1/A-2009-0027 Tananyagfejlesztéssel
Az élet színesben Published on www.flagmagazin.hu (http://www.flagmagazin.hu) Még nincs értékelve
2013 szeptember 04. Flag 0 Értékelés kiválasztása Még nincs értékelve Értéke: 1/5 Értéke: 2/5 Mérték Értéke: 3/5 Értéke: 4/5 Értéke: 5/5 Milyen lehetett az élet színesben? A történelem egyes időszakairól,
BOLYAI MATEMATIKA CSAPATVERSENY DÖNTŐ 2004. 5. osztály
5. osztály Ha egy négyzetet az ábrán látható módon feldarabolunk, akkor a tangram nevű ősi kínai játékot kapjuk. Mekkora a nagy négyzet területe, ha a kicsié 8 cm 2? (A kis négyzet egyik csúcsa a nagy
Az abortusz a magyar közvéleményben
Az abortusz a magyar közvéleményben Országos felmérés a egyesület számára Módszer: országos reprezentatív felmérés a 18 éves és idősebb lakosság 1200 fős mintájának személyes megkérdezésével a Medián-Omnibusz
Lineáris algebra jegyzet
Lineáris algebra jegyzet Készítette: Jezsoviczki Ádám Forrás: Az előadások és a gyakorlatok anyaga Legutóbbi módosítás dátuma: 2011-12-04 A jegyzet nyomokban hibát tartalmazhat, így fentartásokkal olvasandó!
Sz ekelyhidi L aszl o Val osz ın us egsz am ıt as es matematikai statisztika *************** Budapest, 1998
Székelyhidi László Valószínűségszámítás és matematikai statisztika *************** Budapest, 1998 Előszó Ez a jegyzet a valószínűségszámításnak és a matematikai statisztikának azokat a fejezeteit tárgyalja,
Diszkrét matematika I. gyakorlat
Diszkrét matematika I. gyakorlat 1. Gyakorlat Bogya Norbert Bolyai Intézet 2012. szeptember 4-5. Bogya Norbert (Bolyai Intézet) Diszkrét matematika I. gyakorlat 2012. szeptember 4-5. 1 / 21 Információk
7. el adás Becslések és minta elemszámok. 7-1. fejezet Áttekintés
7. el adás Becslések és mita elemszámok 7-1. fejezet Áttekités 7-1 Áttekités 7- A populáció aráy becslése 7-3 A populáció átlag becslése: σismert 7-4 A populáció átlag becslése: σem ismert 7-5 A populáció
Diszkrét matematika I., 11. előadás Dr. Takách Géza NyME FMK Informatikai Intézet takach 2005. november 22.
1 Diszkrét matematika I, 11 előadás Dr Takách Géza NyME FMK Informatikai Intézet takach@infnymehu http://infnymehu/ takach 2005 november 22 Permutációk Definíció Permutáción n különböző elem valamely sorrendjét
24. Kombinatorika, a valószínűségszámítás elemei
4. Kombiatoria, a valószíűségszámítás elemei Kombiatoria A véges halmazoal foglalozó tudomáyterület. Idő hiáyába csa a evezetes összeszámolásoal foglalozu. a) Sorbaállításo (ermutáció) alafeladat: ülöböző
1. Az absztrakt adattípus
. Az asztrakt adattípus Az iformatikáa az adat alapvető szerepet játszik. A számítógép, mit automata, adatokat gyűjt, tárol, dolgoz fel (alakít át) és továít. Mi adatak foguk tekitei mide olya iformációt,
G Szabályfelismerés 2.2. 2. feladatcsomag
ÖSSZEFÜÉSEK Szabályfelismerés 2.2 Alapfeladat Szabályfelismerés 2. feladatcsomag összefüggés-felismerő képesség fejlesztése szabályfelismeréssel megkezdett sorozat folytatása a felismert szabály alapján
6. Alapfeladat n dolgot, melyek közt vannak egyformák, hányféleképpen lehet sorbatenni n!
Tételek, definíciók véges matematika alapszintű vizsgához Leszámlálási alapötletek és alapfeladatok 1. Alapötlet független döntések és szorzás. (Ha egy esetet olyan döntéssorozattal lehet legyártani, melyben
Az iparosodás és az infrastrukturális fejlődés típusai
Az iparosodás és az ifrastrukturális fejlődés típusai Az iparosodás és az ifrastrukturális fejlődés kapcsolatába törtéelmileg három fejlődési típus vázolható fel: megelőző, lácszerűe együtt haladó, utólagosa
[GVMGS11MNC] Gazdaságstatisztika
[GVMGS11MNC] Gazdaságstatisztika 4 előadás Főátlagok összehasonlítása http://uni-obudahu/users/koczyl/gazdasagstatisztikahtm Kóczy Á László KGK-VMI Viszonyszámok (emlékeztető) Jelenség színvonalának vizsgálata
Algebra es sz amelm elet 3 el oad as Rel aci ok Waldhauser Tam as 2014 oszi f el ev
Algebra és számelmélet 3 előadás Relációk Waldhauser Tamás 2014 őszi félév Relációk reláció lat. 1. kapcsolat, viszony; összefüggés vmivel 2. viszonylat, vonatkozás reláció lat. 3. mat halmazok elemei
Mérések, hibák. 11. mérés. 1. Bevezető
11. méré Méréek, hibák 1. evezető laboratóriumi muka orá gyakra mérük külöböző fizikai meyiégeket. Ezeket a méréeket bármeyire ügyeek vagyuk i, bármeyire moder digitáli mérőezköz gombjait yomogatjuk i
xdsl Optika Kábelnet Mért érték (2012. II. félév): SL24: 79,12% SL72: 98,78%
Minőségi mutatók Kiskereskedelmi mutatók (Internet) Megnevezés: Új hozzáférés létesítési idő Meghatározás: A szolgáltatáshoz létesített új hozzáféréseknek, az esetek 80%ban teljesített határideje. Mérési
E-számla igénylése három lépéssel!
E-számla igénylése három lépéssel! E-számla igénylése három lépéssel! 1 / 6 Mi az e-számla? Az e-számla elektronikus formában kibocsátott számla, amely jogi megítélése megegyezik a papír alapú számláéval.
ADATBÁZIS-KEZELÉS. Funkcionális függés, normál formák
ADATBÁZIS-KEZELÉS Funkcionális függés, normál formák KARBANTARTÁSI ANOMÁLIÁK beszúrási anomáliák törlési anomáliák módosítási anomáliák DOLG_PROJ(Dszsz, Pszám, Dnév, Pnév, Órák) 2 MÓDOSÍTÁSI ANOMÁLIÁK
Fordítóprogramok Készítette: Nagy Krisztián
Fordítóprogramok Készítette: Nagy Krisztián Reguláris kifejezések (FLEX) Alapelemek kiválasztása az x karakter. tetszőleges karakter (kivéve újsor) [xyz] karakterhalmaz; vagy egy x, vagy egy y vagy egy
Árverés kezelés ECP WEBSHOP BEÉPÜLŐ MODUL ÁRVERÉS KEZELŐ KIEGÉSZÍTÉS. v2.9.28 ECP WEBSHOP V1.8 WEBÁRUHÁZ MODULHOZ
v2.9.28 Árverés kezelés ECP WEBSHOP BEÉPÜLŐ MODUL ÁRVERÉS KEZELŐ KIEGÉSZÍTÉS ECP WEBSHOP V1.8 WEBÁRUHÁZ MODULHOZ AW STUDIO Nyíregyháza, Luther utca 5. 1/5, info@awstudio.hu Árverés létrehozása Az árverésre
Melyik gén mutáns egy betegségben? Tory Kálmán Semmelweis Egyetem, I. sz. Gyermekklinika
Melyik gén mutáns egy betegségben? Tory Kálmán Semmelweis Egyetem, I. sz. Gyermekklinika Mit tudtunk meg a Human Genom Projectnek köszönhetően? 9 ember (1 nő és 8 férfi) genomi nukleotid-szekvenciáját
Emelt szintű érettségi feladatsorok és megoldásaik Összeállította: Szászné Simon Judit; dátum: 2005. november. I. rész
Szászné Simon Judit, 005. november Emelt szintű érettségi feladatsorok és megoldásaik Összeállította: Szászné Simon Judit; dátum: 005. november. feladat I. rész Oldjuk meg a valós számok halmazán a x 5x
Analízis elo adások. Vajda István. 2012. október 3. Neumann János Informatika Kar Óbudai Egyetem. Vajda István (Óbudai Egyetem)
Vajda István Neumann János Informatika Kar Óbudai Egyetem / 40 Fogalmak A függvények értelmezése Definíció: Az (A, B ; R ) bináris relációt függvénynek nevezzük, ha bármely a A -hoz pontosan egy olyan
Felvételi 2013 Felvételi tájékoztató 2013
Felvételi 2013 A döntést segítő kiadványok Felsőoktatási felvételi tájékoztató 2013. szeptemberben induló képzésekre honlap : www.felvi.hu Felvételi tájoló 2013. (Felvi-rangsorokkal) Képzési szintek A:
Az informatika oktatás téveszméi
Az informatika oktatás Az informatika definíciója Definíció-1: az informatika az információ keletkezésével, továbbításával, tárolásával, feldolgozásával foglalkozó tudomány. Definíció-2: informatika =
Segítünk online ügyféllé válni Kisokos
Segítünk online ügyféllé válni Kisokos Kedves Ügyfelünk! Szeretnénk, ha Ön is megismerkedne Online ügyfélszolgálatunkkal, melyen keresztül kényelmesen, könnyedén, sorban állás nélkül intézheti energiaszolgáltatással
ÉT: x R ÉK: y R ZH: x = 0 SZÉ: - SZMN páratlan fv. n a
A htváyozás iverz műveletei. (Htváy, gyök, logritmus) Ismétlés: Htváyozás egész kitevő eseté De.: :... Oly téyezős szorzt, melyek mide téyezője. : htváyl : kitevő : htváyérték A htváyozás zoossági egész
Hipotézis-ellenırzés (Statisztikai próbák)
Következtetı statisztika 5. Hipotézis-elleırzés (Statisztikai próbák) 1 Egymitás próbák Átlagra, aráyra, Szórásra Hipotézis-vizsgálat Áttekités Egymitás em paraméteres próbák Függetleségvizsgálat Illeszkedésvizsgálat
Jelentés a kiértékelésről az előadóknak
Debreceni Egyetem 00 Debrecen Egyetem tér. Debreceni Egyetem Tisztelt NK Úr! (személyes és bizalmas) Jelentés a kiértékelésről az előadóknak Tisztelt NK Úr! Ez az email tartalmazza a Népegészségügyi ellenõr
Belépési útmutató a MIAG weboldalra www.miag.com
Belépési útmutató a MIAG weboldalra www.miag.com Classification level: Public MEMBER OF METRO GROUP 1 Tartalom 1. Fontos tudnivaló p. 3 2. Bejelentkezés a www.miag.com weboldalra p. 4-5 3. E-mail cím regisztrálása
Programozás. A programkészítés lépései. Program = egy feladat megoldására szolgáló, a számítógép számára értelmezhető utasítássorozat.
Programozás Programozás # 1 Program = egy feladat megoldására szolgáló, a számítógép számára értelmezhető utasítássorozat. ADATOK A programkészítés lépései 1. A feladat meghatározása PROGRAM EREDMÉNY A
http://www.olcsoweboldal.hu ingyenes tanulmány GOOGLE INSIGHTS FOR SEARCH
2008. augusztus 5-én elindult a Google Insights for Search, ami betekintést nyújt a keresőt használók tömegeinek lelkivilágába, és időben-térben szemlélteti is, amit tud róluk. Az alapja a Google Trends,
Az első lépések. A Start menüből válasszuk ki a Minden program parancsot. A megjelenő listában kattintsunk rá az indítandó program nevére.
A számítógép elindítása A számítógépet felépítő eszközöket (hardver elemeket) a számítógépház foglalja magába. A ház különböző méretű, kialakítású lehet. A hátoldalán a beépített elemek csatlakozói, előlapján
KOVÁCS BÉLA, MATEMATIKA I.
KOVÁCS BÉLA, MATEmATIkA I 15 XV DIFFERENCIÁLSZÁmÍTÁS 1 DERIVÁLT, deriválás Az f függvény deriváltján az (1) határértéket értjük (feltéve, hogy az létezik és véges) Az függvény deriváltjának jelölései:,,,,,
Üresként jelölt CRF visszaállítása
Üresként jelölt CRF visszaállítása Ha egy CRF vagy bizonyos mező(k) ki vannak szürkítve (üresként jelölve), akkor a megjelölés üresként eszközre kell kattintania, majd törölni a kiválasztott jelölőnégyzet
JEGYZİKÖNYV RENDKÍVÜLI NYÍLT KISZOMBOR 2011. december 12.
JEGYZİKÖNYV RENDKÍVÜLI NYÍLT KISZOMBOR 2011. december 12. JEGYZİKÖNYV Készült Kiszombor Nagyközség Önkormányzata Képviselı-testületének 2011. december 12. napján 15 órai kezdettel megtartott rendkívüli
MÉRÉSI ADATOK KEZELÉSE ÉS ÉRTÉKELÉSE
MÉRÉSI ADATOK KEZELÉSE ÉS ÉRTÉKELÉSE Köryezettudomáy alapo taöyvsorozat A öryezetta alapja A öryezetvédelem alapja Köryezetfza Köryezet áramláso Köryezet ásváyta Köryezet mtavételezés Köryezetéma Köryezetmősítés
2. AZ INFORMÁCIÓS TÁRSADALOM ÉRTELMEZÉSI DIFFERENCIÁINAK TERÜLETI KÖVETKEZMÉNYEI
2. AZ INFORMÁCIÓS TÁRSADALOM ÉRTELMEZÉSI DIFFERENCIÁINAK TERÜLETI KÖVETKEZMÉNYEI 2.1. Az iformációs társadalom és gazdaság fogalmáak külöbözô értelmezései 2.1.1. Az iformációs társadalom Bármely iformációs
Sorbanállási modellek
VIII. előadás Sorbaállási modellek Sorbaállás: A sorbaállás, a várakozás általáos probléma közlekedés, vásárlás, takolás, étterem, javításra várás, stb. Eze feladatok elmélete és gyakorlata a matematikai
AUDI A6 4F HANDBUCH DEMONTAGE MITTELKONSOLE UND DEKORLEISTEN
AUDI A6 4F HANDBUCH DEMONTAGE MITTELKONSOLE UND DEKORLEISTEN AUDI A6 4F 2005-2010 DÍSZÍTŐ ELEMEK SZÉTSZERELÉSE Első körben a középkonzol kerül terítékre. Kezdésképp húzzuk előre a vezető oldali és anyós
V. GYAKORLATOK ÉS FELADATOK ALGEBRÁBÓL
86 Összefoglaló gyaorlato és feladato V GYAKORLATOK ÉS FELADATOK ALGEBRÁBÓL 5 Halmazo, relácó, függvéye Bzoyítsd be, hogy ha A és B ét tetszőleges halmaz, aor a) P( A) P( B) P( A B) ; b) P( A) P ( B )
HWDEV-02A GSM TERMOSZTÁT
HWDEV-02A GSM TERMOSZTÁT 2010 HASZNÁLATI ÚTMUTATÓ A termosztát egy beépített mobiltelefonnal rendelkezik. Ez fogadja az Ön hívását ha felhívja a termosztát telefonszámát. Érdemes ezt a telefonszámot felírni
A TŰZVÉDELMI TERVEZÉS FOLYAMATA. Dr. Takács Lajos Gábor okl. építészmérnök BME Építészmérnöki Kar Épületszerkezettani Tanszék
A TŰZVÉDELMI TERVEZÉS FOLYAMATA Dr. Takács Lajos Gábor okl. építészmérnök BME Építészmérnöki Kar Épületszerkezettani Tanszék BME Épít Épületsze TŰZVÉDELMI TERVEZÉSI FELADATOK A tűzvédelmi tervezési tevékenység
Az új építőipari termelőiár-index részletes módszertani leírása
Az új építőipari termelőiár-idex részletes módszertai leírása. Előzméyek Az elmúlt évekbe az építőipari árstatisztikába egy új, a korábba haszálatos költségalapú áridextől eltérő termelői ár alapú idexmutató
MAGYAR NYELV a 4. évfolyamosok számára. MNy2 JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ
4. évfolyam MNy2 Javítási-értékelési útmutató MAGYAR NYELV a 4. évfolyamosok számára MNy2 JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ A javítási-értékelési útmutatóban feltüntetett válaszokra a megadott pontszámok adhatók.
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉPSZINT Függvények
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉPSZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek megoldásához!
A fiatalok pénzügyi kultúrája Számít-e a gazdasági oktatás?
A fiatalok pénzügyi kultúrája Számít-e a gazdasági oktatás? XXXII. OTDK Konferencia 2015. április 9-11. Készítette: Pintye Alexandra Konzulens: Dr. Kiss Marietta A kultúrától a pénzügyi kultúráig vezető
Differenciál egyenletek (rövid áttekintés) d x 2
Differeniál egenletek (rövid áttekintés) Differeniálegenlet: olan matematikai egenlet, amel eg vag több változós ismeretlen függvén és deriváltjai közötti kasolatot írja le. Fontosabb tíusok: közönséges
Épületvillamosság laboratórium. Villámvédelemi felfogó-rendszer hatásosságának vizsgálata
Budapesti Műszaki és Gazdaságtudományi Egyetem Villamos Energetika Tanszék Nagyfeszültségű Technika és Berendezések Csoport Épületvillamosság laboratórium Villámvédelemi felfogó-rendszer hatásosságának
Arany Dániel Matematikai Tanulóverseny 2011/2012-es tanév első (iskolai) forduló haladók I. kategória
Bolyai János Matematikai Társulat Arany Dániel Matematikai Tanulóverseny 011/01-es tanév első (iskolai) forduló haladók I. kategória Megoldások és javítási útmutató 1. Az ábrán látható ABC derékszögű háromszög
Dr. Kulcsár Gyula. Virtuális vállalat 2013-2014 1. félév. Projektütemezés. Virtuális vállalat 2013-2014 1. félév 5. gyakorlat Dr.
Projektütemezés Virtuális vállalat 03-04. félév 5. gyakorlat Dr. Kulcsár Gyula Projektütemezési feladat megoldása Projekt: Projektütemezés Egy nagy, összetett, általában egyedi igény alapján előállítandó
I. FEJEZET BICIKLIHIÁNYBAN
I FEJEZET BICIKLIHIÁNYBAN 1 Az alapfeladat 1 Feladat Két település közti távolság 40 km Két gyerekek ezt a távolságot kellee megteie a lehetőlegrövidebb időalattakövetkező feltételek mellett: Va egy biciklijük
Diszkrét matematika KOMBINATORIKA KOMBINATORIKA
A ombiatoria véges elemszámú halmazoat vizsgál. A fő érdése: a halmaz elemeit háyféleéppe lehet sorbaredezi, iválasztai özülü éháyat vagy aár midet bizoyos feltétele mellett, stb. Ezért a ombiatoria alapját
Műveltségi vetélkedő 2012
Gárdonyi Géza Műveltségi vetélkedő 2012 Idén emlékezünk Gárdonyi Géza halálának 90. évfordulójára. Intézményünk, a Kultúrház és Könyvtár méltóképpen kíván megemlékezni hazánk egyik legolvasottabb írójáról.
I. Országgyűlés Nemzeti Választási Iroda
I. Országgyűlés Nemzeti Választási Iroda I. A célok meghatározása, felsorolása A választási eljárásról szóló 2013. évi XXXVI. törvény (a továbbiakban: Ve.) 76. -a alapján a Nemzeti Választási Iroda folyamatosan
GAZDASÁGI MATEMATIKA 1. ANALÍZIS
SZENT ISTVÁN EGYETEM GAZDASÁGI, AGRÁR- ÉS EGÉSZSÉGTUDOMÁNYI KAR Dr. Szakács Attila GAZDASÁGI MATEMATIKA. ANALÍZIS Segédlet öálló mukához. átdolgozott, bővített kiadás Békéscsaba, Lektorálták: DR. PATAY
tetszőleges időpillanatban értelmezhető végtelen sok időpont értéke egy véges tartományban bármilyen értéket felvehet végtelen sok érték
Elektronika 2 tetszőleges időpillanatban értelmezhető végtelen sok időpont értéke egy véges tartományban bármilyen értéket felvehet végtelen sok érték Diszkrét időpillanatokban értelmezhető (időszakaszos)
Jelentéskészítő TEK-IK () Válaszadók száma = 610
Jelentéskészítő TEK-IK () Válaszadók száma = 0 Általános mutatók Szak értékelése - + átl.=. Felmérés eredmények Jelmagyarázat Kérdésszöveg Válaszok relatív gyakorisága Bal pólus Skála Átl. elt. Átlag Medián
A táblázatkezelő felépítése
A táblázatkezelés A táblázatkezelő felépítése A táblázatkezelő felépítése Címsor: A munkafüzet címét mutatja, és a program nevét, amivel megnyitottam. Menüszalag: A menüsor segítségével használhatjuk az
EPER E-KATA integráció
EPER E-KATA integráció 1. Összhang a Hivatalban A hivatalban használt szoftverek összekapcsolása, integrálása révén az egyes osztályok, nyilvántartások között egyezőség jön létre. Mit is jelent az integráció?