Reológia, a koherens (nem-koherens) rendszerek tulajdonságai
|
|
- Zsanett Veresné
- 6 évvel ezelőtt
- Látták:
Átírás
1 Reológia, a koherens (nem-koherens) rendszerek tulajdonságai Bányai István kolloid.unideb.hu
2 Koherens rendszerek Szubmikroszkópos vagy durva diszkontinuitásokat tartalmazó rendszerek, amelyekben micellák, vagy makromolekulák egymással összekapcsolódva összefüggő vázszerkezetet alkotnak. Jellegzetes típusai: Habok, szilárd habok tömény emulziók, krémek száraz, nedves örlemények Gélek: kolloid koherens rendszerek
3 Reológia A reológia az anyagok deformációját tanulmányozza külső feszültségek (erők) hatására. A deformáció lehet folyás és alakváltoztatás. (Herakletosz: panta rei : megalapítója: Eugene Bingham 1920.) A reológiai viselkedés viszonylagossága Relaxáló rendszerek esetében definiálható egy relaxációs idő (T rel ). Ezen időtartam alatt a kiindulási feszültség az e-ad részére csökken, az új állapot elérése közben. 1. Nagy relaxációs idejű rendszerek rövid ideig tanulmányozva szilárd testként viselkednek, 2. Kis relaxációsidejű rendszerek hosszú megfigyelési idő (fordított helyzet) azonban folyadéknak mutatkoznak. A reológiai viselkedés viszonylagosságát fejezi ki a Deborah-szám: ahol t a megfigyelési idő. Ha DN 0 akkor a test folyadéknak, ha DN akkor pedig szilárd anyagnak mutatkozik. D n T = t rel
4 Reológiai típusok Ideális folyadék: (D n <<1) Newton-i (viszkózus )folyadék) Rugalmas (elasztikus anyag): (D n >>1) ideálisan rugalmas (Hooke- megnyúlási törvény: ε = const*σ e ;) relatív nyírási deformáció (shear strain) arányos a feszültséggel (stress) Viszkoelasztikus anyagok: (D n ~ 1) ez a reológia valódi tárgya empírikus összefüggések az anyag állapota és viszkozitása között nem Newtoni folyadékok (valódi méz, ragasztók) nem rugalmas anyagok (paszták, gélek, krémek) plasztikus anyagok (ideálisan képlékeny, bizonyos külső hatásra folyékonnyá válnak)
5 Reológiai vizsgálatok célja Reológiai méréseket általában a kozmetikai és élelmiszer iparban, gyógyszeriparban és a műanyagiparban koherens rendszereken és nagymolekulák oldatain végeznek, abból a célból, 1) hogy megértsék a rendszerek alapvető fizikai sajátságait; 2) hogy megadják a nyersanyagok és termékek minősítését keverés, vezetékes szállítás, csomagolás, feldolgozás céljából; 3) hogy megadják az anyagok viselkedést külső fizikai körülmények változásának hatására.
6 Áramlási viszkozitás: Newtoni folyadék (fizika) D n =0 z 0 y v 0 x dv F = η A d y F A dv = τ = η = ηd dy -2 [ η] = N m s vagy Pas A felület mozog x irányba v 0 sebességgel F erő hatására és ez sebességgradienset hoz létre a y irányba, D. A Newtoni folyadék vízszerű folyadék a nyírási feszültség (τ) ( shear stress ) arányos a sebesség gradienssel (D) ( shear rate ) amely merőleges a nyírási síkra Az arányossági tényező a viszkozitás
7 Nyírás (rugalmas testre), D n = A x F τ = γ = F A dx dy nyíró feszültség nyírási deformáció y d x τ = G = Gγ dy Hooke-törvény ( G rug.modulus) A Hooke- és Newtontörvény azonos formára hozása = dv d /d d /d d d = x t d = x y d = γ τ η η η η d = ηd y y t t deformáció sebesség
8 Általános definíció η s nyírófeszültség τ = = = sebességgradiens(deformáció seb.) γ τ D Áramlási ellenállás a külső az áramlást előidéző hatással szemben, a feszültség és a deformáció sebesség hányadosa, mértékegysége: Nm -2 s v. Pas
9 Viszkozitás-anyagszerkezet η τ = = D η ( ct,, pt, ) szerkezet, koncentráció, méret, alak Hőmérséklet (áramlási és szerkezeti viszkozitás) Nyomás Idő (kinetikai jelenség) Deformáció sebesség- vs. sebességgradiens!!!!!
10 Ideális és összetett reológiai rendszerek 1. ideálisan rugalmas (elasztikus) testek: Hooke (reverzíbilis deformáció) (D n >>1) 2. ideálisan viszkózus testek: Newton (folyadékok) (D n <<1) 3. Ideálisan plasztikus testek: (Saint- Venant, rugalmas majd viszkózus) (adott nyírófeszültségig nincs deformáció, utána folyás ) (Modell: mágnes darabkák egymáson) Összetett rendszerek (1 és 2) viszkoeleasztikus anyagok: rugalmasságot mutató folyadékok (makromolekulák oldatai) és viszkozitást mutató szilárd anyagok (polimerek) (2 and 3) reális plasztikus anyagok (keveredik a plasztikus és folyékony viselkedés, határfeszültség van)
11 Anyagok reológiai jellemzése Viszkozitás- és folyásgörbék
12 Folyási görbe, viszkozitás görbe viszkózus anyagok τ η D η Írja be az egyenletet ide τ = ηd D D 1 = τ η τ A jobboldali lenne logikusabb, de manapság a másikat használják
13 Plasztikus (képlékeny anyagok) Ilyen gyakorlatilag nincs: egy minimális feszültséget el kell érni, ahhoz, hogy az anyag folyjon. Nyíró feszültség τ Sebesség gradiens, D
14 Tipikus folyás görbék (1/η) Vagy viszkózus, vagy plasztikus anyagként viselkednek a kolloid rendszerek 1. Nyírásra vékonyodó (B) szerkezeti viszkózus anyagok (polimer oldatok, emulziók) pszeudoplasztikus: aggregátumok szétesése, anizometrikus részecskék rendeződése, makromolekulák rugalmas deformációja 2. Newtoni-folyadékok (A) (víz, vékony olajok) 3. Nyírásra vastagodó (C) nagy diszperzitású szuszpenziók, nedves homok (kiszorul a közeg), lassan keverhető fel, dilatáns
15 Tipikus folyás görbék (képlékeny) Vagy viszkózus, vagy plasztikus anyagként viselkednek a kolloid rendszerek 4. Bingham-test, a határfeszültségtől viszkózus folyadék: aggregáció és a kohézió (adhézió) összetartja őket, de a folyás után már ilyen nincs (plasztikus) 5. Tixotróp: koherens, de mechanikai hatásra elfolyósodik (Fe(OH) 3 szol, reverzíbilis szolgél átalakulás (quicksand) 6. Reopektikus. Keverésre szilárdulnak, pl. gipsz víz, nedves homok
16 Ketchup lavina
17 Okok, lehetőségek
18 Élelmiszer és gyógyszeripar E 440
19 Nápolyi csoda
20 Lineáris polimereknél (hallgatói gyakorlat) A hiszterézis, időbeni késése van a szerkezeti rendeződésnek folyásgörbe D, s , Pas viszkozitás görbe τ, Pa τ, Pa CMC Szerkezeti viszkozitást mutat
21 Krémek (alapkrém, emulzió) ml 5ml 10ml 15ml η = τ τ ( ) D 0 n η, Pas τ, Pa Belső szerkezet és koncentráció 10 g poli-szorbát (tween60), 10 g ásványolaj, 30g cetyl (16)-stearyl(18) alkohol, 70 g vazelin, o/w emulzió D, s water,ml 0ml 5ml 10ml 15ml τ, Pa
22 A viszkozitás mérése
23 Mérése nyomásesés áramlásra p 1 p 2 v=0 folyás csőben z r p 1 p 2 v max I V π 1 p p = = t 8 η l 1 2 r 2 x
24 Höppler-típusú viszkoziméter v 2g = 9η ( ρ ) 2 test gömb ρl r
25 Rotációs viszkoziméter nyírási sebesség gradiens, az elfordulás szögét mérjük dv dr = ω R d η = 2 k d π θ Rh ω r a tengelytől való távolság R a belső és külső henger sugarának átlaga d a rés nagysága, h a folyadék magassága
26 hőmérséklet szabályozás légcsapágyas 10 nagyságrend kétirányú forgatás Számítógépes elemzés Reométer
27 Folyás görbe (komplex) Szén nanocsővel erősített polimer viselkedése elektromos erőtérben. A nagy feszültség mechanikai tulajdonság változásokat idéz elő.
28 Viszkozitás oldatokban η η η η η 0 rel 0 0 spec = = ηrel 1 specifikus η0 spec c = η η ηη - redukált oldószer oldat relativ η 1 = = rel = c 0 c c 0 c spec [ η] lim lim lnη határ [ η] KM a
29 Einstein: Oldatok viszkozitása: elmélet η= η 0 (1+kφ) k=2,5 φ=v r /V liofób, merev gömbök, melyekhez képest az oldat kontinuum pl. spórák, gombák, PS-polimer gömbök (latex) eltérése: nem merev, alakja változik nem gömb orientálódik tömény oldat, saját gátlás szolvatáció, töltés, zéta potenciál η = η + η φ+ η φ k 0 b...
30 Méret meghatározás, fényszórás A fényszórás Rayleigh modellje méret λ/20, pontszerű fényforrás, α polarizálhatóság I θ /I 0 r 2 =R θ (1+cos 2 θ) (a függőleges komponens és a vízszintes komponens különböző módon szóródik a cos 2 -es tag.) Ha szóró források közel vannak, szabályosan helyezkednek el, akkor gyakorlatilag kioltják a szórt fény komponensei egymást, ha statisztikusan helyezkednek el, akkor ez véletlenszerű, azaz a szórt fény intenzitása a részecske szám négyzetgyökével arányos.
31 Fényszórás 2. Ha a méret kisebb mint λ/20 A szórt fény intenzitása a szóró centrumok számával arányos (ilyenkor a fázis eltolódás csak kicsi lehet) tipikus kolligatív sajátság, mert ha ismerjük a g/l koncentrációt, a számát meghatározzuk, akkor belőle a mol/l (vagy a méret) kiszámítható. Ha a méret nagyobb mint λ/20 A részecske különböző pontjairól szórt fény intenzitását is figyelembe kell venni. Függ még a szögtől is és a hullámhossztól is.
32 Méretmeghatározás, NMR Mágneses tér gradiensében a részecskék Brown mozgása követhető. Hasonló elvben az izotópos jelzéshez, de itt részecskéket mágnesesen jelöljük, gradiens impulzusok segítségével. D = kt πηr 6 H Nukleáris Overhauser hatás: egymást relaxáló protonok relaxáló hatása a távolság és a rotációs korrelációs idő függvénye.
33 Vizsga 6. Az Einstein-Stokes egyenlet a diffúzió együttható és a részecskék hidrodinamikai sugara közötti kapcsolatot fejezi ki, a következő formában: (2 pont) ahol:
34 Vizsga 16. Rajzolja fel a tixotróp anyagok folyásgörbéjét (A folyásgörbe mindkét típusát elfogadjuk, csak jelölje mely tengelyen mi van!) (2 pont)
35 Egyenletek Szedimentációs egyenlet, centrifuga alapegyenlet, diffúzió együttható-méret kapcsolata, Laplace nyomás egyenlete, görbült felületek gőznyomása, Langmuir izoterma egyenlete, Gibbs izoterma egyenlete, diffúz kettősréteg potenciálváltozása (Gouy-Chapman modell), potenciál a Helmholtz kettősrétegben, a DLVO elmélet taszító és vonzó tagja, stabilitási arány, felületi feszültség, nedvesítés, szétterülés egyenletei, kapilláris jelenségek egyenletei, ozmózis egyenlete, számátlag, tömegátlag, polidiszperzitás, kolloid viszkozitásának Einstein modellje, viszkozitás definíció egyenlete, számítások amiket órán csináltunk (ülepedési sebesség, szétterülés)
36 Vizsga 1 Jelölje meg N betűvel a hamis és I betűvel az igaz megállapítás(oka)t! (1 pont) A: A felületi feszültség a görbült felületeken fellépő elektromos potenciálkülönbség B: A felületi feszültség az a reverzíbilis munka, amely oldatok egységnyi új felületének létrehozásához kell izoterm reverzíbilis módon. C: A felületi feszültség a felület tetszés szerinti egységnyi vonaldarabjára merőlegesen a felületben ható erő. D: A felületi feszültség a felület összenyomásához szükséges izoterm reverzíbilis munka. E. Felületi feszültség valódi értelemben csak szilárd felületeken lép föl.
37 Vizsga
Reológia, a koherens rendszerek tulajdonságai
Reológia, a koherens rendszerek tulajdonságai Bányai István http://dragon.unideb.hu/~kolloid/ Koherens rendszerek Szubmikroszkópos vagy durva diszkontinuitásokat tartalmazó rendszerek, amelyekben micellák,
Reológia Mérési technikák
Reológia Mérési technikák Reológia Testek (és folyadékok) külső erőhatásra bekövetkező deformációját, mozgását írja le. A deformációt irreverzibilisnek nevezzük, ha a az erőhatás megszűnése után a test
A gyógyszertechnológia reológiai alapjai Bevezetés. Pécsi Tudományegyetem Gyógyszertechnológiai és Biofarmáciai Intézet
A gyógyszertechnológia reológiai alapjai Bevezetés Pécsi Tudományegyetem Gyógyszertechnológiai és Biofarmáciai Intézet Az előadás rövid vázlata - A reológia fontossága a gyógyszerészetben - Bevezetés a
Határfelületi reológia vizsgálata cseppalak analízissel
Határfelületi reológia vizsgálata cseppalak analízissel A reológia alapjai Reológiai folyamatról akkor beszélünk, ha egy anyagra erő hat, mely az anyag (vagy annak egy darabjának) deformációját eredményezi.
Berka Márta Debreceni Egyetem Kolloid és Környezetkémiai Tanszék
Reológia. Berka Márta Debreceni Egyetem Kolloid és Környezetkémiai Tanszék http://dragon.unideb.hu/~kolloid/ A reológia az anyagok folyását és deformációját tanulmányozza külső feszültségek (erők) hatására.
A kolloidika alapjai. 4. Fluid határfelületek
A kolloidika alapjai 4. Fluid határfelületek Kolloid rendszerek csoportosítása 1. Folyadék-gáz határfelület Folyadék-gáz határfelület -felületi szabadenergia = felületi feszültség ( [γ] = mn/m = mj/m 2
Berka Márta Debreceni Egyetem Kolloid és Környezetkémiai Tanszék http://dragon.unideb.hu/~kolloid/
Reológia. Berka Márta ebreceni Egyetem Kolloid és Környezetkémiai Tanszék http://dragon.unideb.hu/~kolloid/ A reológia az anyagok folyását és deformációját tanulmányozza külső feszültségek (erők) hatására.
Kolloidkémia 5. Előadás Kolloidstabilitás. Szőri Milán: Kolloidkémia
Kolloidkémia 5. Előadás Kolloidstabilitás Szőri Milán: Kolloidkémia 1 Kolloidok stabilitása Termodinamikailag lehetnek stabilisak (valódi oldatok) Liofil kolloidok G oldat
Polimerek reológiája
SZÉCHENYI ISTVÁN EGYETEM ANYAGTUDOMÁNYI ÉS TECHNOLÓGIAI TANSZÉK POLIMERTECHNIKA NGB_AJ050_1 Polimerek reológiája DR Hargitai Hajnalka REOLÓGIA Az anyag deformációjának és folyásának a tudománya. rheo -
Orvosi Biofizika I. 12. vizsgatétel. IsmétlésI. -Fény
Orvosi iofizika I. Fénysugárzásanyaggalvalókölcsönhatásai. Fényszóródás, fényabszorpció. Az abszorpciós spektrometria alapelvei. (Segítséga 12. tételmegértéséhezésmegtanulásához, továbbá a Fényabszorpció
egyetemi tanár Nyugat-Magyarországi Egyetem
egyetemi tanár Nyugat-Magyarországi Egyetem Folyadékok szerkezeti jellemz i Az el adás témakörei: Mit nevezünk folyadéknak? - részecskék kölcsönhatása, rendezettsége - mechanikai viselkedése alapján A
Szilárd testek rugalmas alakváltozásai Nyú y j ú tás y j Hooke törvény, Hooke törvén E E o Y un un modulus a f eszültség ffeszültség
Kontinuumok mechanikája Szabó Gábor egyetemi tanár SZTE Optikai Tanszék Szilárd testek rugalmas alakváltozásai Nyújtás l l = l E F A Hooke törvény, E Young modulus σ = F A σ a feszültség l l l = σ E Szilárd
Transzportfolyamatok. összefoglalás, általánosítás Onsager egyenlet I V J V. (m/s) áramvonal. turbulens áramlás = kaotikusan gomolygó áramlás
1 Transzportfolyamatok Térfogattranszport () - alapfogalmak térfogattranszport () Hagen Poiseuille-törény (elektromos) töltéstranszport (elektr. áram) Ohm-törény anyagtranszport (diffúzió) ick 1. törénye
Folyadékok áramlása Folyadékok. Folyadékok mechanikája. Pascal törvénye
Folyadékok áramlása Folyadékok Folyékony halmazállapot nyíróerő hatására folytonosan deformálódik (folyik) Folyadék Gáz Plazma Talián Csaba Gábor PTE ÁOK, Biofizikai Intézet 2012.09.12. Folyadék Rövidtávú
SEMMELWEIS EGYETEM. Biofizikai és Sugárbiológiai Intézet, Nanokémiai Kutatócsoport. Zrínyi Miklós
SEMMELWEIS EGYETEM Biofizikai és Sugárbiológiai Intézet, Nanokémiai Kutatócsoport Transzportjelenségek az élő szervezetben II. Zrínyi Miklós egyetemi tanár, az MTA levelező tagja mikloszrinyi@gmail.com
Fizika-Biofizika I. DIFFÚZIÓ OZMÓZIS Október 22. Vig Andrea PTE ÁOK Biofizikai Intézet
Fizika-Biofizika I. DIFFÚZIÓ OZMÓZIS 2013. Október 22. Vig Andrea PTE ÁOK Biofizikai Intézet DIFFÚZIÓ 1. KÍSÉRLET Fizika-Biofizika I. - DIFFÚZIÓ 1. kísérlet: cseppentsünk tintát egy üveg vízbe 1. megfigyelés:
Transzportjelenségek
Transzportjelenségek Fizikai kémia előadások 8. Turányi Tamás ELTE Kémiai Intézet lamináris (réteges) áramlás: minden réteget a falhoz közelebbi szomszédja fékez, a faltól távolabbi szomszédja gyorsít
Polimerek reológiája
SZÉCHENYI ISTVÁN EGYETEM ANYAGISMERETI ÉS JÁRMŰGYÁRTÁSI TANSZÉK POLIMERTECHNIKA NGB_AJ050_1 Polimerek reológiája DR Hargitai Hajnalka 2011.09.28. REOLÓGIA Az anyag deformációjának és folyásának a tudománya.
Folyadékok. Fogorvosi anyagtan fizikai alapjai 2. Általános anyagszerkezeti ismeretek Folyadékok, szilárd anyagok, folyadékkristályok.
Folyadékok folyékony szilárd Fogorvosi anyagtan fizikai alapjai 2. Általános anyagszerkezeti ismeretek Folyadékok, szilárd anyagok, folyadékkristályok Kiemelt témák: Viszkozitás Apatit Kristályhibák és
Hidrosztatika, Hidrodinamika
Hidrosztatika, Hidrodinamika Folyadékok alaptulajdonságai folyadék: anyag, amely folyni képes térfogat állandó, alakjuk változó, a tartóedénytől függ a térfogat-változtató erőkkel szemben ellenállást fejtenek
FIZIKA II. Dr. Rácz Ervin. egyetemi docens
FIZIKA II. Dr. Rácz Ervin egyetemi docens Fontos tudnivalók e-mail: racz.ervin@kvk.uni-obuda.hu web: http://uni-obuda.hu/users/racz.ervin/index.htm Iroda: Bécsi út, C. épület, 124. szoba Fizika II. - ismertetés
Ábragyűjtemény levelező hallgatók számára
Ábragyűjtemény levelező hallgatók számára Ez a bemutató a tanszéki Fizika jegyzet kiegészítése Mechanika I. félév 1 Stabilitás Az úszás stabilitása indifferens a stabil, b labilis S súlypont Sf a kiszorított
Fogorvosi anyagtan fizikai alapjai 2. Általános anyagszerkezeti ismeretek Molekulák, folyadékok, szilárd anyagok, folyadékkristályok
Molekulák energiaállapotai E molekula E elektron E (A tankönyvben nem található téma!) vibráció E rotáció pl. vibráció 1 ev 0,1 ev 0,01 ev Fogorvosi anyagtan fizikai alapjai 2. Általános anyagszerkezeti
Az Ampère-Maxwell-féle gerjesztési törvény
Az Ampère-Maxwell-féle gerjesztési törvény Maxwell elméleti meggondolások alapján feltételezte, hogy a változó elektromos tér örvényes mágneses teret kelt (hasonlóan ahhoz ahogy a változó mágneses tér
5. gy. VIZES OLDATOK VISZKOZITÁSÁNAK MÉRÉSE OSTWALD-FENSKE-FÉLE VISZKOZIMÉTERREL
5. gy. VIZES OLDAOK VISZKOZIÁSÁNAK MÉRÉSE OSWALD-FENSKE-FÉLE VISZKOZIMÉERREL A fluid közegek jellemző anyagi tulajdonsága a viszkozitás, mely erősen befolyásolhatja a bennük lejátszódó reakciók sebességét,
Többkomponensű rendszerek. Diszperz rendszerek. Kolloid rendszerek tulajdonságai. Folytonos közegben eloszlatott részecskék - diszperz rendszerek
Többkomponensű rendszerek 7. hét Folytonos közegben eloszlatott részecskék - diszperz rendszerek homogén - kolloid - heterogén rendszerek - a részecskék mérete alapján Diszperz rendszerek Homogén rendszerek
Hidrosztatikus hajtások, BMEGEVGAG11 Munkafolyadékok
Hidrosztatikus hajtások, BMEGEVGAG11 Munkafolyadékok Dr. Hős Csaba, cshos@hds.bme.hu 2017. október 16. Áttekintés 1 Funkciók 2 Viszkozitás 3 Rugalmassági modulusz 4 Olajtípusok A munkafolyadék...... funkciói
Reológia, a koherens rendszerek tulajdonságai
Reológia, a koherens rendszerek tulajdonságai Bányai István http://dragon.unideb.hu/~kolloid/ Koherens rendszerek Szubmikroszkópos vagy durva diszkontinuitásokat tartalmazó rendszerek, amelyekben micellák,
Fogorvosi anyagtan fizikai alapjai 2.
Fogorvosi anyagtan fizikai alapjai 2. Általános anyagszerkezeti ismeretek Folyadékok, szilárd anyagok, folyadékkristályok Kiemelt témák: Viszkozitás Víz és nyál Kristályok - apatit Polimorfizmus Kristályhibák
Molekuláris dinamika I. 10. előadás
Molekuláris dinamika I. 10. előadás Miről is szól a MD? nagy részecskeszámú rendszerek ismerjük a törvényeket mikroszkópikus szinten minden részecske mozgását szimuláljuk? Hogyan tudjuk megérteni a folyadékok,
GEOTECHNIKA I. LGB-SE TALAJOK SZILÁRDSÁGI JELLEMZŐI
GEOTECHNIKA I. LGB-SE005-01 TALAJOK SZILÁRDSÁGI JELLEMZŐI Wolf Ákos Mechanikai állapotjellemzők és egyenletek 2 X A X 3 normál- és 3 nyírófeszültség a hasáb oldalain Y A x y z xy yz zx Z A Y Z ZX YZ A
Az elektromos kettősréteg. Az elektromos potenciálkülönbség eredete, értéke és az azt befolyásoló tényezők. Kolloidok stabilitása.
Az elektromos kettősréteg. Az elektromos potenciálkülönbség eredete, értéke és az azt befolyásoló tényezők. Kolloidok stabilitása. Adszorpció oldatból szilárd felületre Adszorpció oldatból Nem-elektrolitok
Molekulák mozgásban a kémiai kinetika a környezetben
Energiatartalék Molekulák mozgásban a kémiai kinetika a környezetben A termodinamika és a kinetika A termodinamika a lehetőség θ θ θ G = H T S A kinetika a valóság: 1. A fizikai rész: - a reaktánsoknak
3. POLIMEREK DINAMIKUS MECHANIKAI VIZSGÁLATA (DMA )
3. POLIMEREK DINAMIKUS MECHANIKAI VIZSGÁLATA (DMA ) 3.1. A GYAKORLAT CÉLJA A gyakorlat célja a dinamikus mechanikai mérések gyakorlati megismerése polimerek hajlító viselkedésének vizsgálata során. 3..
Kolloidkémia 8. Előadás Kolloidstabilitás. Szőri Milán: Kolloidkémia
Kolloidkémia 8. Előadás Kolloidstabilitás Szőri Milán: Kolloidkémia 1 Kolloidok stabilitása Termodinamikailag lehetnek stabilisak (valódi oldatok) Liofil kolloidok G oldat
TÁMOP F-14/1/KONV Élelmiszeripari műveletek gyakorlati alkalmazásai
TÁMOP-4.1.1.F-14/1/KONV-015-0006 Éleliszeripari űveletek gyakorlati alkalazásai ÉLELMISZERIPARI MŰVELETEK Éleliszeripari technológiákat felépítő, különböző közegek között létrejövő transzportfolyaatok,
Méréstechnika. Rezgésmérés. Készítette: Ángyán Béla. Iszak Gábor. Seidl Áron. Veszprém. [Ide írhatja a szöveget] oldal 1
Méréstechnika Rezgésmérés Készítette: Ángyán Béla Iszak Gábor Seidl Áron Veszprém 2014 [Ide írhatja a szöveget] oldal 1 A rezgésekkel kapcsolatos alapfogalmak A rezgés a Magyar Értelmező Szótár megfogalmazása
Biofizika szeminárium. Diffúzió, ozmózis
Biofizika szeminárium Diffúzió, ozmózis I. DIFFÚZIÓ ORVOSI BIOFIZIKA tankönyv: III./2 fejezet Részecskék mozgása Brown-mozgás Robert Brown o kísérlet: pollenszuszpenzió mikroszkópos vizsgálata o megfigyelés:
Reológia 2. Bányai István DE Kolloid- és Környezetkémiai Tanszék
Reológia 2 Bányai István DE Kolloid- és Környezetkémiai Tanszék Mérése nyomásesés áramlásra p 1 p 2 v=0 folyás csőben z r p 1 p 2 v max I V 1 p p t 8 l 1 2 r 2 x Höppler-típusú viszkoziméter v 2g 9 2 testgömb
Folyadékok. Fogorvosi anyagtan fizikai alapjai 2. Általános anyagszerkezeti ismeretek Folyadékok, szilárd anyagok, folyadékkristályok.
Folyadékok folyékony nincs saját alakja szilárd van saját alakja (deformálás után úgy marad, nem (deformálás után visszaalakul, mert ébrednek benne visszatérítő nyíróerők) visszatérítő nyíróerők léptek
Szilárd testek rugalmassága
Fizika villamosmérnököknek Szilárd testek rugalmassága Dr. Giczi Ferenc Széchenyi István Egyetem, Fizika és Kémia Tanszék Győr, Egyetem tér 1. 1 Deformálható testek (A merev test idealizált határeset.)
FOK Fogorvosi anyagtan fizikai alapjai tárgy kolokviumi kérdései 2012/13-es tanév I. félév
FOK Fogorvosi anyagtan fizikai alapjai tárgy kolokviumi kérdései 2012/13-es tanév I. félév A kollokviumon egy-egy tételt kell húzni az 1-10. és a 11-20. kérdések közül. 1. Atomi kölcsönhatások, kötéstípusok.
Diffúzió 2003 március 28
Diffúzió 3 március 8 Diffúzió: különféle anyagi részecskék (szilárd, folyékony, gáznemű) anyagon belüli helyváltozása. Szilárd anyagban való mozgás Öndiffúzió: a rácsot felépítő saját atomok energiaszint-különbség
Hidraulika. 1.előadás A hidraulika alapjai. Szilágyi Attila, NYE, 2018.
Hidraulika 1.előadás A hidraulika alapjai Szilágyi Attila, NYE, 018. Folyadékok mechanikája Ideális folyadék: homogén, súrlódásmentes, kitölti a rendelkezésre álló teret, nincs nyírófeszültség. Folyadékok
Vérkeringés. A szív munkája
Vérkeringés. A szív munkája 2014.11.04. Keringési Rendszer Szív + erek (artériák, kapillárisok, vénák) alkotta zárt rendszer. Funkció: vér pumpálása vér áramlása az erekben oxigén és tápanyag szállítása
Az α értékének változtatásakor tanulmányozzuk az y-x görbe alakját. 2 ahol K=10
9.4. Táblázatkezelés.. Folyadék gőz egyensúly kétkomponensű rendszerben Az illékonyabb komponens koncentrációja (móltörtje) nagyobb a gőzfázisban, mint a folyadékfázisban. Móltört a folyadékfázisban x;
Folyadékáramlás vérkeringés
olyadékáramlás vérkeringés olyadékok fizikájának jelentősége I. Hemodinamika Kellermayer Miklós Milyenek a véráramlási viszonyok az érrendszerben? olyadékok fizikájának jelentősége II. olyadékban történő
KÖRMOZGÁS, REZGŐMOZGÁS, FORGÓMOZGÁS
KÖRMOZGÁS, REZGŐMOZGÁS, FORGÓMOZGÁS 1 EGYENLETES KÖRMOZGÁS Pálya kör Út ív Definíció: Test körpályán azonos irányban haladva azonos időközönként egyenlő íveket tesz meg. Periodikus mozgás 2 PERIODICITÁS
Reológia Nagy, Roland, Pannon Egyetem
Reológia Nagy, Roland, Pannon Egyetem Reológia írta Nagy, Roland Publication date 2012 Szerzői jog 2012 Pannon Egyetem A digitális tananyag a Pannon Egyetemen a TÁMOP-4.1.2/A/2-10/1-2010-0012 projekt keretében
7.4. Tömény szuszpenziók vizsgálata
ahol t a szuszpenzió, t o a diszperzióközeg kifolyási ideje, k a szuszpenzió, k o pedig a diszperzióközeg sárásége. Kis szuszpenziókoncentrációnál a sáráségek hányadosa elhanyagolható. A mérési eredményeket
Szent István Egyetem FIZIKA. Folyadékok fizikája (Hidrodinamika) Dr. Seres István
Szent István Egyetem (Hidrodinamika) Dr. Seres István Hidrosztatika Ideális folyadékok áramlása Viszkózus folyadékok áramlása Felületi feszültség fft.szie.hu 2 Hidrosztatika Nyomás: p F A Mértékegysége:
merevség engedékeny merev rugalmasság rugalmatlan rugalmas képlékenység nem képlékeny képlékeny alakíthatóság nem alakítható, törékeny alakítható
Értelmező szótár: FAFA: Tudományos elnevezés: merev B mn 1. Nem rugalmas, nem hajlékony . Rugalmasságát, hajlékonyságát vesztett . merevség engedékeny merev Young-modulus, E (Pa)
MECHANIKA I. rész: Szilárd testek mechanikája
Egészségügyi mérnökképzés MECHNIK I. rész: Szilárd testek mechanikája készítette: Németh Róbert Igénybevételek térben I. z alapelv ugyanaz, mint síkban: a keresztmetszet egyik oldalán levő szerkezetrészre
Modern Fizika Labor. 2. Elemi töltés meghatározása
Modern Fizika Labor Fizika BSC A mérés dátuma: 2011.09.27. A mérés száma és címe: 2. Elemi töltés meghatározása Értékelés: A beadás dátuma: 2011.10.11. A mérést végezte: Kalas György Benjámin Németh Gergely
Dinamika. p = mυ = F t vagy. = t
Dinamika Mozgás, alakváltozás és ennek háttere Newton: a mozgás természetes állapot. A témakör egyik kulcsfontosságú fizikai mennyisége az impulzus (p), vagy lendület, vagy mozgásmennyiség. Klasszikus
Mechanika, dinamika. p = m = F t vagy. m t
Mechanika, dinamika Mozgás, alakváltozás és ennek háttere Newton: a mozgás természetes állapot. A témakör egyik kulcsfontosságú fizikai mennyisége az impulzus (p), vagy lendület, vagy mozgásmennyiség.
A diffúzió leírása az anyagmennyiség időbeli változásával A diffúzió leírása a koncentráció térbeli változásával
Kapcsolódó irodalom: Kapcsolódó multimédiás anyag: Az előadás témakörei: 1.A diffúzió fogalma 2. A diffúzió biológiai jelentősége 3. A részecskék mozgása 3.1. A Brown mozgás 4. Mitől függ a diffúzió erőssége?
Molekuláris dinamika. 10. előadás
Molekuláris dinamika 10. előadás Mirőlis szól a MD? nagy részecskeszámú rendszerek ismerjük a törvényeket mikroszkópikus szinten? Hogyan tudjuk megérteni a folyadékok, gázok, szilárdtestek makroszkópikus
Felületi feszültség: cseppfolyós-gáz határfelületen a vonzerő kiegyensúlyozatlan: rugalmas hártyaként viselkedik.
Felületi feszültség: cseppfolyós-gáz határfelületen a vonzerő kiegyensúlyozatlan: rugalmas hártyaként viselkedik. Mérése: L huzalkeret folyadékhártya mozgatható huzal F F = L σ két oldala van a hártyának
Rezgőmozgás. A mechanikai rezgések vizsgálata, jellemzői és dinamikai feltétele
Rezgőmozgás A mechanikai rezgések vizsgálata, jellemzői és dinamikai feltétele A rezgés fogalma Minden olyan változás, amely az időben valamilyen ismétlődést mutat rezgésnek nevezünk. A rezgések fajtái:
W = F s A munka származtatott, előjeles skalármennyiség.
Ha az erő és az elmozdulás egymásra merőleges, akkor fizikai értelemben nem történik munkavégzés. Pl.: ha egy táskát függőlegesen tartunk, és úgy sétálunk, akkor sem a tartóerő, sem a nehézségi erő nem
Optika gyakorlat 6. Interferencia. I = u 2 = u 1 + u I 2 cos( Φ)
Optika gyakorlat 6. Interferencia Interferencia Az interferencia az a jelenség, amikor kett vagy több hullám fázishelyes szuperpozíciója révén a térben állóhullám kép alakul ki. Ez elektromágneses hullámok
Merev testek kinematikája
Merev testek kinematikája Egy pontrendszert merev testnek tekintünk, ha bármely két pontjának távolsága állandó. (f=6, Euler) A merev test tetszőleges mozgása leírható elemi transzlációk és elemi rotációk
A talajok összenyomódásának vizsgálata
A talajok összenyomódásának vizsgálata Amit már tudni kellene Összenyomódás Konszolidáció Normálisan konszolidált talaj Túlkonszolidált talaj Túlkonszolidáltsági arányszám,ocr Konszolidáció az az időben
Diszperz rendszerek. Kolloid rendszerek. Kolloid rendszerek
Diszperz rendszerek 2. hét Többkomponenső - valamilyen folytonos közeg, és a benne eloszlatott részecskék alkotta rendszer Az eloszlatott részecskék mérete alapján: homogén rendszer heterogén rendszer
Elektromos áramerősség
Elektromos áramerősség Két különböző potenciálon lévő fémet vezetővel összekötve töltések áramlanak amíg a potenciál ki nem egyenlítődik. Az elektromos áram iránya a pozitív töltéshordozók áramlási iránya.
Hatvani István fizikaverseny forduló megoldások. 1. kategória. J 0,063 kg kg + m 3
Hatvani István fizikaverseny 016-17. 1. kategória 1..1.a) Két eltérő méretű golyó - azonos magasságból - ugyanakkora végsebességgel ér a talajra. Mert a földfelszín közelében minden szabadon eső test ugyanúgy
Lemez- és gerendaalapok méretezése
Lemez- és gerendaalapok méretezése Az alapmerevség hatása az alap hajlékony merev a talpfeszültség egyenletes széleken nagyobb a süllyedés teknıszerő egyenletes Terhelés hatása hajlékony alapok esetén
Biofizika I. DIFFÚZIÓ OZMÓZIS
1. KÍSÉRLET 1. kísérlet: cseppentsünk tintát egy üveg vízbe Biofizika I. OZMÓZIS 2012. szeptember 5. Dr. Bugyi Beáta PTE ÁOK Biofizikai Intézet 1. megfigyelés: a folt lassan szétterjed és megfesti az egész
MFI mérés BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM GÉPÉSZMÉRNÖKI KAR POLIMERTECHNIKA TANSZÉK HŐRE LÁGYULÓ MŰANYAGOK FOLYÓKÉPESSÉGÉNEK VIZSGÁLATA
B1 BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM GÉPÉSZMÉRNÖKI KAR POLIMERTECHNIKA TANSZÉK MFI mérés HŐRE LÁGYULÓ MŰANYAGOK FOLYÓKÉPESSÉGÉNEK VIZSGÁLATA A JEGYZET ÉRVÉNYESSÉGÉT A TANSZÉKI WEB OLDALON
Q 1 D Q 2 (D x) 2 (1.1)
. Gyakorlat 4B-9 Két pontszerű töltés az x tengelyen a következőképpen helyezkedik el: egy 3 µc töltés az origóban, és egy + µc töltés az x =, 5 m koordinátájú pontban van. Keressük meg azt a helyet, ahol
Folyadékok és gázok mechanikája
Folyadékok és gázok mechanikája A folyadékok nyomása A folyadék súlyából származó nyomást hidrosztatikai nyomásnak nevezzük. Függ: egyenesen arányos a folyadék sűrűségével (ρ) egyenesen arányos a folyadékoszlop
Nyújtás. Ismétlés. Hooke-törvény. Harántösszehúzódás: nyújtásnál/összenyomásnál a térfogat növekszik/csökken
Ismétlés Mozgó vonatkoztatási rendszerek Szilárd testek rugalmassága. (nyújtás és összenyomás, hajlítás, nyírás, csavarás) A rugalmassági állandók közötti összefüggések. Szilárd testek viselkedése az arányossági
Orvosi Fizika 10. Biológiai membránok fizikája, diffúzió, ozmózis Dr. Nagy László
Orvosi Fizika 10. Biológiai membránok fizikája, diffúzió, ozmózis Dr. Nagy László -Az anyagcsere és a transzportfolyamatok. - Makrotranszport : jelentős anyagmennyiségek transzportja : csöveken, edényeken
a térerősség mindig az üreg falára merőleges, ezért a tér ott nem gömbszimmetrikus.
2. Gyakorlat 25A-0 Tekintsünk egy l0 cm sugarú üreges fémgömböt, amelyen +0 µc töltés van. Legyen a gömb középpontja a koordinátarendszer origójában. A gömb belsejében az x = 5 cm pontban legyen egy 3
Előszó.. Bevezetés. 1. A fizikai megismerés alapjai Tér is idő. Hosszúság- és időmérés.
SZABÓ JÁNOS: Fizika (Mechanika, hőtan) I. TARTALOMJEGYZÉK Előszó.. Bevezetés. 1. A fizikai megismerés alapjai... 2. Tér is idő. Hosszúság- és időmérés. MECHANIKA I. Az anyagi pont mechanikája 1. Az anyagi
PÉLDÁK ERŐTÖRVÉNYEKRE
PÉLÁ ERŐTÖRVÉNYERE Szabad erők: erőtörvénnyel megadhatók, általában nem függenek a test mozgásállapotától (sebességtől, gyorsulástól) Példák: nehézségi erő, súrlódási erők, rugalmas erők, felhajtóerők,
Gázok. 5-7 Kinetikus gázelmélet 5-8 Reális gázok (limitációk) Fókusz Légzsák (Air-Bag Systems) kémiája
Gázok 5-1 Gáznyomás 5-2 Egyszerű gáztörvények 5-3 Gáztörvények egyesítése: Tökéletes gáz egyenlet és általánosított gáz egyenlet 5-4 A tökéletes gáz egyenlet alkalmazása 5-5 Gáz halmazállapotú reakciók
A= a keresztmetszeti felület cm 2 ɣ = biztonsági tényező
Statika méretezés Húzás nyomás: Amennyiben a keresztmetszetre húzó-, vagy nyomóerő hat, akkor normálfeszültség (húzó-, vagy nyomó feszültség) keletkezik. Jele: σ. A feszültség: = ɣ Fajlagos alakváltozás:
1.1 Hasonlítsa össze a valós ill. ideális folyadékokat legfontosabb sajátosságaik alapján!
Kérem, þ jellel jelölje be képzését! AKM VBK Környezetmérnök BSc AT0 Ipari termék- és formatervező BSc AM0 Mechatronikus BSc AM Mechatronikus BSc ÁRAMLÁSTAN. FAKULTATÍV ZH 203.04.04. KF8 Név:. NEPTUN kód:
Polimerek fizikai, mechanikai, termikus tulajdonságai
SZÉCHENYI ISTVÁN EGYETEM ANYAGISMERETI ÉS JÁRMŰGYÁRTÁSI TANSZÉK POLIMERTECHNIKA NGB_AJ050_1 Polimerek fizikai, mechanikai, termikus tulajdonságai DR Hargitai Hajnalka 2011.10.05. BURGERS FÉLE NÉGYPARAMÉTERES
Talajmechanika. Aradi László
Talajmechanika Aradi László 1 Tartalom Szemcsealak, szemcsenagyság A talajok szemeloszlás-vizsgálata Természetes víztartalom Plasztikus vizsgálatok Konzisztencia határok Plasztikus- és konzisztenciaindex
Mechanika IV.: Hidrosztatika és hidrodinamika. Vizsgatétel. Folyadékok fizikája. Folyadékok alaptulajdonságai
016.11.18. Vizsgatétel Mechanika IV.: Hidrosztatika és hidrodinamika Hidrosztatika és hidrodinamika: hidrosztatikai nyomás, Pascaltörvény. Newtoni- és nem-newtoni folyadékok, áramlástípusok, viszkozitás.
Kész polimerek reakciói. Makromolekulák átalakítása. Makromolekulák átalakítása. Természetes és mesterséges makromolekulák átalakítása cellulóz, PVAc
Kész polimerek reakciói 8. hét Természetes és mesterséges makromolekulák átalakítása cellulóz, PVAc szabad funkciós csoportok reakciói bomlási folyamatok Térhálósítási folyamatok A cellulóz szabad alkoholos
Folyadékáramlás. Orvosi biofizika (szerk. Damjanovich Sándor, Fidy Judit, Szöllősi János) Medicina Könyvkiadó, Budapest, 2006
14. Előadás Folyadékáramlás Kapcsolódó irodalom: Orvosi biofizika (szerk. Damjanovich Sándor, Fidy Judit, Szöllősi János) Medicina Könyvkiadó, Budapest, 2006 A biofizika alapjai (szerk. Rontó Györgyi,
MFI mérés BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM GÉPÉSZMÉRNÖKI KAR POLIMERTECHNIKA TANSZÉK HŐRE LÁGYULÓ MŰANYAGOK FOLYÓKÉPESSÉGÉNEK VIZSGÁLATA
B2 BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM GÉPÉSZMÉRNÖKI KAR POLIMERTECHNIKA TANSZÉK MFI mérés HŐRE LÁGYULÓ MŰANYAGOK FOLYÓKÉPESSÉGÉNEK VIZSGÁLATA A JEGYZET ÉRVÉNYESSÉGÉT A TANSZÉKI WEB OLDALON
VEGYIPAR ISMERETEK ÁGAZATI SZAKMAI ÉRETTSÉGI VIZSGA KÖZÉPSZINTEN SZÓBELI TÉMAKÖRÖK május - június
1. Méréstechnika 1.1. Méréstechnika alapjai VEGYIPAR ISMERETEK ÁGAZATI SZAKMAI ÉRETTSÉGI VIZSGA KÖZÉPSZINTEN SZÓBELI TÉMAKÖRÖK 2019. május - június méréstechnikai alapfogalmak (mérés, mért érték, mérőszám)
Reakciókinetika és katalízis
Reakciókinetika és katalízis k 4. előadás: 1/14 Különbségek a gázfázisú és az oldatreakciók között: 1 Reaktáns molekulák által betöltött térfogat az oldatreakciónál jóval nagyobb. Nincs akadálytalan mozgás.
Folyadékáramlás vérkeringés
olyadékáramlás érkeringés Kellermayer Miklós olyadékok fizikájának jelentősége I. Hemodinamika Milyenek a éráramlási iszonyok az érrendszerben? olyadékok fizikájának jelentősége II. olyadékban történő
A gáz halmazállapot. A bemutatót összeállította: Fogarasi József, Petrik Lajos SZKI, 2011
A gáz halmazállapot A bemutatót összeállította: Fogarasi József, Petrik Lajos SZKI, 0 Halmazállapotok, állapotjelzők Az anyagi rendszerek a részecskék közötti kölcsönhatásoktól és az állapotjelzőktől függően
Anyagok az energetikában
Anyagok az energetikában BMEGEMTBEA1, 6 krp (3+0+2) Környezeti tényezők hatása, időfüggő mechanikai tulajdonságok Dr. Tamás-Bényei Péter 2018. szeptember 19. Ütemterv 2 / 20 Dátum 2018.09.05 2018.09.19
Kolloidkémia előadás vizsgakérdések
Kolloidkémia előadás vizsgakérdések Egyenletek, képletek esetén minden esetben adja meg a szimbólumok jelentését, és azok mértékegységét!!! Ábrák esetén jelölje melyik tengelyen mit ábrázol, milyen egységben
Fémtechnológiák Fémek képlékeny alakítása 1. Mechanikai alapfogalmak, anyagszerkezeti változások
Miskolci Egyetem Műszaki Anyagtudományi Kar Anyagtudományi Intézet Fémtechnológiák Fémek képlékeny alakítása 1. Mechanikai alapfogalmak, anyagszerkezeti változások Dr.Krállics György krallics@eik.bme.hu
FELÜLETI FESZÜLTSÉG. Jelenség: A folyadék szabad felszíne másképp viselkedik, mint a folyadék belseje.
Jelenség: A folyadék szabad felszíne másképp iselkedik, mint a folyadék belseje. A felületen leő molekulákra a saját részecskéik onzása csak alulról hat, a felülettel érintkező leegő molekulái által kifejtett
Kirchhoff 2. törvénye (huroktörvény) szerint az áramkörben levő elektromotoros erők. E i = U j (3.1)
3. Gyakorlat 29A-34 Egy C kapacitású kondenzátort R ellenálláson keresztül sütünk ki. Mennyi idő alatt csökken a kondenzátor töltése a kezdeti érték 1/e 2 ed részére? Kirchhoff 2. törvénye (huroktörvény)
Fázisátalakulások, avagy az anyag ezer arca. Sasvári László ELTE Fizikai Intézet ELTE Bolyai Kollégium
Fázisátalakulások, avagy az anyag ezer arca Sasvári László ELTE Fizikai Intézet ELTE Bolyai Kollégium Atomoktól a csillagokig, Budapest, 2016. december 8. Fázisátalakulások Csak kondenzált anyag? A kondenzált
Kolloidstabilitás. Berka Márta 2010/2011/II
Kolloidstabilitás Berka Márta 2010/2011/II Kolloid stabilitáshoz taszítás kell. Sztérikus stabilizálás V R V S sztérikus stabilizálás: liofil kolloidok alkalmazása védőhatás adszorpció révén (természetes
1 2. Az anyagi pont kinematikája
1. Az anyagi pont kinematikája 1. Ha egy P anyagi pont egyenes vonalú mozgását az x = 1t +t) egyenlet írja le x a megtett út hossza m-ben), határozzuk meg a pont sebességét és gyorsulását az indulás utáni
http://www.nature.com 1) Magerő-sugár: a magközéppontból mért távolság, ameddig a magerők hatótávolsága terjed. Rutherford-szórásból határozható meg. R=1,4 x 10-13 A 1/3 cm Az atommag terének potenciálja
Folyadékok. Fogorvosi anyagtan fizikai alapjai 2. Általános anyagszerkezeti ismeretek Folyadékok, szilárd anyagok, folyadékkristályok
Folyadékok víz Fogorvosi anyagtan fizikai alapjai 2. Általános anyagszerkezeti ismeretek Folyadékok, szilárd anyagok, folyadékkristályok 1 saját térfogat nincs saját alak/folyékony nincsenek belső nyíróerők