5. MECHANIKA-SZILÁRDSÁGTAN GYAKORLAT (kidolgozta: dr. Nagy Zoltán egy. adjunktus; Bojtár Gergely egy. ts.; Tarnai Gábor mérnöktanár)
|
|
- Gyöngyi Pap
- 6 évvel ezelőtt
- Látták:
Átírás
1 ZÉCHENY TVÁN EGYETEM ALKALMAZOTT MECHANKA TANZÉK 5 MECHANKA-ZLÁRDÁGTAN GYAKORLAT (kidogota: dr Nag Zotá eg adjuktus; Bojtár Gerge eg ts; Tarai Gábor méröktaár) 5 Rugamas sá differeciáegeete (ehajás sögeforduás): M A F A F A knm kn T q A B C q A B C kn/m A B C m m kn F q F q kn q kn / m m 5 E MPa mm a) Határoa meg a A B és C kerestmetsetek súpotjáak iráú emoduásait (ehajásait)! b) Határoa meg a A B és C kerestmetsetek tege körüi sögeforduásait! Támastó erőredser sámítása: Fq q kn M h knm knm Mh Ma M A Fq knm M A F FA Fq FA kn F F A mm B B C C 9 ehajás sögeforduás 5 gak Tarai Gábor
2 a) A A B és C kerestmetsetek súpotjáak iráú emoduásai Hajító omaték ietve emoduás eg tetsőeges kerestmetsetbe: 6 M Nmm M M F q h A A Fq Mh d E h ; Mh h d d M d d E E 6 6 d C Peremfetéte: befaaásá a ehajás érus aa 6 8 C A kérdéses metsetek iráú emoduása tehát: mm ietve mm heeke: B 95mm 8 mm C B A C b) A A B és C kerestmetsetek tege körüi sögeforduásai ögeforduás eg tetsőeges kerestmetsetbe: Mh d E Peremfetéte: befaaásá a ehajás érus aa C 8 C A kérdéses metsetek sögeforduásai tehát mm ietve mm heeke: rad 8 8 B 86 rad 8 78 C B A c 5 gak Tarai Gábor
3 5 Kerestmetset másodredű omatékai d A tégaap kerestmetset méretei a mm b mm b d a) A súpoti tegeekre sámot és teheteteségi omatékok meghatároása b) A A poti tegeekre sámot A a és teheteteségi omatékok meghatároása! a) A súpoti tegeekre sámot és teheteteségi omatékok ( A) meghatároása b a b a ab 6 6 a b a b da d d mm ( A) b a a b a b b 9 9 b a a da d d mm b a a b da d d ( A) b a a b b) A A poti tegeekre sámot és teheteteségi omatékok meghatároása! A teier téte fehasáásáva: a b b a b A 6 6 A a b mm a b a a b 6 6 A A a b mm a b a b A A A a b 6 mm 6 5 gak Tarai Gábor
4 5 Kerestmetset teheteteségi teora Mohr-fée teheteteségi kördiagram m A kerestmetset súpoti teheteteségi teoráak a mátria 8 j k m j k a) A Mohr-fée teheteteségi kördiagram megrajoása b) A kördiagram aapjá a és fő teheteteségi omatékok és teheteteségi főiráok meghatároása c) A adott és m iráú tegeekre sámított és m vaamit a és m iráú tegepárra sámított m m másodredű teheteteségi omatékok meghatároása sámítássa! a) A Mohr-fée teheteteségi kördiagram megrajoása: m 5 P m Q P m P képpot: P képpot: 8 5 P m 5 O P A teheteteségi főiráok (sorredbe ) jobbsodrású redsert akotak b) A kördiagram aapjá a és fő teheteteségi omatékok és teheteteségi főiráok meghatároása sámítássa: gak Tarai Gábor
5 5 tg arctg c) A adott és m iráú tegeekre sámított és m vaamit a és m iráú tegepárra sámított m m másodredű teheteteségi omatékok meghatároása sámítássa: A tegere sámított másodredű omaték meghatároása: s s A m tegere sámított másodredű omaték meghatároása: m m m s m m s m m m 5 77 A mtegepárra sámított másodredű omaték meghatároása: m m m m s s 8 m m 5 s A súpoti másodredű teheteteségi teor mátria mkoordiáta redserbe: s 95 5 s m 5 5 Eeőrés serkestésse: A kördiagramba a Q ormáisok póusábó párhuamost húuk a és m egségvektorokka A íg megrajot egeesek és a kör metséspotjai a Pm és P potok A potok koordiátái a m és m m teheteteségi omatékok 5 gak Tarai Gábor
6 6 5 Rugamas sá differeciáegeete: A E B M E M a) A rugamas sá aakjáak meghatároása b) A B kerestmetset iráú emoduásáak (ehajásáak) meghatároása a) A rugamas sá aakjáak meghatároása A rugamas sá differeciá egeete: M h Nm d v d M M E Mh M costas tegráás: dv d M C E C Peremfetéteek: M v C E tegráás: v C Peremfetéteek: b) A B kerestmetset iráú emoduásáak (ehajásáak) meghatároása M vb v E 5 gak Tarai Gábor
7 7 55 Rugamas sá differeciáegeetet: A E F B E F a) A rugamas sá aakjáak meghatároása b) A B kerestmetset iráú emoduásáak (ehajásáak) meghatároása a) A rugamas sá aakjáak meghatároása M h Nm F M A rugamas sá differeciá egeete: d v M h d E h aho M F F F tegráás: dv d F F C E C Peremfetéteek: tegráás: 6 v F F C E v C Peremfetéteek: b) A B kerestmetset iráú emoduásáak (ehajásáak) meghatároása F vb v F F 6 E E 5 gak Tarai Gábor
8 56 Másodredű omaték meghatároása: 8 6 a kerestmetset méretei mm -be és a pot hee? A eges kerestmetset rések teheteteségi omatékai a saját poti tegeekre 5 5 mm mm A 6 6 mm 6 8 mm 6 5 mm mm mm mm A 6 mm 5 mm teier téte: A A mm A A mm A A 6 6 mm mm 7 5 gak Tarai Gábor
9 57 Mohr-fée kördiagram i teheteteségi teor eőáítása: és k j 9 tehát m k j irá egségvektorok a) Mohr-fée teheteteségi kördiagram eőáítása b) Adott iráú poti tegeekre sámított teheteteségi omatékok meghatároása a) Mohr-fée teheteteségi kördiagram eőáítása m P Z Fő teheteteségi omatékok: O Y tg c) Adott miráú poti tegeekre sámított teheteteségi omatékok: m s s m m m 5 gak Tarai Gábor
10 m m m s m m s m m m m m m gak Tarai Gábor
5. MECHANIKA-SZILÁRDSÁGTAN GYAKORLAT (kidolgozta: dr. Nagy Zoltán egy. adjunktus; Bojtár Gergely egy. ts.; Tarnai Gábor mérnöktanár)
ZÉCHENY TVÁN EGYETEM ALKALMAZOTT MECHANKA TANZÉK 5. MECHANKA-ZLÁRDÁGTAN GYAKORLAT (kidogota: dr. Nag Zotá eg. adjuktus; Bojtár Gerge eg. ts.; Tarai Gábor méröktaár) 5.. Rugamas sá differeciáegeete (ehajás
Részletesebbenb) A tartó szilárdsági méretezése: M
ZÉCHENY TVÁN EGYETEM LKLMZOTT MECHNK TNZÉK 5 MECHNK-ZLÁRDÁGTN GYKORLT (kidogot: dr Ng Zotá eg djuktus; ojtár Gerge eg Ts; Tri Gábor méröktár) 5 Rúdserkeet siárdságti méreteése: d kn kn kn m m m dott: kn
Részletesebben8. MECHANIKA-SZILÁRDSÁGTAN GYAKORLAT (kidolgozta: dr. Nagy Zoltán egy. adjunktus; Bojtár Gergely egy. Ts.; Tarnai Gábor mérnöktanár.
8 MECHANIKA-SZILÁRDSÁGTAN GYAKORLAT (kidolgota: dr Nag Zoltá eg adjuktus; Bojtár Gergel eg Ts; Tarai Gábor méröktaár) 8 Fesültségi állapot semléltetése Adott: Ismert eg silárd test potjába a fesültségi
Részletesebben2. MECHANIKA-SZILÁRDSÁGTAN GYAKORLAT (kidolgozta: dr. Nagy Zoltán egy. adjunktus; Bojtár Gergely egy. ts.; Tarnai Gábor mérnöktanár)
SZÉCHENYI ISTVÁN EGYETEM ALKALMAZOTT MECHANIKA TANSZÉK MECHANIKA-SZILÁRDSÁGTAN GYAKORLAT (kidolgota: dr Nag Zoltá eg adjuktus; Bojtár Gergel eg ts; Tarai Gábor éröktaár) Silárd test potjáak alakváltoási
Részletesebben14. MECHANIKA-SZILÁRDSÁGTAN GYAKORLAT (kidolgozta: Tarnai Gábor mérnöktanár.) Adott:, F F. y A
4 EHNK-SZLÁRDSÁGTN GYKORLT (kidogota: Tarnai Gábor mérnöktanár) 4 Statikaiag határoatan tartó igénbeéteeinek meghatároása: (astigiano téte) dott: m kn 4 5 mm N E 5 mm Statikai ismeretenek: tartó statikaiag
Részletesebben4. MECHANIKA-SZILÁRDSÁGTAN GYAKORLAT (kidolgozta: dr. Nagy Zoltán egy. adjunktus; Bojtár Gergely egy. ts.; Tarnai Gábor mérnöktanár) F q
1 ZÉCHENY TVÁN EGYETE LKLZOTT ECHNK TNZÉK. ECHNK-ZLÁDÁGTN GYKOLT (kidogot: dr. Ng Zotán eg. djunktus; ojtár Gerge eg. ts.; Trni Gáor mérnöktnár).1. rimtikus rúd hjítás: q q / 60 N / m 15 N 75 N m 1 m T
Részletesebben12. MECHANIKA-SZILÁRDSÁGTAN GYAKORLAT (kidolgozta: dr. Nagy Zoltán egy. adjunktus; Bojtár Gergely egy. Ts.; Tarnai Gábor mérnöktanár.
1 EHNK-ZLÁRDÁGTN GYKORLT (kidolgota: dr Nag Zoltán eg adjunktus; Bojtár Gergel eg Ts; Tarnai Gábor mérnöktanár) 11 Primatikus rúd össetett igénbevétele (nírás és hajlítás) dott: a 0,4 m, b 45 mm, F 1 kn,
Részletesebben10. MECHANIKA-SZILÁRDSÁGTAN GYAKORLAT (kidolgozta: dr. Nagy Zoltán egy. adjunktus; Bojtár Gergely egy. Ts.; Tarnai Gábor mérnöktanár.
10.1. Ferde hjlítás 10. ECHNK-ZLÁRDÁGTN GYKORLT (kidolgot: dr. Ng Zoltán eg. djunktus; ojtár Gergel eg. Ts.; Trni Gábor mérnöktnár.) dott: b 60 b 20 mm, mm, ( 40 j 120 k ) knm. Feldt: ) Htáro meg és sámíts
Részletesebben3. A RUGALMASSÁGTAN ENERGIA ELVEI
A RUGALMASSÁGTAN ENERGIA ELVEI A rugamasságta egyeetredseréek egakt és köeítő megodásai eergia evekre aapova is eőáíthatók Aapfogamak Kiematikaiag ehetséges emoduásmeő Jeöése: u u r u, y, A továbbiakba
Részletesebben8. MECHANIKA-SZILÁRDSÁGTAN GYAKORLAT (kidolgozta: dr. Nagy Zoltán egy. adjunktus; Bojtár Gergely egy. Ts.; Tarnai Gábor mérnöktanár.
8 MECHANIKA-SZILÁRDSÁGTAN GYAKORLAT (kidolgota: dr Nag Zoltán g adjunktus; Bojtár Grgl g Ts; Tarnai Gábor mérnöktanár) 8 Fsültségi állapot smlélttés Adott: Ismrt g silárd tst pontjában a fsültségi állapot
RészletesebbenTevékenység: Olvassa el a bekezdést! Jegyezze meg a teljes potenciális energia értelmezését! Írja fel és tanulja meg a külső erőrendszer potenciálját!
tejes potenciáis energia minimuma ev Ovassa e a bekedést! Jegyee meg a tejes potenciáis energia értemeését! Írja fe és tanuja meg a küső erőrendser potenciáját! tejes potenciáis energia minimuma ev konervatív
RészletesebbenMűszaki mechanika gyakorlati példák 1. hét: Közös ponton támadó erőrendszer síkban, kötélerők számítása
Műsaki mechanika gakorlati példák. hét: Köös ponton támadó erőrendser síkban, kötélerők sámítása. ábrán látható G = 22 N súlerejű lámpát fújja a sél. Ennek hatására a kötél a függőlegestől β = 2 -ban tér
Részletesebben5. modul: Szilárdságtani Állapotok. 5.3. lecke: A feszültségi állapot
5 modul: Silárdságtai Állapotok 53 lck: A fsültségi állapot A lck célja: A taaag flhasálója mgismrj a fsültségi állapot fogalmait valamit mg tudja határoi g lmi pot körték fsültségi állapotát Kövtlmék:
RészletesebbenLindab Z/C 200 ECO gerendák statikai méretezése. Tervezési útmutató
Lindab Z/C 200 ECO gerendák statikai méretezése Tervezési útmutató Készítette: Dr. Ádány Sándor Lindab Kft 2007. február ZC200ECO / 1 1. Bevezetés Jelen útmutató a Lindab Kft. által 1998-ban kiadott Lindab
RészletesebbenMáté: Számítógépes grafika alapjai
VETÍTÉSEK Vetítések fajtái / Trasformációk amelek -imeiós objektumokat kisebb imeiós terekbe visek át. Pl. 3D 2D Vetítés köéotja ersektívikus A A B Vetítési B Vetítés köéotja a végtelebe árhuamos A A B
RészletesebbenÖ Á Í Í ű ű ú ű ű ű ű ú ú ú ú ű ű ű ű ű ű ű ű ű ú ű ú ú ú ű ú Á ú ű ű Ó ú ű ű ű ú Ó ú ű ú É ú ú ú ű ű ú ű ú Ú Á ú É ú Ó ú ú ú ú ű ű ű ú É Á É É ű ű Í ú ú Ó Í ű Í ű ű ú ű ű ű É ű ú Á ű ű ú Í ű Á ű ú ú É
Részletesebbenö ö ö ö ö ö ö ű ű ö ö ö ö ö Ő ö Ó Ú ö Ö ö ö ö ö Ö Ő ö ö Í Ó Ó Ő ö ö ö ö ö Ő Ő Ó Ő É ö Ú ö ö Ő ö ö ö ö ö ö ö Ő ö Ő É ö Ő ö ö Ő ö ö ö Ó ű ö ö ö Ő ö ö ö Í Ő Ó Í ö ö ö ö Ő Ő Ő Ő Í Ó Ő Ő Í Ő ö ö ö ö ö Ő Ő ö
RészletesebbenÚ ű ü ü Ü ű É É Ö Ö Á ü ü ü ű É ú Á Ö Ü ü ü ű É Á É Ű ű Ü Ü ű ü ű ü ű ü Ü ü ü Ű Á Á Á ű ú ű Á Ó Ó É Á Ó Á Ó ű ü ü ű ű ü ú ú ü ü ü ű ü ű Ü ű ü ü ú ü Ö ü ú ú ü ü ü ü ű ú ü Ó ü Ó Ó ü ü Ó ü ü Ó ű ű ú ű ű ü
RészletesebbenA lecke célja: A tananyag felhasználója megismerje a forgó tömegek kiegyensúlyozásának elméleti alapjait.
modu: Kinematika Kinetika 4 ecke: Forgó tömegek kiegensúoása ecke céja: tananag fehasnáója megismerje a forgó tömegek kiegensúoásának eméeti aapjait Követemének: Ön akkor sajátította e megfeeően a tananagot
RészletesebbenKapd fel a csomagod, üdvözöld a kalauzt és szállj fel!
E K Pm B m T R E E V S? M m? V m m m? I E m! K m! E 2 4 0S V ( 4 5m K P Z S F m x m 15 S Vm (3m m V ) 158 K 110V 12m 14 M 46M K 6 1Ö K 40 1E ExB m 5 F P ( 1m 5 ) 1 S 1 D W O m ( ) F m A T R Km A Vm A J
RészletesebbenAz összetett hajlítás képleteiről
A össetett hajlítás képleteiről Beveetés A elemi silárdságtan ismereteit a tankönvek serői általában igekenek úg kifejteni, hog a kedő sámára se okoanak komolabb matematikai nehéségeket. A húásra / nomásra
Részletesebben9. MECHANIKA-SZILÁRDSÁGTAN GYAKORLAT (kidolgozta: dr. Nagy Zoltán egy. adjunktus; Bojtár Gergely egy. Ts.; Tarnai Gábor mérnöktanár.
LKLZOTT EHNIK TNSZÉK 9 EHNIK-SZILÁRDSÁGTN GYKORLT (kidolgot: dr Ng Zoltán eg djunktus; ojtár Gergel eg Ts; Trni Gábor mérnöktnár) 9 Fjlgos núlás htároás núlásmérő béleggel érőeskö: 6 -os núlásmérő béleg
Részletesebben6. RUDAK ÖSSZETETT IGÉNYBEVÉTELEI
RUK ÖZETETT GÉNYBEVÉTELE Tönkremeneteli elméletek a) peiális eset: a fesültségi tenornak sak eg eleme nem nulla (pl rudak egserű igénbevételeinél), ϕ tt nins probléma, mert a anagjellemők eekre a egserű
Részletesebbens i (MPa) p K = 0 s jb p B s RB - 50
SAF. Adott a tfedée ietett öetett cő eő cövének i () diagramja. B = 70 mm ; = 40 mm ; p B = 50 ; p = 0 ; = 0, 49. p = 0 i () jb B r p B 0,49 B - 50. Sámíta ki értékét, vaamint a eő cő r küő ugarát! Váoja
RészletesebbenREZGÉSTAN GYAKORLAT Kidolgozta: Dr. Nagy Zoltán egyetemi adjunktus. 17. feladat: Kéttámaszú tartó (rúd) hajlító rezgései (kontinuum modell)
SZÉCHENYI ISTVÁN EGYETEM ALKALMAZOTT MECHANIKA TANSZÉK REZGÉSTAN GYAKORLAT Kidogota: Dr. Nagy Zotán egyetemi adjunktu 7. feadat: Kéttámaú tartó (rúd) hajító regéei (kontinuum mode) y v( t ) K = 8m E ρai
RészletesebbenMechanika. III. előadás március 11. Mechanika III. előadás március / 30
Mechanika III. előadás 2019. március 11. Mechanika III. előadás 2019. március 11. 1 / 30 7. Serkeetek statikája 7.2. Rácsos serkeet hidak, daruk, távveeték tartó oslopok, stb. 3 kn C 4 m 2 4 8 5 3 7 1
Részletesebben12. MECHANIKA-MOZGÁSTAN GYAKORLAT (kidolgozta: Németh Imre óraadó tanár, Bojtár Gergely egyetemi ts., Szüle Veronika, egy. ts.
ZÉCHENYI ITVÁN EGYETEM ALKALMAZOTT MECHANIKA TANZÉK. MECHANIKA-MOZGÁTAN GYAKORLAT (kidolgozta: Néeth Ire óraadó taár, Bojtár Gergel egetei t., züle Veroika, eg. t.) /. feladat: Cetriku ütközé Adott: kg,
RészletesebbenSzilárdságtan Feladatok 17/1. a xz. [ A ] T = a xy a yy a zy a zx a zy a zz
Siádságt Fedtok 17/1 1 Teoíisbei jeöések: vektook, mátiok, teook () Mátiok () koodiát edsebe: osopmáti: p. vekto máti v = v e + v e + v e eseté [ v = v, osopmáti tspoátj: [ v T = [ v v v v égetes (3 3)
Részletesebbenl = 1 m c) Mekkora a megnyúlás, ha közben a rúd hőmérséklete ΔT = 30 C-kal megváltozik? (a lineáris hőtágulási együtható: α = 1, C -1 )
5. TIZTA HÚZÁ-NYOMÁ, PÉLDÁK I. 1. a) Határouk meg a függestőrúd négetkerestmetsetének a oldalhossát cm-re kerekítve úg, hog a függestőrúdban ébredő normálfesültség ne érje el a σ e = 180 MPa-t! 3 m 1 C
Részletesebben2. MECHANIKA-VÉGESELEM MÓDSZER ELŐADÁS (kidolgozta: Szüle Veronika, egy. ts.) II. előadás
SZÉCHENYI ISTVÁN EGYETEM ALKALMAZOTT MECHANIKA TANSZÉK. MECHANIKA-VÉGESELEM MÓDSZER ELŐADÁS (kiogozta: Szüe Veronika egy. ts.) II. eőaás. Közeítő megoások energiaevek: Összetett rugamas peremérték feaat
RészletesebbenMegoldás: ( ) és F 2
. példa Határoa meg F F F erıkbıl álló erırendser F eredıjét annak F nagságát és e iránvektorát valamint a talajban ébredı F 0 támastóerıt! F = 0 N; F = 0 N; F = 0 N! F F F F e e N F = 5.5880 N = F. =
RészletesebbenA hajlítással egyidejű nyírás fogalma. Tipikus esetek a mérnöki gyakorlatban
24. HAJLÍTÁ É NYÍRÁ I. A hajlítással egidejű nírás fogalma M Ha a rúd eg kerestmetsetének nemérus níróigénbeételen kíül a nírásra merőleges hajlítónomaték-komponense is an, akkor a nírást hajlítással egidejűnek
RészletesebbenAz F er A pontra számított nyomatéka: M A = r AP F, ahol
Sécheni István Egetem M saki Tudománi Kar lkalmaott Mechanika Tansék LKLMZTT MECHNIK () Mi a mechanika tárga? Elméleti kérdések és válasok MSc képésben réstvev mérnök hallgatók sámára nagi rendserek (testek)
RészletesebbenSzilárdságtan. Miskolci Egyetem GÉPÉSZMÉRNÖKI ÉS INFORMATIKAI KAR
Miskolci Egetem GÉÉMÉRNÖKI É INORMTIKI KR ilárságtan (Oktatási segélet a Gépésmérnöki és Informatikai Kar sc leveleős hallgatói résére) Késítette: Nánori riges, irbik ánor Miskolc, 2008. Een kéirat a Gépésmérnöki
RészletesebbenTARTÓSZERKETETEK III.
TARTÓSZERKETETEK III. KERESZTETSZETEK ELLENÁLLÁSA + STABILITÁSI ELLENÁLLÁS 1 KERESZTETSZETEK ELLENÁLLÁSA 1.1 Csavarlukkal gengített köpontosan húott rúd 1. Egik sárán kapsolt köpontosan húott sögaél 1.
RészletesebbenAszfaltrácsok működése és építése
Aszfaltrácsok működése és építése Aszfaltrácsok Cél: hosszabb élettartam» Reflexiós repedések» Fáradási repedések» Nyomvályúk 3* 1 Tartalom 1. Milyen előírásokból dolgozunk? 2. Pályaszerkezetben ébredő
RészletesebbenÉPÍTÉSZETI ÉS ÉPÍTÉSI ALAPISMERETEK
Építészeti és építési alapismeretek emelt szint 0911 ÉRETTSÉGI VIZSGA 2009. október 19. ÉPÍTÉSZETI ÉS ÉPÍTÉSI ALAPISMERETEK EMELT SZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI
RészletesebbenPélda: 5 = = negatív egész kitevő esete: x =, ha x 0
Ha mást em moduk, szám alatt az alábbiakba, midig alós számot értük. Műeletek összeadás: Példa: ++5 tagok: amiket összeaduk, az előző éldába a, az és az 5 szorzás: Példa: 5 téezők: amiket összeszorzuk,
RészletesebbenMECHANIKA-SZILÁRDSÁGTAN 12. hét gyakorlati anyaga (kidolgozta : dr. Nagy Zoltán egy.adjunktus, Bojtár Gergely egy.tanársegéd)
ZÉHENY TVÁN EGYETE LKLZOTT EHNK TNZÉK EHNK-ZLÁRÁGTN 1. hét gakorlati anaga (kidolgota : dr. Nag Zoltán eg.adjunktus, ojtár Gergel eg.tanársegéd) 1.1 feladat : Primatikus rudak össetett igénbevételei (
RészletesebbenDr. Égert János Dr. Molnár Zoltán Dr. Nagy Zoltán ALKALMAZOTT MECHANIKA
Dr Égert Jáos Dr Molár Zoltá Dr Nag Zoltá ALKALMAZOTT MECHANIKA UNIVERSITAS-GYŐR Noprofit Kft Gőr, 00 SZÉCHENYI ISTVÁN EGYETEM MŰSZAKI TUDOMÁNYI KAR ALKALMAZOTT MECHANIKA TANSZÉK ALKALMAZOTT MECHANIKA
RészletesebbenA szilárdságtan alapkísérletei III. Tiszta hajlítás
5. FEJEET silárdságtan alapkísérletei III. Tista hajlítás 5.1. Egenes primatikus rúd tista egenes hajlítása 5.1.1. Beveető megjegések.tista hajlításról besélünk, ha a rúd eg adott sakasa csak hajlításra
Részletesebben3. Sztereó kamera. Kató Zoltán. Képfeldolgozás és Számítógépes Grafika tanszék SZTE (http://www.inf.u-szeged.hu/~kato/teaching/)
3. Sztereó kamera Kató Zoltá Képfeldolgozás és Számítógépes Grafika taszék SZTE (http://www.if.u-szeged.hu/~kato/teachig/) Sztereó kamerák Az emberi látást utáozza 3 Sztereó kamera pár Két, ugaazo 3D látvát
Részletesebben3. MECHANIKA-SZILÁRDSÁGTAN GYAKORLAT (kidolgozta: dr. Nagy Zoltán egy. adjunktus; Bojtár Gergely egy. ts.; Tarnai Gábor mérnöktanár) y P
SZÉCHEYI ISTVÁ EGYETEM LKLMZOTT MECHIK TSZÉK MECHIK-SZILÁRDSÁGT GYKORLT (idogota: dr ag Zotán eg adjuntus; Bojtár Gerge eg ts; Tarnai Gábor mérnötanár) Vastag faú cső húása: / d D dott: a ábrán átható
Részletesebben2013. tavasz 1. Megtervezendő egy 30 m 18 m alapterületű épület síkalapozása és a munkatér határolása.
2013. tavasz 1 1. réteg 14 1,00 14 1,10 2. réteg 11 4,30 11 4,60 3. réteg 2 14,70 2 14,30 építési vízszint (GWL): 94,30 m tsz. f. kar. tv. Szint (GWL k ): 96,60 m tsz. f. szulfáttartalom: 95 mg/l A padlószint
Részletesebbenkétállószékes fedélszék tervezése
Dr. Németh Gör főikoai docen fééve feadat: kétáózéke fedézék tervezée Kétáózéke fedézék Õ SZARUÁLLÁS LLÉK SZARUÁLLÁS kézítendő feadatrézek Kereztmetzet : Statikai zámítá Terhek mehatározáa Tetőécek méretezée
Részletesebben9. MECHANIKA-MOZGÁSTAN GYAKORLAT (kidolgozta: Németh Imre óraadó tanár, Bojtár Gergely egyetemi ts., Szüle Veronika, egy. ts.)
ZÉCHENYI ITVÁN EGYETEM LKLMZOTT MECHNIK TNZÉK 9. MECHNIK-MOZGÁTN GYKOLT (kidogot: Néeth Ire órdó tnár Bojtár Gerge egetei ts. üe Veronik eg. ts.) Tehetetenségi notékok tejesítén energi 9/. fedt: Tehetetenségi
RészletesebbenMűszaki Mechanika I. A legfontosabb statikai fogalmak a gépészmérnöki kar mérnök menedzser hallgatói részére (2008/2009 őszi félév)
Műsaki Mechanika I. A legfontosabb statikai fogalmak a gépésmérnöki kar mérnök menedser hallgatói résére (2008/2009 ősi félév) Műsaki Mechanika I. Pontsám 1. A modell definíciója (2) 2. A silárd test értelmeése
RészletesebbenMechanika című MSc tantárgy: TENGELYMÉRETEZÉS
ZÉHENY TVÁN EGYETE GÉPÉZÉRNÖ NORT É VLLOÉRNÖ R LLZOTT EHN TNZÉ ehanika ímű tantárg: TENGELYÉRETEZÉ felaat: őtengel méreteée feültégúra iolgoá: ott: eg körgűrű keretmetetű tartó (őtengel) veéle keretmetetének
RészletesebbenStatika. Miskolci Egyetem. (Oktatási segédlet a Gépészmérnöki és Informatikai Kar Bsc levelez½os hallgatói részére)
iskolci Egetem GÉPÉSZÉRNÖKI ÉS INORTIKI KR Statika (Oktatási segédlet a Gépésmérnöki és Informatikai Kar sc levele½os hallgatói résére) Késítette: Sirbik Sándor, Nándori riges ½usaki echanikai Intéet iskolc,
RészletesebbenANYAGJELLEMZŐK MEGHATÁROZÁSA ERŐ- ÉS NYÚLÁSMÉRÉSSEL. Oktatási segédlet
ANYAGJELLEMZŐK MEGHATÁROZÁSA ERŐ- ÉS NYÚLÁSMÉRÉSSEL Oktatási segédlet a Rugalmasságtan és Alkalmaott mechanika laboratóriumi mérési gakorlatokho a egetemi mesterképésben (MSc) réstvevő mérnökhallgatók
RészletesebbenÖ ü ö ü Ö Ö ü ú ó ü ö ö Ö ó Ö ö ú ö ó ö ö ó ö ö ö í í ö ö ü ü ö í ü ö ö í ö í ó ü ö ö í ü í ö í ü ú ü ö Ö ü ö ű ó í ó ó ó ö í ü ó ó ó ö ö ó ö í ó ü ó ó ö ö ü ó ö ö ó ó ó ü ü ó ó ö ö ü í ö ű ö ű ö ö ű í
Részletesebbení ö í í ú ű í í í ú í ű í Ü ö ö ö ü ö ö ö í ö ö ö ö Ö Á ö ö É ö ö ú ú ö ö ú ö í Á Á ö Ü Ú í ÁÁ ö í ö í í ú ű í ö ö í ú É í ű í ö ö É í í ű í ű í É í í ü ű ü ű í Á Á í ü í ü í ü ö ű ö É ü É ú Á Ó í í í
Részletesebben8. MECHANIKA-MOZGÁSTAN GYAKORLAT (kidolgozta: Németh Imre óraadó tanár, Bojtár Gergely egyetemi ts., Szüle Veronika, egy. ts.)
SZÉCHEYI ISTVÁ EYETEM ALKALMAZOTT MECHAIKA TASZÉK 8. MECHAIKA-MOZÁSTA YAKORLAT (kidogozta: éth Ir óraadó taár, Bojtár rg gti t., Szü Vroika, g. t.) Tögpot kitikája, ratív ozgá kitikája 8/1. fadat: Tögpot
Részletesebben2-17. ábra 2-18. ábra. Analízis 1. r x = = R = (3)
A -17. ábra olyan centrifugáli tengelykapcolót mutat, melyben a centrifugáli erő hatáára kifelé mozgó golyók ékpálya-hatá egítégével zorítják öze a urlódótárcát. -17. ábra -18. ábra Analízi 1 A -17. ábrán
Részletesebben3. MÉRETEZÉS, ELLENŐRZÉS STATIKUS TERHELÉS ESETÉN
ÉRETEZÉS ELLENŐRZÉS STATIUS TERHELÉS ESETÉN A méreteés ellenőrés célkitűése: Annak elérése hog a serkeet rendeltetésserű hasnálat esetén előírt ideig és előírt bitonsággal elviselje a adott terhelést anélkül
RészletesebbenÁ ü ü Á Á Á ü Á ű ű ű Ö ü ü ü ü ü ü ü ű É É É É Ö Á ű ű ű Á ű ű Á ű Ö Í ű ü ü ü ü Í ü Í Ü Ö ü Ü ü ű ű Ö Ö Ü ü ü ű ü Í ü ü ü Ő Ő Ü ü Í ű Ó ü ű Ú ü ü ü ü ü Ö ü Ű Á Á ű É ü ü ü ü ű ü ü ü ű Ö Á Í Ú ü Ö Í Ö
RészletesebbenÜ ű Ú Ö Ü É É ű É Ö Ü É ű Á ű Ú Ú Ú Á Á ű Á É É Ú Á ű Ó Ó Á Ú Á ű Ü Á Ú Ú Á ű Ú Á Ú Á Á Ú Ú Á Á Á Á Á É Ú Ú ű Á Á Ú Á Ú Á É Á É É Á Ú Ú É Á Á Á É É Á Á É Á É Á É Ü Ú Ó Á Á É Á ű Ü Á Ú Á Ü Á É É ű ű Á Ú
RészletesebbenSchöck Isokorb KX-HV, KX-WO, KX-WU és KX-BH
Schöck Isokorb, WO, WU és BH SCHÖCK ISOKORB Ábra: Schöck Isokorb KX 10/7 10 ÚJ! Már minen teherbírási osztály kapható HTE moullal. Tartalom olal Schöck Isokorb föémugrás lefelé..........................................................
Részletesebbeny x Komplex mennyiségek tulajdonságai, műveletei Komplex mennyiség komplex szám komplex vektor. a) Komplex mennyiség algebrai alakja: z x iy,
SZÉCHENYI ISVÁN EGYEEM ALKALMAZO MECHANIKA ANSZÉK MECHANIKA-REZGÉSAN GYAKORLA (kdolgota: Fehér Lajos, eg ts; ara Gábor, mérök taár; Molár Zoltá, eg adj) Komle meségek, Mátr- és Vektoralgebra, Dfferecálegeletek
Részletesebbeny x Komplex mennyiségek tulajdonságai, műveletei Komplex mennyiség komplex szám komplex vektor. a) Komplex mennyiség algebrai alakja:, z x iy x
SZÉCHENYI ISVÁN EGYEEM LKLMZO MECHNIK NSZÉK MECHNIK-REZGÉSN GYKORL (kdolgota: Fehér Lajos, tas m; ara Gábor, mérök taár; Molár Zoltá, eg adj) Komle meségek, Mátr- és Vektoralgebra, Dfferecálegeletek Komle
RészletesebbenStatikailag határozatlan tartó vizsgálata
Statikailag határozatlan tartó vizsgálata Készítette: Hénap Gábor henapg@mm.bme.hu E E P MT A y F D E E d B MT p C x a b c Adatok: a = m, p = 1 N, b = 3 m, F = 5 N, c = 4 m, d = 5 mm. m A kés bbikekben
RészletesebbenA lecke célja: A tananyag felhasználója megismerje az erő, a nyomaték és erőrendszerek jellemzőit.
2 modul: Erőrendserek 21 lecke: Erő és nomték lecke célj: tnng felhsnálój megismerje erő, nomték és erőrendserek jellemőit Követelmének: Ön kkor sjátított el megfelelően tnngot, h sját svivl meg tudj htároni
RészletesebbenSzámítás végeselem módszerrel Topológia
Soil Boring co. Tarcsai út. 57/8 - Budapest Számítás végeselem módszerrel Topológia Projekt Dátum : 8.0.05 Globális beállítások Projekt típusa : Számítás típusa : Alagutak : Bővített adatbevitel : Részletes
RészletesebbenStatikai egyensúlyi egyenletek síkon: Szinusztétel az CB pontok távolságának meghatározására: rcb
MECHNIK-STTIK (ehér Lajos) 1.1. Példa: Tehergépkocsi a c b S C y x G d képen látható tehergépkocsi az adott pozícióban tartja a rakományt. dott: 3, 7, a 3 mm, b mm, c 8 mm, d 5 mm, G 1 j kn eladat: a)
Részletesebben1. MÁSODRENDŰ NYOMATÉK
Gak 01 Mechanka. Szlárdságtan 016 01 Segédlet MECHNK. TNNYG SMÉTLÉSE Tartalom 1. MÁSODRENDŰ NYOMTÉK... 1. RÁCSOS TRTÓ.... GÉNYEVÉTEL ÁRÁK... 5. TÉREL TRTÓK GÉNYEVÉTEL ÁRÁ... 8 Ez a Segédlet a 015, 016
RészletesebbenELLENŐRZŐ KÉRDÉSEK LENGÉSTANBÓL: A rugóállandó a rugómerevség reciproka. (Egyik végén befogott tartóra: , a rugómerevség mértékegysége:
ELLENŐRZŐ ÉRDÉSE LENGÉSNBÓL: Átaáno kérdéek: Mik a engőrendzer eemei?: engőrendzer eemei: a tömeg(ek), a rugó(k), ietve a ciapítá(ok). Mi a rugóáandó?: rugóáandó a rugó egyégnyi terheé aatti aakvátozáát
RészletesebbenStatika gyakorló teszt I.
Statika gakorló teszt I. Készítette: Gönczi Dávid Témakörök: (I) közös ponton támadó erőrendszerek síkbeli és térbeli feladatai (1.1-1.6) (II) merev testre ható síkbeli és térbeli erőrendszerek (1.7-1.13)
RészletesebbenPattex CF 900. Műszaki tájékoztató
BETON / TÖMÖR KŐ HASZNÁLAT FELHASZNÁLÁSI ÚTMUTATÓ 1. ALKALMAZÁSI TERÜLETEK ALAP ANYAGA: beton, tömör kő Nehéz terhet hordozó elemek rögzítése tömör kőben, betonban, porózus betonban és könnyű betonban.
RészletesebbenTérbeli mechanizmus alkalmazása az emberi térd kinematikai vizsgálatában
Dr. Bíró Istvá Térbe mechmus kmás ember tér kemtk vsgátáb Össefgó: A ember tér mgásvst évteek ót sáms bmechk kuttócsprt vsgáj. Műsk semptbó éve rekívü össetett, és sjáts jeemőkke bíró prbémáró v só. Eek
RészletesebbenFALAK III. FALAK TERVEZÉSE, FALAZATOK ÉPSZ1. ELŐADÁS ÖSSZEÁLLÍTOTTA, ELŐADÓ: dr. Czeglédi Ottó 2012/13/II. FALAK III./CO 1
FALAK III. FALAK TERVEZÉSE, FALAZATOK ÉPSZ1. ELŐADÁS ÖSSZEÁLLÍTOTTA, ELŐADÓ: dr. Czeglédi Ottó 2012/13/II. FALAK III./CO 1 Falazatok, történeti áttekintés - A fal kezdetekben vastag, tömör volt (kő, vegyes
RészletesebbenFöldművek gyakorlat. Vasalt talajtámfal tervezése Eurocode szerint
Földműve gyaorlat Vasalt talajtámfal tervezése Eurocode szerint Vasalt talajtámfal 2. Vasalt talajtámfal alalmazási területei Úttöltése vasúti töltése hídtöltése gáta védműve ipari épülete öztere repülőtere
RészletesebbenMÜPRO. MPT-tartóprofil Q50. MPT-tartólap. MPT-tartókarmok. Q100 MPT-tartóprofil, 3-hornyú 8/27. MPT-alaplap. MPT-konzolok Q50. MPT-erősítőtámasz Q100
0.. Zajcsillapítás 2. Tűzvédelem 3. Csőbilincsek 4. Szerelősínek 5. Szerelési anyagok 6. Fix- és elmozduló megfogások 7. Nehéz csőrögzítés 8. MPT-Tartórendszer 9. Légtechnika 0. Lefolyócső-csatlakozók.
Részletesebben9. A RUGALMASSÁGTAN 2D FELADATAI
9 A UGALMASSÁGTAN D FELADATAI A D ( két dimeniós ) feladatok köös jellemői: - két skalár elmodulásmeő különöik nullától - minden mechanikai menniség két helkoordinátától függ 9 Sík alakváltoás (SA) a)
RészletesebbenTevékenység: Olvassa el a jegyzet oldalain található tananyagát! Tanulmányozza át a segédlet 11. fejezetében lévı kidolgozott feladatot!
3.2. Lánchajtások Tevékenység: Olvassa el a jegyet 163-173 oldalain található tananyagát! Tanulmányoa át a segédlet 11. fejeetében lévı kidolgoott feladatot! A tananyag tanulmányoása köben a alábbiakra
RészletesebbenA KUTATÁS CÉLJA ANYAG ÉS MÓDSZER. MGI modellszárító-rendszer
A KUTATÁS CÉLJA Meghatározni igen széles nedvességtartományban a szárítás hatását a szemes kukorica halmazok fizikai-mechanikai jellemzőire és elemezni ezen jellemzők változásának törvényszerűségeit. ANYAG
RészletesebbenFeladatok Oktatási segédanyag
VIK, Műsaki Informatika ANAÍZIS () Komplex függvénytan Feladatok Oktatási segédanyag A Villamosmérnöki és Informatikai Kar műsaki informatikus hallgatóinak tartott előadásai alapján össeállította: Frit
RészletesebbenMŰSZAKI MECHANIKA III. Acélszerkezetek példatár
PÉCSI TUDOMÁNYEGYETEM Poack Mihály Műszaki Főiskolai Kar Gépszerkezettan tanszék Glöckler László MŰSZAKI MECHANIKA III. Acélszerkezetek példatár Pécs 00. Szerző: Glöckler László főiskolai adjunktus Pécsi
Részletesebben!" #$%& ' % '( ) # # '( KLMNO!./0 1 5 H `a )5,) ) ( ;E ) \ J& ] ) 1.^ <B5 ` A) c HE )`7? ; ^ ) : ;;/,!] ) 1.` A ^ N0< ;:)I >? 7) >S,-Q 1. M "2 1.` A M
!" #$%& ' % '( ) # # '( KLMNO!./0 1 5 H `a )5,) ) ( ;E ) \ J& ] ) 1.^ ? 7) >S,-Q 1. M "2 1.` A M ^!"#$ :011%&' 11% $. */*-.*: 7 D] " @ W$ Z? ) ) b
RészletesebbenHOSSZTARTÓ TERVEZÉSE HEGESZTETT GERINCLEMEZES TARTÓBÓL
HOSSZARÓ ERVEZÉSE HEGESZE GERNCLEMEZES ARÓBÓL 9 Anyaminőséek: Acél: A 8 σ H 00 N/ mm [99] H 115 N/ mm [99] σ ph 50 N /mm [99] Csaar: M 0 és M ill. 5. H 195 N/ mm [100] σ ph 90 N /mm [100] Varrrat:.o. sarok.
RészletesebbenVasbeton gerendák törési viselkedése acélszálak és hagyományos vasalás egyidejű alkalmazása esetén
Vasbeton gerendák törési viselkedése acélszálak és hagyományos vasalás egyidejű alkalmazása esetén Kovács Imre Dr. Erdélyi László Dr. Balázs L. György BME Vasbetonszerkezetek Tanszéke Az előadás felépítése
Részletesebben18/1997. (IV.29.) sz. önkor.mányzati rendelete
Budapest Kőbányai Önkor.mányzat 18/1997. (IV.29.) sz. önkor.mányzati rendeete a Budapest X. ker., Mag1ódi út - Bodza u. - Sörgyár u. - Kada utca áta határot terüet R-35973 tt.számú Részetes Rendezési Tervérő
Részletesebben(5) Mit értünk a szilárdságtanban a dinamikán? A szilárdságtanban a dinamika leírja a terhelés hatására a testben fellépő belső erőrendszert.
SZÉCHENY STVÁN EGYETE ECHANKA - SZLÁRDSÁGTAN ALKALAZOTT ECHANKA TANSZÉK Elméleti kérdések és válasok egetemi alapképésben (BS képésben) réstvevő mérnökhallgatók sámára () i a silárdságtan tárga? A silárdságtan
RészletesebbenRugalmas ágyazású gerenda számítása Eredmények
Tarcsai út. 157/18 Budapest Üzletközpont Black Rose Rugalmas ágyazású gerenda számítása Eredmények A számítás lefutott. Altalaj vizsgálat tipikus kombinációja : HHÁ: Q3:G1+G2+Q4 Számítás 1 Név : Analysis
Részletesebben6.8. Gyorsan forgó tengelyek, csőtengelyek
68 Gyorsan forgó tengelyek, csőtengelyek p y p S iinduló feltételeések: - állandó, - a súlyerő, - p p A silárdságtani állapotokat henger koordinátarendseren (H-en) írjuk le Forgás a gyorsulásól sármaó,
Részletesebben8. osztály. 2013. november 18.
8. osztály 2013. november 18. Feladatok: PÉCSI ISTVÁN, középiskolai tanár SZÉP JÁNOS, középiskolai tanár Lektorok: LADÁNYI-SZITTYAI ANDREA, középiskolai tanár DANKOVICS ATTILA, ELTE-TTK matematikus hallgató,
RészletesebbenA ferde hajlítás alapképleteiről
ferde hajlítás alapképleteiről Beveetés régebbi silárdságtani sakirodalomban [ 1 ], [ ] más típusú leveetések, más alakú képletek voltak forgalomban a egenes tengelű rudak ferde hajlításával kapcsolatban,
RészletesebbenSIMA >S< - öntöttvas lefolyócső csatlakozó
SIMA >S< - öntöttvas lefolyócső csatlakozó csőcsatlakozó karima nélküli öntöttvas lefolyócsövekhez (SML) DIN EN 877 és DIN 19522 szerint SIMA >S< lefolyócső csatlakozó nagy biztonság a gumimandzsettában
RészletesebbenNemzeti Akkreditáló Testület. RÉSZLETEZŐ OKIRAT a NAT-1-1248/2015 nyilvántartási számú akkreditált státuszhoz
Nemzeti Akkreditáló Testület RÉSZLETEZŐ OKIRAT a NAT-1-1248/2015 nyilvántartási számú akkreditált státuszhoz A TPA HU Kft. Budapest Laboratórium (Budapest Egység: 1097 Budapest, Illatos út 8.; Szeged Egység:
Részletesebben3. Szerkezeti elemek méretezése
. Serkeeti elemek méreteése.. Serkeeti elemek méreteési elvei A EC serint a teherbírási határállapotok ellenőrése során a alábbi visgálatokat kell elvégeni: - Kerestmetseti ellenállások visgálata, ami
RészletesebbenCsavarorsós Emelő Tervezése
Csavarorsós Emelő Tervezése Készítette: Róka Tamás Technikus hallgató Tartalomjegyzék. Bevezetés 4. Trapézmenet kialakítása 5 3. tervezés folyamata és a felhasznált összefüggések 6 3.. csavarorsós emelő
Részletesebben2. FELADATOK MARÁSHOZ
2. ELADATOK MARÁSHOZ 2.1. orgácsolási adatok meghatároása 2.1.1. Előtolás, ogásmélység meghatároása Határoa meg a percenkénti előtolás értékét. eladat = n = 2.1.1.1. 15 = 0.15 mm 50 1/min 2.1.1.2. 12 =
RészletesebbenFerde hatásvonalú csuklóval megtámasztott rúd stabilitási vizsgálata
MISKOCI EGYETEM GÉPÉSZMÉRNÖKI ÉS INFORMATIKAI KAR TUDOMÁNYOS DIÁKKÖRI DOGOZAT Ferde hatásvoalú csuklóval megtámastott rúd stabilitási visgálata egyel Ákos Jósef I. éves gépésméröki MSc sakos hallgató Koules:
RészletesebbenBÕVÍTETT RÉSZLETEZÕ OKIRAT (1)
Nemzeti Akkreditáló Testület BÕVÍTETT RÉSZLETEZÕ OKIRAT (1) a NAT-1-1110/2010 nyilvántartási számú akkreditált státuszhoz Az ÉMI Építésügyi Minõségellenõrzõ Innovációs Nonprofit Kft. Központi Laboratórium
RészletesebbenA lecke célja: A tananyag felhasználója megismerje az erőrendszerek egyenértékűségének és egyensúlyának feltételeit.
modul: Erőrendserek lecke: Erőrendserek egenértékűsége és egensúl lecke célj: tnng felhsnálój megsmerje erőrendserek egenértékűségének és egensúlánk feltételet Követelmének: Ön kkor sjátított el megfelelően
Részletesebben11. MECHANIKA-STATIKA GYAKORLAT (kidolgozta: Triesz Péter, egy. ts.; Tarnai Gábor, mérnöktanár)
SZÉHENYI ISTVÁN EGYETEM LKLMZOTT MEHNIK TNSZÉK.. Példa:. MEHNIK-STTIK GYKORLT (kidolgozta: Triesz Péter, eg. ts.; Tarnai Gábor, mérnöktanár) Összetett szerkezetek statikája (három csuklós ív, Gerber tartó)
RészletesebbenTermékújdonságok. Kivágószerszám készítés I / 2015. E 5240 Görgőskosár. Sávvezetők kínálatának bővítése
Termékújdonságok Kivágószerszám készítés I / 2015 CD-kataógus 5.8.4.0 Onine kataógus Újabb termékbővítésse reagáunk az Önök kívánságaira, észrevéteeire. Mint tejeskörű beszáítók, így most még nagyobb árukínáatta
RészletesebbenCastigliano- és Betti-tételek összefoglalása, kidolgozott példa
Castigiano- és Betti-téteek összefogaása, kidogozott péda Készítette: Dr. Kossa Attia kossa@mm.bme.hu) BME, Műszaki Mechanikai Tanszék Frissítve: 15. január 8. Az aakvátozási energiasűrűség számítása egy
Részletesebben