Határfelületi reológia vizsgálata cseppalak analízissel
|
|
- Diána Hegedüsné
- 6 évvel ezelőtt
- Látták:
Átírás
1 Határfelületi reológia vizsgálata cseppalak analízissel A reológia alapjai Reológiai folyamatról akkor beszélünk, ha egy anyagra erő hat, mely az anyag (vagy annak egy darabjának) deformációját eredményezi. A felületi/határfelületi reológia tárgya kvantitatív összefüggések felállítása a határfelület deformációja, a rá vagy benne ható erők/feszültségek és az érintkező fluid fázisokban eredményezett folyás között. A felületi/határfelületi reológiai tulajdonságok közvetett módon tükrözik az adszorpciós réteg szerkezetét, az azt felépítő molekulák közötti intermolekuláris kölcsönhatások jelenlétét, mértékét. Gyakorlati jelentősége van pl. az emulziók, habok előállításában és stabilitásában. A deformációs folyamatokat két fő kategóriába sorolhatjuk be: Ha a τ feszültség hatására bekövetkező λ deformáció reverzibilis, vagyis τ megszűnését követően pillanatszerűen megszűnik, ez az ideálisan rugalmas deformáció, melyet a Hooke-törvény ír le: τ = E λ, ahol E arányossági tényező a rugalmassági modulusz. Ha a rendszer deformációja állandó feszültség mellett időben konstans sebességgel nő, és a feszültség megszűnte után megmarad, ez az ideálisan viszkózus deformáció, vagy newtoni folyás:, t ahol η arányossági tényező a viszkozitás A két alap típus sokféle kombinációja valósul meg a különböző anyagi rendszerekben. A kolloid rendszereknél gyakran előforduló viszkoelasztikus viselkedés egyik modellje a Kelvin-Voigt modell: E t A határfelületi reológia A határfelületi reológia esetében hasonló tárgyalásmódot követünk, bár két dimenzióban bizonyos sajátosságokat mutat a reológiai viselkedés. Ezek közé tartozik a lehetséges anyagtranszport a határfelületi réteg és a tömbfázis belseje között, valamint a többféle deformáció típus: a dilatációs, a nyíró és a hajlító deformáció (1. ábra). 1
2 A y y A + A x x a.) b.) 1. ábra A határfelületben tapasztalható deformáció típusok: a.) dilatációs deformáció, b.) nyírási deformáció, c.) elhajlás c.) A dilatációs reológia olyan folyamatokkal foglalkozik, amelyekben a határfelület nagysága állandó görbület mellett változik (1.a ábra). Ha a felület növekszik a deformáció során, kiterjedésről (dilatációról) beszélünk, ha csökken, akkor összenyomásról (komprimálásról). Ha a határfelületet nyírásnak tesszük ki, miközben nagysága nem változik, akkor a felület érintkező darabjai a határfelület síkjában egymáshoz képest elmozdulnak (1.b. ábra). Egy harmadik típusú határfelületi deformációt is megkülönböztetünk, mely során a határfelület görbülete megváltozik, míg nagysága állandó marad (1.c. ábra). Ez a típusú deformáció az erősen görbült felületekkel rendelkező rendszerekben lehet jelentős, mint amilyenek például a mikroemulziók. A nagyobb görbületi sugárral jellemezhető emulziókban ennek a deformációnak elhanyagolható a szerepe, míg a cseppek deformációja, összefolyása nagymértékben függ a nyírási és dilatációs határfelületi reológiai paraméterektől. A (kétdimenziós) határfelületi reológia a háromdimenziós összenyomási ( határfelületi dilatáció) és nyírási ( határfelületi nyírás) reológiával állítható párhuzamba. A deformáció jellege hasonló két és három dimenzióban, ugyanakkor lényeges különbségek is megfigyelhetők. Pl. a háromdimenziós folyadékok nem (vagy csak igen kis mértékben) nyomhatók össze, míg ez a kétdimenziós folyadékok esetében jelentős lehet. A határfelületi filmek dilatációs reológiáját több módszer segatségével vizsgálhatjuk. Az egyik, ha a határfelületet egy adott állandó sebességgel, bizonyos mértékig kiterjesztjük vagy összenyomjuk, és a határfelületi feszültséget mérjük a határfelület területe függvényében. A felületi feszültség a határfelület megnövelése ellen hat, ezért értelmezhető a határfelületi reológiában deformációs feszültségnek. Ebben az esetben a határfelület dilatációs reológiai viselkedését leíró paraméter a határfelületi dilatációs elasztikus mudulusz, A, A ln A ahol A a határfelület területe, Π az oldalnyomás (Π=γ o γ), ami a nyomás kétdimenziós megfelelője. Kis ε érték nagymértékű kompresszibilitást jelez, amiből az adszorpciós film rugalmasságára, a molekulák flexibilitására lehet következtetni. Lassú komprimálás esetén jelezheti továbbá a
3 molekulák deszorpcióját is. Egy nagy rugalmassági modulusz értékből ugyanakkor a réteg merevségére következtetünk, illetve a molekulák között kialakuló erős kölcsönhatásra következtethetünk. A modulusz időbeli változásából a rétegben bekövetkező változásokra lehet következtetni. Fehérjék esetében például a csökkenés jelentheti a kompakt globuláris molekulák denaturációját, kigombolyodását, melyek így flexibilisebbek lesznek. A modulusz időbeli növekedése a felületi gélesedés jele lehet. A reológiai folyamatokban az idő fontos szerepet kap, a deformált rétegben zajló relaxációs folyamatok és a megfigyelési idő viszonyától függ, hogy egy határfelületi réteget inkább elasztikusnak vagy viszkózusnak mérünk. A dilatációs reológia vizsgálatának egy másik módszere, ha a határfelület méretét pillanatszerűen megváltoztatjuk. Ebben az esetben ki lehet küszöbölni a mobilis molekulák deszorpciójából adódó hatásokat. Az elasztikus modulusz ekkor a Π A0 A kifejezés szerint számolható (. ábra). 0,04 =0 0,041 A =0 / N/m 0,040 0,039 0,038 0,037 0 A 0,036 A 0 0, t / s. ábra Határfelületi relaxációs mérés A deformációt követően a határfelület relaxációja a felületi feszültség mérésén keresztül időben nyomonkövethető és meghatározható a jellemző relaxációs idő a Π Π 0 Be t kifejezés szerint. A relaxációs idő, τ felhasználható önmagában a részecske szerkezetének az értelmezéséhez. A relaxációs idő továbbá felhasználható a a dilatációs viszkózus modulusz meghatározására a 3
4 kifejezés segítségével. A dilatációs modulusz két komponensének az ismeretében a réteg viszkoelaszticitása számszerűen is jellemezhető. Folyadék felületi feszültségének meghatározása cseppalak analízissel A felületi feszültség meghatározásának kis anyagmennyiséget igénylő, gyors, pontos és kényelmes módja a cseppalak analízis. A módszer alapfeltételei: a csepp egy központi függőleges tengely mentén szimmetrikus a csepp nincs mozgásban oly módon, hogy a viszkozitás, illetve a tehetetlenség befolyásolná az alakját. Tehát a cseppalak kialakításáért csak a gravitáció és a felületi feszültség felelős. A készülék vázlatos rajzát az 3. ábra mutatja. 3. ábra Cseppalak analízisen alapuló, videokamerával felszerelt, számítógép vezérelt felületei feszültség mérő berendezés vázlata A felületi feszültség meghatározása a Young-Laplace egyenleten alapszik, mely általánosan 1 1 P R1 R formában adható meg, és egy határfelülettel elválasztott két fluidum közötti nyomáskülönbséget írja le egyensúlyban. Az egyenletben P a nyomáskülönbség, γ a felületi feszültség, R 1 és R a görbült határfelüólet két fő görbületi sugara. Látható, hogy ha nincs görbület (sík határfelület), a nyomáskülönbség nulla. Egy tengelyszimmetrikus görbült felület, mint egy függőcsepp esetén ha a gravitációs erőn kívül nem hat más külső erő, a nyomáskülönbségre felírható, hogy P P0 gz, ahol ρ a határfelülettel elválasztott két fluidum sűrűségkülönbsége, P 0 a nyomáskülönbség egy referencia síkban és z a referencia síkhoz viszonyított magasság. Tengelyszimmetrikus test esetén a két fő görbületi sugár a csepp csúcsánál egyenlő lesz (R). Ha a referencia síkot ebbe a pontba helyezzük, P 0 az alábbi formában adható meg: 4
5 P0. R Egy tengelyszimmetrikus felület fő görbületi sugarai az alábbi differenciál egyenlettel adható meg: 1 1 R R 1 z r z 1 r 3/ z r z r 1 r 1/ Ekkor a tengelyszimmetrikus csepp profilját a Young-Laplace másodrendű differenciálegyenlet írja le: 1 R1 1 R gz R A differenciál egyenletet a mérőprogram a csepp kontúrjának pontjaira illesztve, numerikusan oldja meg. Ehhez bemenő adatként a két fluid fázis sűrűségét kell megadni, eredményül a felületi-, vagy határfelületi feszültséget kapjuk meg. Emellett a csepp felületét és térfogatát is meghatározhatjuk. A mérés menete Készítse el a kiadott, felületaktív (hatású) anyagokból a megadott koncentrációjú vizes oldatokat! Töltse fel a felületi feszültségmérő fecskendőjét! Helyezze el a másik fluidumot tartalmazó küvettát! Ez felületi feszültség mérés esetén a telített gőztér kialakítását szolgálja, míg határfelületi feszültség mérésekor vízzel nem elegyedő folyadékot tartalmazza. A függő csepp kialakítása után mérje a folyadékok felületi feszültségét 15 percen keresztül. A mérésekről mindig készítsen felvételt és a kiértékelést a video fájlokból párhuzamosan végezheti el. Mérje meg a víz felületi feszültségét a levegő/víz (vagy dodekán/víz) határfelületen! Mérje az oldatok felületi feszültségét 15 percen keresztül! A 15. perc után lassan komprimálja a cseppet az eredeti térfogatának a felére! A komprimációs méréseket végezze el perc és 5 perc adszorpciót követően is! Tanulmányozza az adszorpciós réteg relaxációs viselkedését hirtelen, lépcső-szerű komprimálást alkalmazva 5 perces cseppnél, rögzítse a felületi feszültség változásokat még 5 percen keresztül! Jegyzőkönyv Adja meg a felületi és határfelületi feszültség görbéket az idő függvényében a 15 perces intervallumban! Hasonlítsa össze és értelmezzük a változásokat! Foglalja össze táblázatban a lassú komprimációs mérésekből meghatározott határfelületi dilatációs elasztikus moduluszokat, 5 és 15 perces cseppek esetén, 10%-os komprimációnál! A 5
6 meghatározáshoz ábrázolja az oldalnyomást lna függvényében és a 0-10%-os komprimációs szakaszra illesszen egyenest! Vesse össze és értelmezze az eredményeket! A relaxációs mérésből határozza meg dilatációs modulusz elasztikus és viszkózus komponensét. Értelmezze az eredményeket! 6
Reológia Mérési technikák
Reológia Mérési technikák Reológia Testek (és folyadékok) külső erőhatásra bekövetkező deformációját, mozgását írja le. A deformációt irreverzibilisnek nevezzük, ha a az erőhatás megszűnése után a test
RészletesebbenA kolloidika alapjai. 4. Fluid határfelületek
A kolloidika alapjai 4. Fluid határfelületek Kolloid rendszerek csoportosítása 1. Folyadék-gáz határfelület Folyadék-gáz határfelület -felületi szabadenergia = felületi feszültség ( [γ] = mn/m = mj/m 2
Részletesebbenmerevség engedékeny merev rugalmasság rugalmatlan rugalmas képlékenység nem képlékeny képlékeny alakíthatóság nem alakítható, törékeny alakítható
Értelmező szótár: FAFA: Tudományos elnevezés: merev B mn 1. Nem rugalmas, nem hajlékony . Rugalmasságát, hajlékonyságát vesztett . merevség engedékeny merev Young-modulus, E (Pa)
Részletesebben5. gy. VIZES OLDATOK VISZKOZITÁSÁNAK MÉRÉSE OSTWALD-FENSKE-FÉLE VISZKOZIMÉTERREL
5. gy. VIZES OLDAOK VISZKOZIÁSÁNAK MÉRÉSE OSWALD-FENSKE-FÉLE VISZKOZIMÉERREL A fluid közegek jellemző anyagi tulajdonsága a viszkozitás, mely erősen befolyásolhatja a bennük lejátszódó reakciók sebességét,
RészletesebbenHatárfelületi jelenségek: felületi feszültség koncepció
Határfelületi jelenségek: felületi feszültség koncepció Bányai István www.kolloid.unideb.hu 3. óra Kolloidok és a határfelület A kolloidméret felé haladva a fajlagos felület rohamosan növekszik Határfelületi
RészletesebbenHidrosztatika, Hidrodinamika
Hidrosztatika, Hidrodinamika Folyadékok alaptulajdonságai folyadék: anyag, amely folyni képes térfogat állandó, alakjuk változó, a tartóedénytől függ a térfogat-változtató erőkkel szemben ellenállást fejtenek
Részletesebben3. POLIMEREK DINAMIKUS MECHANIKAI VIZSGÁLATA (DMA )
3. POLIMEREK DINAMIKUS MECHANIKAI VIZSGÁLATA (DMA ) 3.1. A GYAKORLAT CÉLJA A gyakorlat célja a dinamikus mechanikai mérések gyakorlati megismerése polimerek hajlító viselkedésének vizsgálata során. 3..
RészletesebbenPolimerek reológiája
SZÉCHENYI ISTVÁN EGYETEM ANYAGTUDOMÁNYI ÉS TECHNOLÓGIAI TANSZÉK POLIMERTECHNIKA NGB_AJ050_1 Polimerek reológiája DR Hargitai Hajnalka REOLÓGIA Az anyag deformációjának és folyásának a tudománya. rheo -
RészletesebbenA talajok összenyomódásának vizsgálata
A talajok összenyomódásának vizsgálata Amit már tudni kellene Összenyomódás Konszolidáció Normálisan konszolidált talaj Túlkonszolidált talaj Túlkonszolidáltsági arányszám,ocr Konszolidáció az az időben
RészletesebbenFOK Fogorvosi anyagtan fizikai alapjai tárgy kolokviumi kérdései 2012/13-es tanév I. félév
FOK Fogorvosi anyagtan fizikai alapjai tárgy kolokviumi kérdései 2012/13-es tanév I. félév A kollokviumon egy-egy tételt kell húzni az 1-10. és a 11-20. kérdések közül. 1. Atomi kölcsönhatások, kötéstípusok.
RészletesebbenPolimerek reológiája
SZÉCHENYI ISTVÁN EGYETEM ANYAGISMERETI ÉS JÁRMŰGYÁRTÁSI TANSZÉK POLIMERTECHNIKA NGB_AJ050_1 Polimerek reológiája DR Hargitai Hajnalka 2011.09.28. REOLÓGIA Az anyag deformációjának és folyásának a tudománya.
RészletesebbenReológia, a koherens rendszerek tulajdonságai
Reológia, a koherens rendszerek tulajdonságai Bányai István http://dragon.unideb.hu/~kolloid/ Koherens rendszerek Szubmikroszkópos vagy durva diszkontinuitásokat tartalmazó rendszerek, amelyekben micellák,
RészletesebbenFolyadékok és gázok mechanikája
Folyadékok és gázok mechanikája A folyadékok nyomása A folyadék súlyából származó nyomást hidrosztatikai nyomásnak nevezzük. Függ: egyenesen arányos a folyadék sűrűségével (ρ) egyenesen arányos a folyadékoszlop
RészletesebbenCsavarorsós emelőbak tervezési feladat Gépészmérnök, Járműmérnök, Mechatronikai mérnök, Logisztikai mérnök, Mérnöktanár (osztatlan) BSC szak
Csavarorsós emelőbak tervezési feladat Gépészmérnök, Járműmérnök, Mechatronikai mérnök, Logisztikai mérnök, Mérnöktanár (osztatlan) BSC szak A feladat részletezése: Név:.. Csoport:... A számításnak (órai)
RészletesebbenKolloidkémia 5. előadás Határfelületi jelenségek II. Folyadék-folyadék, szilárd-folyadék határfelületek. Szőri Milán: Kolloidkémia
Kolloidkémia 5. előadás Határfelületi jelenségek II. Folyadék-folyadék, szilárd-folyadék határfelületek 1 Határfelületi rétegek 2 Pavel Jungwirth, Nature, 2011, 474, 168 169. / határfelületi jelenségek
RészletesebbenNEDVESEDÉS (KONTAKT NEDVESEDÉS TANULMÁNYOZÁSA TENZIDOLDATOKKAL)
NEDVESEDÉS (KONTAKT NEDVESEDÉS TANULMÁNYOZÁSA TENZIDOLDATOKKAL) /Az elméleti számonkérés mindig a gyakorlatok legelején írásos formában történik az előadások idetartozó anyaga, valamint Szekrényesy T.:
RészletesebbenHIDROSZTATIKA, HIDRODINAMIKA
HIDROSZTATIKA, HIDRODINAMIKA Hidrosztatika a nyugvó folyadékok fizikájával foglalkozik. Hidrodinamika az áramló folyadékok fizikájával foglalkozik. Folyadékmodell Önálló alakkal nem rendelkeznek. Térfogatuk
RészletesebbenModern Fizika Labor. 2. Elemi töltés meghatározása
Modern Fizika Labor Fizika BSC A mérés dátuma: 2011.09.27. A mérés száma és címe: 2. Elemi töltés meghatározása Értékelés: A beadás dátuma: 2011.10.11. A mérést végezte: Kalas György Benjámin Németh Gergely
RészletesebbenReológia, a koherens (nem-koherens) rendszerek tulajdonságai
Reológia, a koherens (nem-koherens) rendszerek tulajdonságai Bányai István kolloid.unideb.hu Koherens rendszerek Szubmikroszkópos vagy durva diszkontinuitásokat tartalmazó rendszerek, amelyekben micellák,
RészletesebbenMőködési elv alapján. Alkalmazás szerint. Folyadéktöltéső nyomásmérık Rugalmas alakváltozáson alapuló nyomásmérık. Manométerek Barométerek Vákuummérık
Nyomásm smérés Nyomásm smérés Mőködési elv alapján Folyadéktöltéső nyomásmérık Rugalmas alakváltozáson alapuló nyomásmérık Alkalmazás szerint Manométerek Barométerek Vákuummérık Nyomásm smérés Mérési módszer
Részletesebben6. Oldatok felületi feszültségének meghatározása. Előkészítő előadás
6. Oldatok felületi feszültségének meghatározása Előkészítő előadás 2017.02.13. Elméleti áttekintés Felületi feszültség: a szabadentalpia függvény felület szerinti parciális deriváltja. Ez termodinamikai
Részletesebben5. Az adszorpciós folyamat mennyiségi leírása a Langmuir-izoterma segítségével
5. Az adszorpciós folyamat mennyiségi leírása a Langmuir-izoterma segítségével 5.1. Átismétlendő anyag 1. Adszorpció (előadás) 2. Langmuir-izoterma (előadás) 3. Spektrofotometria és Lambert Beer-törvény
Részletesebben9. Laboratóriumi gyakorlat NYOMÁSÉRZÉKELŐK
9. Laboratóriumi gyakorlat NYOMÁSÉRZÉKELŐK 1.A gyakorlat célja Az MPX12DP piezorezisztiv differenciális nyomásérzékelő tanulmányozása. A nyomás feszültség p=f(u) karakterisztika megrajzolása. 2. Elméleti
RészletesebbenFolyadékok és gázok mechanikája
Folyadékok és gázok mechanikája Hidrosztatikai nyomás A folyadékok és gázok közös tulajdonsága, hogy alakjukat szabadon változtatják. Hidrosztatika: nyugvó folyadékok mechanikája Nyomás: Egy pontban a
RészletesebbenA nyomás. IV. fejezet Összefoglalás
A nyomás IV. fejezet Összefoglalás Mit nevezünk nyomott felületnek? Amikor a testek egymásra erőhatást gyakorolnak, felületeik egy része egymáshoz nyomódik. Az egymásra erőhatást kifejtő testek érintkező
RészletesebbenA 2017/2018. tanévi Országos Középiskolai Tanulmányi Verseny döntő forduló FIZIKA II. KATEGÓRIA JAVÍTÁSI ÚTMUTATÓ. Pohár rezonanciája
Oktatási Hivatal A 017/018. tanévi Országos Középiskolai Tanulmányi Verseny döntő forduló FIZIKA II. KATEGÓRIA JAVÍTÁSI ÚTMUTATÓ Pohár rezonanciája A mérőberendezés leírása: A mérőberendezés egy változtatható
RészletesebbenFogorvosi anyagtan fizikai alapjai 6.
Fogorvosi anyagtan fizikai alapjai 6. Mechanikai tulajdonságok 1. Kiemelt témák: Rugalmas alakváltozás Merevség és összefüggése a kötési energiával A geometriai tényezők szerepe egy test merevségében Tankönyv
Részletesebbenegyetemi tanár Nyugat-Magyarországi Egyetem
egyetemi tanár Nyugat-Magyarországi Egyetem Folyadékok szerkezeti jellemz i Az el adás témakörei: Mit nevezünk folyadéknak? - részecskék kölcsönhatása, rendezettsége - mechanikai viselkedése alapján A
RészletesebbenPÉLDÁK ERŐTÖRVÉNYEKRE
PÉLÁ ERŐTÖRVÉNYERE Szabad erők: erőtörvénnyel megadhatók, általában nem függenek a test mozgásállapotától (sebességtől, gyorsulástól) Példák: nehézségi erő, súrlódási erők, rugalmas erők, felhajtóerők,
RészletesebbenModern Fizika Labor. 2. Az elemi töltés meghatározása. Fizika BSc. A mérés dátuma: nov. 29. A mérés száma és címe: Értékelés:
Modern Fizika Labor Fizika BSc A mérés dátuma: 2011. nov. 29. A mérés száma és címe: 2. Az elemi töltés meghatározása Értékelés: A beadás dátuma: 2011. dec. 11. A mérést végezte: Szőke Kálmán Benjamin
RészletesebbenÁbragyűjtemény levelező hallgatók számára
Ábragyűjtemény levelező hallgatók számára Ez a bemutató a tanszéki Fizika jegyzet kiegészítése Mechanika I. félév 1 Stabilitás Az úszás stabilitása indifferens a stabil, b labilis S súlypont Sf a kiszorított
RészletesebbenAnyagok az energetikában
Anyagok az energetikában BMEGEMTBEA1, 6 krp (3+0+2) Környezeti tényezők hatása, időfüggő mechanikai tulajdonságok Dr. Tamás-Bényei Péter 2018. szeptember 19. Ütemterv 2 / 20 Dátum 2018.09.05 2018.09.19
RészletesebbenPolimerek fizikai, mechanikai, termikus tulajdonságai
SZÉCHENYI ISTVÁN EGYETEM ANYAGISMERETI ÉS JÁRMŰGYÁRTÁSI TANSZÉK POLIMERTECHNIKA NGB_AJ050_1 Polimerek fizikai, mechanikai, termikus tulajdonságai DR Hargitai Hajnalka 2011.10.05. BURGERS FÉLE NÉGYPARAMÉTERES
RészletesebbenModern Fizika Labor. 12. Infravörös spektroszkópia. Fizika BSc. A mérés dátuma: okt. 04. A mérés száma és címe: Értékelés:
Modern Fizika Labor Fizika BSc A mérés dátuma: 011. okt. 04. A mérés száma és címe: 1. Infravörös spektroszkópia Értékelés: A beadás dátuma: 011. dec. 1. A mérést végezte: Domokos Zoltán Szőke Kálmán Benjamin
RészletesebbenHatvani István fizikaverseny forduló megoldások. 1. kategória. J 0,063 kg kg + m 3
Hatvani István fizikaverseny 016-17. 1. kategória 1..1.a) Két eltérő méretű golyó - azonos magasságból - ugyanakkora végsebességgel ér a talajra. Mert a földfelszín közelében minden szabadon eső test ugyanúgy
RészletesebbenFolyadékok és gázok áramlása
Folyadékok és gázok áramlása Hőkerék készítése házilag Gázok és folyadékok áramlása A meleg fűtőtest vagy rezsó felett a levegő felmelegszik és kitágul, sűrűsége kisebb lesz, mint a környezetéé, ezért
RészletesebbenRunge-Kutta módszerek
Runge-Kutta módszerek A Runge-Kutta módszerek az Euler módszer továbbfejlesztésének, javításának tekinthetők, kezdeti értékkel definiált differenciál egyenletek megoldására. Előnye hogy a megoldás során
RészletesebbenFolyadékáramlás. Orvosi biofizika (szerk. Damjanovich Sándor, Fidy Judit, Szöllősi János) Medicina Könyvkiadó, Budapest, 2006
14. Előadás Folyadékáramlás Kapcsolódó irodalom: Orvosi biofizika (szerk. Damjanovich Sándor, Fidy Judit, Szöllősi János) Medicina Könyvkiadó, Budapest, 2006 A biofizika alapjai (szerk. Rontó Györgyi,
Részletesebben5. A súrlódás. Kísérlet: Mérje meg a kiadott test és az asztal között mennyi a csúszási súrlódási együttható!
FIZIKA KÖZÉPSZINTŰ SZÓBELI VIZSGA TÉMAKÖREI ÉS KÍSÉRLETEI a 2015/2016. tanév május-júniusi vizsgaidőszakában Vizsgabizottság: 12.a Vizsgáztató tanár: Bartalosné Agócs Irén 1. Egyenes vonalú mozgások dinamikai
RészletesebbenMit nevezünk nehézségi erőnek?
Mit nevezünk nehézségi erőnek? Azt az erőt, amelynek hatására a szabadon eső testek g (gravitációs) gyorsulással esnek a vonzó test centruma felé, nevezzük nehézségi erőnek. F neh = m g Mi a súly? Azt
RészletesebbenA= a keresztmetszeti felület cm 2 ɣ = biztonsági tényező
Statika méretezés Húzás nyomás: Amennyiben a keresztmetszetre húzó-, vagy nyomóerő hat, akkor normálfeszültség (húzó-, vagy nyomó feszültség) keletkezik. Jele: σ. A feszültség: = ɣ Fajlagos alakváltozás:
RészletesebbenFolyadékok áramlása Folyadékok. Folyadékok mechanikája. Pascal törvénye
Folyadékok áramlása Folyadékok Folyékony halmazállapot nyíróerő hatására folytonosan deformálódik (folyik) Folyadék Gáz Plazma Talián Csaba Gábor PTE ÁOK, Biofizikai Intézet 2012.09.12. Folyadék Rövidtávú
RészletesebbenDR. DEMÉNY ANDRÁS-I)R. EROSTYÁK JÁNOS- DR. SZABÓ GÁBOR-DR. TRÓCSÁNYI ZOLTÁN FIZIKA I. Klasszikus mechanika NEMZETI TANKÖNYVKIADÓ, BUDAPEST
DR. DEMÉNY ANDRÁS-I)R. EROSTYÁK JÁNOS- DR. SZABÓ GÁBOR-DR. TRÓCSÁNYI ZOLTÁN FIZIKA I Klasszikus mechanika NEMZETI TANKÖNYVKIADÓ, BUDAPEST Előszó a Fizika című tankönyvsorozathoz Előszó a Fizika I. (Klasszikus
RészletesebbenSzilárd testek rugalmas alakváltozásai Nyú y j ú tás y j Hooke törvény, Hooke törvén E E o Y un un modulus a f eszültség ffeszültség
Kontinuumok mechanikája Szabó Gábor egyetemi tanár SZTE Optikai Tanszék Szilárd testek rugalmas alakváltozásai Nyújtás l l = l E F A Hooke törvény, E Young modulus σ = F A σ a feszültség l l l = σ E Szilárd
RészletesebbenSzilárd testek rugalmassága
Fizika villamosmérnököknek Szilárd testek rugalmassága Dr. Giczi Ferenc Széchenyi István Egyetem, Fizika és Kémia Tanszék Győr, Egyetem tér 1. 1 Deformálható testek (A merev test idealizált határeset.)
RészletesebbenW = F s A munka származtatott, előjeles skalármennyiség.
Ha az erő és az elmozdulás egymásra merőleges, akkor fizikai értelemben nem történik munkavégzés. Pl.: ha egy táskát függőlegesen tartunk, és úgy sétálunk, akkor sem a tartóerő, sem a nehézségi erő nem
RészletesebbenFELÜLETI FESZÜLTSÉG. Jelenség: A folyadék szabad felszíne másképp viselkedik, mint a folyadék belseje.
Jelenség: A folyadék szabad felszíne másképp iselkedik, mint a folyadék belseje. A felületen leő molekulákra a saját részecskéik onzása csak alulról hat, a felülettel érintkező leegő molekulái által kifejtett
RészletesebbenBevezetés a modern fizika fejezeteibe. 1.(a) Rugalmas hullámok. Utolsó módosítás: szeptember 28. Dr. Márkus Ferenc BME Fizika Tanszék
Bevezetés a modern fizika fejezeteibe 1.(a) Rugalmas hullámok Utolsó módosítás: 2012. szeptember 28. 1 A deformálható testek mozgása (1) A Helmholtz-féle kinematikai alaptétel: A deformálható test elegendően
RészletesebbenA LÉGKÖRBEN HATÓ ERŐK, EGYENSÚLYI MOZGÁSOK A LÉGKÖRBEN
A LÉGKÖRBEN HATÓ ERŐK, EGYENSÚLYI MOZGÁSOK A LÉGKÖRBEN Egy testre ható erő, a más testekkel való kölcsönhatás mértékére jellemző fizikai mennyiség. A légkörben ható erők Külső erők: A Föld tömegéből következő
RészletesebbenMECHANIKA I. rész: Szilárd testek mechanikája
Egészségügyi mérnökképzés MECHNIK I. rész: Szilárd testek mechanikája készítette: Németh Róbert Igénybevételek térben I. z alapelv ugyanaz, mint síkban: a keresztmetszet egyik oldalán levő szerkezetrészre
RészletesebbenA.2. Acélszerkezetek határállapotai
A.. Acélszerkezetek határállapotai A... A teherbírási határállapotok első osztálya: a szilárdsági határállapotok A szilárdsági határállapotok (melyek között a fáradt és rideg törést e helyütt nem tárgyaljuk)
RészletesebbenMolekuláris dinamika I. 10. előadás
Molekuláris dinamika I. 10. előadás Miről is szól a MD? nagy részecskeszámú rendszerek ismerjük a törvényeket mikroszkópikus szinten minden részecske mozgását szimuláljuk? Hogyan tudjuk megérteni a folyadékok,
RészletesebbenTranszportjelenségek
Transzportjelenségek Fizikai kémia előadások 8. Turányi Tamás ELTE Kémiai Intézet lamináris (réteges) áramlás: minden réteget a falhoz közelebbi szomszédja fékez, a faltól távolabbi szomszédja gyorsít
RészletesebbenMivel foglalkozik a hőtan?
Hőtan Gáztörvények Mivel foglalkozik a hőtan? A hőtan a rendszerek hőmérsékletével, munkavégzésével, és energiájával foglalkozik. A rendszerek stabilitása áll a fókuszpontjában. Képes megválaszolni a kérdést:
RészletesebbenSzilárd anyagok mechanikája. Karádi Kristóf Fogorvosi biofizika Biofizikai Intézet, PTE ÁOK
Szilárd anyagok mechanikája Karádi Kristóf Fogorvosi biofizika Biofizikai Intézet, PTE ÁOK 2016. 10. 15. Fogak esetén a legközvetlenebb terhelés típus mindig mechanikai: az élelmet mechanikai módon szedi
RészletesebbenA LÉGKÖRBEN HATÓ ERŐK, EGYENSÚLYI MOZGÁSOK A LÉGKÖRBEN
A LÉGKÖRBEN HATÓ ERŐK, EGYENSÚLYI MOZGÁSOK A LÉGKÖRBEN Egy testre ható erő, a más testekkel való kölcsönhatás mértékére jellemző fizikai mennyiség. A légkörben ható erők Külső erők: A Föld tömegéből következő
RészletesebbenAz elektromos kettősréteg. Az elektromos potenciálkülönbség eredete, értéke és az azt befolyásoló tényezők. Kolloidok stabilitása.
Az elektromos kettősréteg. Az elektromos potenciálkülönbség eredete, értéke és az azt befolyásoló tényezők. Kolloidok stabilitása. Adszorpció oldatból szilárd felületre Adszorpció oldatból Nem-elektrolitok
Részletesebben1 Műszaki hőtan Termodinamika. Ellenőrző kérdések-02 1
1 Műszaki hőtan Termodinamika. Ellenőrző kérdések-02 1 Kérdések. 1. Mit mond ki a termodinamika nulladik főtétele? Azt mondja ki, hogy mindenegyes termodinamikai kölcsönhatáshoz tartozik a TDR-nek egyegy
RészletesebbenTÖBBKOMPONENS RENDSZEREK FÁZISEGYENSÚLYAI II. Ismerjük fel, hogy többkomponens fázisegyensúlyokban a folyadék fázisnak kitüntetett szerepe van!
TÖKOMPONENS RENDSZEREK FÁZISEGYENSÚLYI II Ismerjük fel hogy többkomonens fázisegyensúlyokban a folyadék fázisnak kitüntetett szeree van! Eddig: egymásban korátlanul oldódó folyadékok folyadék-gz egyensúlyai
RészletesebbenFüggvények vizsgálata
Függvények vizsgálata ) Végezzük el az f ) = + polinomfüggvény vizsgálatát! Értelmezési tartomány: D f = R. Zérushelyek: Próbálgatással könnyen adódik, hogy f ) = 0. Ezután polinomosztással: + ) / ) =
RészletesebbenMikroszkóp vizsgálata Folyadék törésmutatójának mérése
KLASSZIKUS FIZIKA LABORATÓRIUM 8. MÉRÉS Mikroszkóp vizsgálata Folyadék törésmutatójának mérése Mérést végezte: Enyingi Vera Atala ENVSAAT.ELTE Mérés időpontja: 2011. október 12. Szerda délelőtti csoport
RészletesebbenDiffúzió 2003 március 28
Diffúzió 3 március 8 Diffúzió: különféle anyagi részecskék (szilárd, folyékony, gáznemű) anyagon belüli helyváltozása. Szilárd anyagban való mozgás Öndiffúzió: a rácsot felépítő saját atomok energiaszint-különbség
Részletesebben58. ročník Fyzikálnej olympiády v školskom roku 2016/2017 Okresné kolo kategórie E Texty úloh v maďarskom jazyku
58. ročník Fyzikálnej olympiády v školskom roku 2016/2017 Okresné kolo kategórie E Texty úloh v maďarskom jazyku Megjegyzés a feladatok megoldásához: A feladatok szövegezésében használjuk a vektor kifejezést,
RészletesebbenHidraulika. 1.előadás A hidraulika alapjai. Szilágyi Attila, NYE, 2018.
Hidraulika 1.előadás A hidraulika alapjai Szilágyi Attila, NYE, 018. Folyadékok mechanikája Ideális folyadék: homogén, súrlódásmentes, kitölti a rendelkezésre álló teret, nincs nyírófeszültség. Folyadékok
RészletesebbenTömegpontok mozgása egyenes mentén, hajítások
2. gyakorlat 1. Feladatok a kinematika tárgyköréből Tömegpontok mozgása egyenes mentén, hajítások 1.1. Feladat: Mekkora az átlagsebessége annak pontnak, amely mozgásának első szakaszában v 1 sebességgel
RészletesebbenA végeselem módszer alapjai. 2. Alapvető elemtípusok
A végeselem módszer alapjai Előadás jegyzet Dr. Goda Tibor 2. Alapvető elemtípusok - A 3D-s szerkezeteket vagy szerkezeti elemeket gyakran egyszerűsített formában modellezzük rúd, gerenda, 2D-s elemek,
RészletesebbenHangfrekvenciás mechanikai rezgések vizsgálata
Hangfrekvenciás mechanikai rezgések vizsgálata (Mérési jegyzőkönyv) Hagymási Imre 2007. május 7. (hétfő délelőtti csoport) 1. Bevezetés Ebben a mérésben a szilárdtestek rugalmas tulajdonságait vizsgáljuk
RészletesebbenBUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM Épületgépészeti és Gépészeti Eljárástechnika Tanszék HALLGATÓI SEGÉDLET
BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM Épületgépészeti és Gépészeti Eljárástechnika Tanszék HALLGATÓI SEGÉDLET Keverő ellenállás tényezőjének meghatározása Készítette: Hégely László, átdolgozta
Részletesebben2. Hangfrekvenciás mechanikai rezgések vizsgálata jegyzőkönyv. Zsigmond Anna Fizika Bsc II. Mérés dátuma: Leadás dátuma:
2. Hangfrekvenciás mechanikai rezgések vizsgálata jegyzőkönyv Zsigmond Anna Fizika Bsc II. Mérés dátuma: 2008. 09. 24. Leadás dátuma: 2008. 10. 01. 1 1. Mérések ismertetése Az 1. ábrán látható összeállításban
RészletesebbenTartószerkezetek I. (Vasbeton szilárdságtan)
Tartószerkezetek I. (Vasbeton szilárdságtan) Szép János 2012.10.11. Vasbeton külpontos nyomása Az eső ágú σ-ε diagram miatt elvileg minden egyes esethez külön kell meghatározni a szélső szál összenyomódását.
RészletesebbenFémtechnológiák Fémek képlékeny alakítása 1. Mechanikai alapfogalmak, anyagszerkezeti változások
Miskolci Egyetem Műszaki Anyagtudományi Kar Anyagtudományi Intézet Fémtechnológiák Fémek képlékeny alakítása 1. Mechanikai alapfogalmak, anyagszerkezeti változások Dr.Krállics György krallics@eik.bme.hu
RészletesebbenMolekuláris dinamika. 10. előadás
Molekuláris dinamika 10. előadás Mirőlis szól a MD? nagy részecskeszámú rendszerek ismerjük a törvényeket mikroszkópikus szinten? Hogyan tudjuk megérteni a folyadékok, gázok, szilárdtestek makroszkópikus
Részletesebbenrugós erőmérő parafa dugó kapilláris csövek drótkeret cérnaszállal műanyag pohár víz, mosogatószer
A kísérlet célkitűzései: A folyadék felületén lejátszódó jelenségek értelmezése, adhéziós és kohéziós erők fogalmának megismerése Eszközszükséglet: kristályosító csésze rugós erőmérő parafa dugó üveglap
RészletesebbenAz α értékének változtatásakor tanulmányozzuk az y-x görbe alakját. 2 ahol K=10
9.4. Táblázatkezelés.. Folyadék gőz egyensúly kétkomponensű rendszerben Az illékonyabb komponens koncentrációja (móltörtje) nagyobb a gőzfázisban, mint a folyadékfázisban. Móltört a folyadékfázisban x;
RészletesebbenMágneses és elektromos térre érzékeny kompozit gélek és elasztomerek előállítása Dr. Filipcsei Genovéva Zárójelentés
Mágneses és elektromos térre érzékeny kompozit gélek és elasztomerek előállítása Dr. Filipcsei Genovéva Zárójelentés Az évszázad utolsó tíz éve jelentős változást eredményezett az anyagtudományban. Az
Részletesebben1. Feladatok a termodinamika tárgyköréből
. Feladatok a termodinamika tárgyköréből Hővezetés, hőterjedés sugárzással.. Feladat: (HN 9A-5) Egy épület téglafalának mérete: 4 m 0 m és, a fal 5 cm vastag. A hővezetési együtthatója λ = 0,8 W/m K. Mennyi
RészletesebbenA Föld középpontja felé szabadon eső test sebessége növekszik, azaz, a
a Matematika mérnököknek I. című tárgyhoz Függvények. Függvények A Föld középpontja felé szabadon eső test sebessége növekszik, azaz, a szabadon eső test sebessége az idő függvénye. Konstans hőmérsékleten
RészletesebbenHangfrekvenciás mechanikai rezgések vizsgálata
KLASSZIKUS FIZIKA LABORATÓRIUM 3. MÉRÉS Hangfrekvenciás mechanikai rezgések vizsgálata Mérést végezte: Enyingi Vera Atala ENVSAAT.ELTE Mérés időpontja: 2011. november 23. Szerda délelőtti csoport 1. A
RészletesebbenA LÉGKÖRBEN HATÓ ERŐK, EGYENSÚLYI MOZGÁSOK A LÉGKÖRBEN
A LÉGKÖRBEN HATÓ ERŐK, EGYENSÚLYI MOZGÁSOK A LÉGKÖRBEN Egy testre ható erő a más testekkel való kölcsönhatás mértékére jellemző fizikai mennyiség. A légkörben ható erők Külső erők: A Föld tömegéből következő
RészletesebbenEjtési teszt modellezése a tervezés fázisában
Antal Dániel, doktorandusz, Miskolci Egyetem Robert Bosch Mechatronikai Tanszék Szabó Tamás, egyetemi docens, Ph.D., Miskolci Egyetem Robert Bosch Mechatronikai Tanszék Szilágyi Attila, egyetemi adjunktus,
RészletesebbenMágneses szuszceptibilitás mérése
KLASSZIKUS FIZIKA LABORATÓRIUM 7. MÉRÉS Mágneses szuszceptibilitás mérése Mérést végezte: Enyingi Vera Atala ENVSAAT.ELTE Mérés időpontja: 2011. október 5. Szerda délelőtti csoport 1. A mérés célja Az
RészletesebbenRugalmas állandók mérése
KLASSZIKUS FIZIKA LABORATÓRIUM 2. MÉRÉS Rugalmas állandók mérése Mérést végezte: Enyingi Vera Atala ENVSAAT.ELTE Mérés időpontja: 2011. november 16. Szerda délelőtti csoport 1. A mérés rövid leírása Mérésem
RészletesebbenMérések állítható hajlásszögű lejtőn
A mérés célkitűzései: A lejtőn lévő testek egyensúlyának vizsgálata, erők komponensekre bontása. Eszközszükséglet: állítható hajlásszögű lejtő különböző fahasábok kiskocsi erőmérő 20 g-os súlyok 1. ábra
RészletesebbenFelületi feszültség: cseppfolyós-gáz határfelületen a vonzerő kiegyensúlyozatlan: rugalmas hártyaként viselkedik.
Felületi feszültség: cseppfolyós-gáz határfelületen a vonzerő kiegyensúlyozatlan: rugalmas hártyaként viselkedik. Mérése: L huzalkeret folyadékhártya mozgatható huzal F F = L σ két oldala van a hártyának
RészletesebbenGEOTECHNIKA I. LGB-SE TALAJOK SZILÁRDSÁGI JELLEMZŐI
GEOTECHNIKA I. LGB-SE005-01 TALAJOK SZILÁRDSÁGI JELLEMZŐI Wolf Ákos Mechanikai állapotjellemzők és egyenletek 2 X A X 3 normál- és 3 nyírófeszültség a hasáb oldalain Y A x y z xy yz zx Z A Y Z ZX YZ A
RészletesebbenBME Gépészmérnöki Kar 3. vizsga (112A) Név: 1 Műszaki Mechanikai Tanszék január 11. Neptun: 2 Szilárdságtan Aláírás: 3
BME Gépészmérnöki Kar 3. vizsga (2A) Név: Műszaki Mechanikai Tanszék 2. január. Neptun: 2 Szilárdságtan Aláírás: 3. feladat (2 pont) A vázolt befogott tartót a p intenzitású megoszló erőrendszer, az F
RészletesebbenBIOMATEMATIKA ELŐADÁS
BIOMATEMATIKA ELŐADÁS 6. Differenciálegyenletekről röviden Debreceni Egyetem, 2015 Dr. Bérczes Attila, Bertók Csanád A diasor tartalma 1 Bevezetés 2 Elsőrendű differenciálegyenletek Definíciók Kezdetiérték-probléma
Részletesebben1. előadás. Gáztörvények. Fizika Biofizika I. 2015/2016. Kapcsolódó irodalom:
1. előadás Gáztörvények Kapcsolódó irodalom: Fizikai-kémia I: Kémiai Termodinamika(24-26 old) Chemical principles: The quest for insight (Atkins-Jones) 6. fejezet Kapcsolódó multimédiás anyag: Youtube:
RészletesebbenKvázisztatikus határeset Kritikus állapot Couette-teszt
Wacha András Kvázisztatikus határeset Kritikus állapot Couette-teszt 2006. november 9. Kvázisztatikus határeset GDR_MiDi. On dense granular flows. Eur. Phys. J. E 14. pp 341-365 (2004). Dimenziótlan paraméterek
RészletesebbenPOLIMERTECHNIKA Laboratóriumi gyakorlat
MÉRÉSI JEGYZŐKÖNYV Polimer anyagvizsgálat Név: Neptun kód: Dátum:. Gyakorlat célja: 1. Műanyagok folyóképességének vizsgálata, fontosabb reológiai jellemzők kiszámítása 2. Műanyagok Charpy-féle ütővizsgálata
RészletesebbenNE HABOZZ! KÍSÉRLETEZZ!
NE HABOZZ! KÍSÉRLETEZZ! FOLYADÉKOK FELSZÍNI TULAJDONSÁGAINAK VIZSGÁLATA KICSIKNEK ÉS NAGYOKNAK Országos Fizikatanári Ankét és Eszközbemutató Gödöllő 2017. Ötletbörze Kicsiknek 1. feladat: Rakj három 10
RészletesebbenA gyógyszertechnológia reológiai alapjai Bevezetés. Pécsi Tudományegyetem Gyógyszertechnológiai és Biofarmáciai Intézet
A gyógyszertechnológia reológiai alapjai Bevezetés Pécsi Tudományegyetem Gyógyszertechnológiai és Biofarmáciai Intézet Az előadás rövid vázlata - A reológia fontossága a gyógyszerészetben - Bevezetés a
RészletesebbenMechanika - Versenyfeladatok
Mechanika - Versenyfeladatok 1. A mellékelt ábrán látható egy jobbmenetű csavar és egy villáskulcs. A kulcsra ható F erővektor nyomatékot fejt ki a csavar forgatása céljából. Az erő támadópontja és az
RészletesebbenTermodinamika (Hőtan)
Termodinamika (Hőtan) Termodinamika A hőtan nagyszámú részecskéből (pl. gázmolekulából) álló makroszkópikus rendszerekkel foglalkozik. A nagy számok miatt érdemes a mólt bevezetni, ami egy Avogadro-számnyi
RészletesebbenTermoelektromos hűtőelemek vizsgálata
KLASSZIKUS FIZIKA LABORATÓRIUM 4. MÉRÉS Termoelektromos hűtőelemek vizsgálata Mérést végezte: Enyingi Vera Atala ENVSAAT.ELTE Mérés időpontja: 2011. november 30. Szerda délelőtti csoport 1. A mérés célja
RészletesebbenAz úszás biomechanikája
Az úszás biomechanikája Alapvető összetevők Izomerő Kondíció állóképesség Mozgáskoordináció kivitelezés + Nem levegő, mint közeg + Izmok nem gravitációval szembeni mozgása + Levegővétel Az úszóra ható
RészletesebbenFolyadékok és gázok áramlása
Folyadékok és gázok áramlása Gázok és folyadékok áramlása A meleg fűtőtest vagy rezsó felett a levegő felmelegszik és kitágul, sűrűsége kisebb lesz, mint a környezetéé, ezért felmelegedik. A folyadékok
RészletesebbenElméleti kérdések 11. osztály érettségire el ı készít ı csoport
Elméleti kérdések 11. osztály érettségire el ı készít ı csoport MECHANIKA I. 1. Definiálja a helyvektort! 2. Mondja meg mit értünk vonatkoztatási rendszeren! 3. Fogalmazza meg kinematikailag, hogy mikor
RészletesebbenPONTSZÁM:S50p / p = 0. Név:. NEPTUN kód: ÜLŐHELY sorszám
Kérem, þ jellel jelölje be képzését! AKM1 VBK Környezetmérnök BSc AT01 Ipari termék- és formatervező BSc AM01 Mechatronikus BSc AM11 Mechatronikus BSc ÁRAMLÁSTAN 2. FAK.ZH - 2013.0.16. 18:1-19:4 KF81 Név:.
RészletesebbenMechanika, dinamika. p = m = F t vagy. m t
Mechanika, dinamika Mozgás, alakváltozás és ennek háttere Newton: a mozgás természetes állapot. A témakör egyik kulcsfontosságú fizikai mennyisége az impulzus (p), vagy lendület, vagy mozgásmennyiség.
Részletesebben