Matematika az építészetben

Save this PDF as:
 WORD  PNG  TXT  JPG

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Matematika az építészetben"

Átírás

1 Matematika az építészetben Molnár-Sáska Katalin Főisk.docens YMÉK

2 Bevezetés - Történeti áttekintés - A geometria helye a főiskolai képzésben - Újraindítás és körülményei

3 Részletes tanmenet Megjegyzések: A tanmenet a főiskolai oktatás programjával foglalkozó szakemberek számára készült az adott tárgyból tájékoztatás céljára. A tárgyalandó témakör egy félév BSc. Matematika I., ábrázoló geometria tanulás után kerül a hallgatók elé második félévre javasolt fakultatív tárgyként. Az új ismeretek elsajátíttatására heti két órás gyakorlat keretében kerül sor. A gyakorlatokon csupán a fontosabb tételeket állításokat bizonyítjuk. A tanulandó összefüggések, módszerek ismeretére, megértésére, alkalmazhatóságára helyezzük a hangsúlyt főként feladat és problémamegoldásokon keresztül.

4 1.gyakorlat: Történelmi bevezetés 1. Babiloni, egyiptomi geometria 2.gyakorlat. Történelmi bevezetés 2. A görögök geometriája - Absztrakciós fogalmak kialakulása - Bizonyítás igénye 3.gyakorlat: Transzformációcsoportok - A sík ( tér ) egybevágósági transzformációi csoportot alkotnak. - Szimmetria

5 4.gyakorlat: A szabályos sokszögek. D n (n 3) általános diéder csoport. Csillagsokszögek. Sorminták 5.gyakorlat: Kétdimenziós kristálytan. Rácsok és Dirichletcelláik. Escher művészete Szabályos mozaikok. 6.gyakorlat: Poliéderek. Euler poliéder tétele. Szabályos poliéderek Dolgozat kérdés (BSc MatI.): Adja meg a szabályos poliéder definícióját! Mondja ki a szabályos poliéderekre vonatkozó tételt! Sorolja fel a szabályos poliédereket! -Válasz1.: A szabályos poliéder egy oldalú sokszög. -Válasz2.: Szabályos poliéderek: kocka, téglatest, hasáb.

6 7.gyakorlat: Dolgozat 8.gyakorlat: Mátrixok. Determinánsok. Mátrixok inverze, sajátértékei, sajátvektorai (Előkészítő fogalmak a tér analitikus geometriájának tárgyalásához) 9. gyakorlat: A tér analitikus geometriája. Vektoriális szorzat. Vegyesszorzat. Sík egyenletei. Egyenes egyenletei. 10. gyakorlat: A tér analitikus geometriája. Feladatmegoldó gyakorló óra.

7 11. gyakorlat: Másodrendű görbék osztályozása 12. gyakorlat: Másodrendű felületek. A másodrendű felületek osztályozása. 13. gyakorlat: Második ellenőrző dolgozat

8 Tantárgyi követelmények Fakultatív tárgy lévén a követelményeknek is diplomatikusaknak kellett lenniük. - Csak a két dolgozat megírása volt kötelezően előírt, az órák látogatása nem. - Lehetősség volt kiadott, vagy önállóan kitalált, a tárgyhoz illő témakörben előadást tartani, ami beszámított az értékelésbe.

9 A félév legsikertelenebb feladata: Egy nagyobb gömb belsejében négy kisebb, egységsugarú gömb úgy helyezkedik el, hogy mind az öt gömb érinti a másik négyet. Hányadrésze a négy kisebb gömb együttes térfogata a nagyobb gömb térfogatának?

10 Az önálló diákmunkára kitűzött témák:

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27 Hallgatói értékelés 1. Egy építészmérnök számára elegendő a négy alapművelet ismerete Igen 1 Nem 21 Négy alapműv elet Nem tudom Szükség van elemi geometriai ismeretekre Igen 23 Nem 0 Nem tudom 0

28 3. Középiskolában elegendő felkészítést kaptam geometriából mérnöki tanulmányaim folytatásához Igen 12 Középiskolai geometria Nem 8 Nem tudom A kötelező matematikai kurzusokon több elemi geometriai ismeretet kellene tanítani Igen 13 Nem 5 Nem tudom 4 Nem válasz. 1 Több geometriát

29 5. A Matematika az építészetben c. tárgy során szakmai szempontból fontos, új ismeretekhez jutottam Igen 16 Szakmai szempontból új ismeret Nem 2 Nem tudom 4 Nem kaptam újat A Matematika az építészetben c. tárgy során érdekes új ismeretekhez jutottam Igen 21 Nem 2 Érdekes ismeretek Az önálló kutatómunka és órai prezentáció színessé, érdekessé teszi az órát Igen 21 Nem 0 Nem tudom 1 Gátolja a haladást 1 Kutatómunka,prezentáció

30 8. Az önálló kutatómunka és órai prezentáció segít a pályára való készülésben Igen 16 Prezentáció hatása a pályára való készüléshez Nem 2 Nem tudom Magasabb óraszámot is el tudnék képzelni a tárgy oktatására Igen 7 Magasabb óraszám Nem

31 10. Ha lenne folytatása a Matematika az építészetben c. tárgynak felvenném Igen 12 Folytatás Nem 4 Nem tudom Ajánlom a Matematika az építészetben c. tárgyat diáktársaimnak Igen 20 Ajánlás Nem 3 1 2

32 Köszönöm a figyelmet

TANMENET. Matematika

TANMENET. Matematika Bethlen Gábor Református Gimnázium és Szathmáry Kollégium 6800 Hódmezővásárhely, Szőnyi utca 2. Telefon: +36-62-241-703 www.bgrg.hu OM: 029736 TANMENET Matematika 2016/2017 9. B tagozat Összeállította:

Részletesebben

Geometria 1 normál szint

Geometria 1 normál szint Geometria 1 normál szint Naszódi Márton nmarci@math.elte.hu www.math.elte.hu/ nmarci ELTE TTK Geometriai Tsz. Budapest Geometria 1 p.1/4 Vizsga 1. Írásban, 90 perc. 2. Index nélkül nem lehet vizsgázni!

Részletesebben

17.2. Az egyenes egyenletei síkbeli koordinátarendszerben

17.2. Az egyenes egyenletei síkbeli koordinátarendszerben Tartalom Előszó 13 1. Halmazok; a matematikai logika elemei 15 1.1. A halmaz fogalma; jelölések 15 1.2. Részhalmazok; komplementer halmaz 16 1.3. Halmazműveletek 17 1.4. A halmazok ekvivalenciája 20 1.5.

Részletesebben

Matematika tanmenet 12. osztály (heti 4 óra)

Matematika tanmenet 12. osztály (heti 4 óra) Matematika tanmenet 12. osztály (heti 4 óra) Tankönyv: Ábrahám Gábor Dr. Kosztolányiné Nagy Erzsébet Tóth Julianna: Matematika 12. középszint Példatárak: Fuksz Éva Riener Ferenc: Érettségi feladatgyűjtemény

Részletesebben

Gyõrffy Magdolna. Tanmenetjavaslat. A matematika csodái 4. osztályos tankönyvcsaládhoz A KERETTANTERV SZERINT ÁTDOLGOZVA!

Gyõrffy Magdolna. Tanmenetjavaslat. A matematika csodái 4. osztályos tankönyvcsaládhoz A KERETTANTERV SZERINT ÁTDOLGOZVA! Gyõrffy Magdolna Tanmenetjavaslat A matematika csodái 4. osztályos tankönyvcsaládhoz A KERETTANTERV SZERINT ÁTDOLGOZVA! Dinasztia Tankönyvkiadó Kft., 2004 1 ÍRTA: GYÕRFFY MAGDOLNA TIPOGRÁFIA: KNAUSZ VALÉRIA

Részletesebben

Osztályozóvizsga és javítóvizsga témakörei Matematika 9. évfolyam

Osztályozóvizsga és javítóvizsga témakörei Matematika 9. évfolyam Osztályozóvizsga és javítóvizsga témakörei Matematika 9. évfolyam 1. félév Gondolkozás, számolás - halmazok, műveletek halmazokkal, intervallumok - racionális számok, műveletek racionális számokkal, zárójel

Részletesebben

A TANTÁRGY ADATLAPJA

A TANTÁRGY ADATLAPJA A TANTÁRGY ADATLAPJA 1. A képzési program adatai 1.1 Felsőoktatási intézmény Babeş-Bolyai Tudományegyetem 1.2 Kar Matematika és Informatika Kar 1.3 Intézet Magyar Matematika és Informatika Int 1.4 Szakterület

Részletesebben

TARTALOM. MATEMATIKA - MD Matematika oktatótablók 135 Geometriai oktatótablók 136 Táblai vonalzók 137 Geometria 138 Fóliamappák 139 141

TARTALOM. MATEMATIKA - MD Matematika oktatótablók 135 Geometriai oktatótablók 136 Táblai vonalzók 137 Geometria 138 Fóliamappák 139 141 TARTALOM MATEMATIKA - MD Matematika oktatótablók 135 Geometriai oktatótablók 136 Táblai vonalzók 137 Geometria 138 Fóliamappák 139 141 INFORMATIKA Informatikai falitablók 142 MATEMATIKAI OKTATÓTABLÓK 50

Részletesebben

MATEMATIKA EMELT SZINTŰ SZÓBELI VIZSGA TÉMAKÖREI (TÉTELEK) 2005

MATEMATIKA EMELT SZINTŰ SZÓBELI VIZSGA TÉMAKÖREI (TÉTELEK) 2005 2005 1. * Halmazok, halmazműveletek, nevezetes ponthalmazok 2. Számhalmazok, halmazok számossága 3. Hatványozás, hatványfüggvény 4. Gyökvonás, gyökfüggvény 5. A logaritmus. Az exponenciális és a logaritmus

Részletesebben

Osztályozó- és javítóvizsga témakörei MATEMATIKA tantárgyból 2016 / tanév

Osztályozó- és javítóvizsga témakörei MATEMATIKA tantárgyból 2016 / tanév 9. évfolyam I. Halmazok Osztályozó- és javítóvizsga témakörei MATEMATIKA tantárgyból 2016 / 2017. tanév 1. Halmaz, részhalmaz fogalma, részhalmazok száma, jelölések 2. Intervallumok 3. Halmazműveletek

Részletesebben

karakterisztikus egyenlet Ortogonális mátrixok. Kvadratikus alakok főtengelytranszformációja

karakterisztikus egyenlet Ortogonális mátrixok. Kvadratikus alakok főtengelytranszformációja Mátrixok hasonlósága, karakterisztikus mátrix, karakterisztikus egyenlet Ortogonális mátrixok. Kvadratikus alakok főtengelytranszformációja 1.Mátrixok hasonlósága, karakterisztikus mátrix, karakterisztikus

Részletesebben

PPKE ITK, 2015/2016tanév. I.félév. Tantárgyi adatok és követelmények

PPKE ITK, 2015/2016tanév. I.félév. Tantárgyi adatok és követelmények PPKE ITK, 2015/2016tanév I.félév Tantárgyi adatok és követelmények Tantárgy neve: Óraszám: Lineáris algebra 2 óra előadás, kedd, 8-10, Simonyi terem 2 óra gyakorlat Honlap: digitus.itk.ppke.hu/~b_novak

Részletesebben

Osztályozóvizsga követelményei

Osztályozóvizsga követelményei Osztályozóvizsga követelményei Képzés típusa: Tantárgy: Nyolcosztályos gimnázium Matematika Évfolyam: 7 Emelt óraszámú csoport Emelt szintű csoport Vizsga típusa: Írásbeli Követelmények, témakörök: Gondolkodási

Részletesebben

Matematika (mesterképzés)

Matematika (mesterképzés) Matematika (mesterképzés) Környezet- és Településmérnököknek Debreceni Egyetem Műszaki Kar, Műszaki Alaptárgyi Tanszék Vinczéné Varga A. Környezet- és Településmérnököknek 2016/2017/I 1 / 29 Lineáris tér,

Részletesebben

Lineáris algebra Gyakorló feladatok

Lineáris algebra Gyakorló feladatok Lineáris algebra Gyakorló feladatok. október.. Feladat: Határozzuk meg a, 4b, c és a b c vektorokat, ha a = (; ; ; ; b = (; ; ; ; c = ( ; ; ; ;.. Feladat: Határozzuk meg a, 4b, a, c és a b; c + b kifejezések

Részletesebben

A GEOMETRIA TÉMAKÖR FELOSZTÁSA. Síkgeometria Térgeometria Geometriai mérések Geometriai transzformációk Trigonometria Koordináta-geometria

A GEOMETRIA TÉMAKÖR FELOSZTÁSA. Síkgeometria Térgeometria Geometriai mérések Geometriai transzformációk Trigonometria Koordináta-geometria GEOMETRIA A GEOMETRIA TÉMAKÖR FELOSZTÁSA Síkgeometria Térgeometria Geometriai mérések Geometriai transzformációk Trigonometria Koordináta-geometria A SÍKGEOMETRIA TANÍTÁSA 5-10. OSZTÁLY Síkgeometriai fogalmak

Részletesebben

Matematika A 9. szakiskolai évfolyam. 16. modul EGYBEVÁGÓSÁGOK. Készítette: Vidra Gábor

Matematika A 9. szakiskolai évfolyam. 16. modul EGYBEVÁGÓSÁGOK. Készítette: Vidra Gábor Matematika A 9. szakiskolai évfolyam 16. modul EGYBEVÁGÓSÁGOK Készítette: Vidra Gábor MATEMATIKA A 9. SZAKISKOLAI ÉVFOLYAM 16. modul: EGYBEVÁGÓSÁGOK TANÁRI ÚTMUTATÓ 2 A modul célja Időkeret Ajánlott korosztály

Részletesebben

Osztályozóvizsga követelményei

Osztályozóvizsga követelményei Osztályozóvizsga követelményei Képzés típusa: Tantárgy: Nyolcosztályos gimnázium Matematika Évfolyam: 5 Emelt óraszámú csoport Emelt szintű csoport Vizsga típusa: Írásbeli Követelmények, témakörök: Gondolkodási

Részletesebben

Számítási feladatok a Számítógépi geometria órához

Számítási feladatok a Számítógépi geometria órához Számítási feladatok a Számítógépi geometria órához Kovács Zoltán Copyright c 2012 Last Revision Date: 2012. október 15. kovacsz@nyf.hu Technikai útmutató a jegyzet használatához A jegyzet képernyőbarát

Részletesebben

PPKE ITK, 2014/2015 tanév. I. félév. Tantárgyi adatok és követelmények

PPKE ITK, 2014/2015 tanév. I. félév. Tantárgyi adatok és követelmények PPKE ITK, 2014/2015 tanév I. félév Tantárgyi adatok és követelmények Tantárgy neve: Óraszám: Lineáris algebra 2 óra előadás, kedd, 8-10, Simonyi terem 2 óra gyakorlat Honlap: digitus.itk.ppke.hu/~b_novak

Részletesebben

Tanmenetjavaslat. Téma Óraszám Tananyag Fogalmak Összefüggések Eszközök Kitekintés. Helyi érték, alaki érték. Számegyenes.

Tanmenetjavaslat. Téma Óraszám Tananyag Fogalmak Összefüggések Eszközök Kitekintés. Helyi érték, alaki érték. Számegyenes. Heti 4 óra esetén, 37 tanítási hétre összesen 148 óra áll rendelkezésre. A tanmenet 132 óra beosztását tartalmazza. Heti 5 óra esetén összesen 37-tel több órában dolgozhatunk. Ez összesen 185 óra. Itt

Részletesebben

Osztályozó és Javító vizsga témakörei matematikából 9. osztály

Osztályozó és Javító vizsga témakörei matematikából 9. osztály Osztályozó és Javító vizsga témakörei matematikából 9. osztály 1. félév 1. Kombinatorika, halmazok Számoljuk össze! Összeszámlálási feladatok Matematikai logika Halmazok Halmazműveletek Halmazok elemszáma,

Részletesebben

Osztályozó- és javítóvizsga témakörei MATEMATIKA tantárgyból

Osztályozó- és javítóvizsga témakörei MATEMATIKA tantárgyból Osztályozó- és javítóvizsga témakörei MATEMATIKA tantárgyból 9. évfolyam I. Halmazok 1. Alapfogalmak, jelölések 2. Halmaz, részhalmaz fogalma, részhalmazok száma, jelölések 3. Nevezetes számhalmazok (N,

Részletesebben

YBL - SGYMMAT2012XA Matematika II.

YBL - SGYMMAT2012XA Matematika II. YBL - SGYMMAT2012XA Matematika II. Tantárgyfelelős: Dr. Joós Antal Tárgyelőadó: Dr. Joós Antal Tantárgyi leírás Oktatási cél: Azoknak a matematikai alapoknak a megszerzése, melyek a szaktárgyak elsajátításához

Részletesebben

MATEMATIKA TANMENET SZAKKÖZÉPISKOLA 12.E ÉS 13.A OSZTÁLY HETI 4 ÓRA 31 HÉT/ ÖSSZ 124 ÓRA

MATEMATIKA TANMENET SZAKKÖZÉPISKOLA 12.E ÉS 13.A OSZTÁLY HETI 4 ÓRA 31 HÉT/ ÖSSZ 124 ÓRA MINŐSÉGIRÁNYÍTÁSI ELJÁRÁS MELLÉKLET Tanmenetborító Azonosító: ME-III.1./1 Változatszám: 2 Érvényesség 2013. 09. 01. kezdete: Oldal/összes: 1/6 Fájlnév: ME- III.1.1.Tanmenetborító SZK- DC-2013 MATEMATIKA

Részletesebben

A TANTÁRGY ADATLAPJA

A TANTÁRGY ADATLAPJA A TANTÁRGY ADATLAPJA 1. A képzési program adatai 1.1 Felsőoktatási intézmény Babeş-Bolyai Tudományegyetem 1.2 Kar Matematika és Informatika Kar 1.3 Intézet Magyar Matematika és Informatika 1.4 Szakterület

Részletesebben

Egyenes mert nincs se kezdő se végpontja

Egyenes mert nincs se kezdő se végpontja Szakasz mert van két végpontja Egyenes mert nincs se kezdő se végpontja Tört vonal Szög mert van két szára és csúcsa Félegyenes mert van egy kezdőpontja 5 1 1 Két egyenes egymásra merőleges ha egymással

Részletesebben

TANMENETJAVASLAT. Dr. Korányi Erzsébet MATEMATIKA. Tankönyv nyolcadikosoknak. címû tankönyveihez

TANMENETJAVASLAT. Dr. Korányi Erzsébet MATEMATIKA. Tankönyv nyolcadikosoknak. címû tankönyveihez TANMENETJAVASLAT Dr. Korányi Erzsébet MATEMATIKA Tankönyv nyolcadikosoknak címû tankönyveihez 8. OSZTÁLY Óraszám 1. 1 2. Halmazok ismétlés Tk. 6/1 5. Gyk. 3 6/1 10. 2. 3 4. A logikai szita Tk. 9 10/6 20.

Részletesebben

Tevékenységalapú nyílt oktatás DR. SIMÁNDI SZILVIA ESZTERHÁZY KÁROLY FŐISKOLA ANDRAGÓGIAI ÉS KÖZMŰVELŐDÉSI TANSZÉK

Tevékenységalapú nyílt oktatás DR. SIMÁNDI SZILVIA ESZTERHÁZY KÁROLY FŐISKOLA ANDRAGÓGIAI ÉS KÖZMŰVELŐDÉSI TANSZÉK Tevékenységalapú nyílt oktatás DR. SIMÁNDI SZILVIA ESZTERHÁZY KÁROLY FŐISKOLA ANDRAGÓGIAI ÉS KÖZMŰVELŐDÉSI TANSZÉK Egész életen át tartó tanulás (LLL) - az idődimenzió mentén helyezi el a tanulás folyamatát,

Részletesebben

MATEMATIKA TANMENET 9.B OSZTÁLY FIZIKA TAGOZAT HETI 6 ÓRA, ÖSSZESEN 216 ÓRA

MATEMATIKA TANMENET 9.B OSZTÁLY FIZIKA TAGOZAT HETI 6 ÓRA, ÖSSZESEN 216 ÓRA MATEMATIKA TANMENET 9.B OSZTÁLY FIZIKA TAGOZAT HETI 6 ÓRA, ÖSSZESEN 216 ÓRA A TÁMOP 3.1.4. EU-s pályázat megvalósításához a matematika (9. b/fizika) tárgy tanmenete a matematika kompetenciaterület A típusú

Részletesebben

Numerikus módszerek: Nemlineáris egyenlet megoldása (Newton módszer, húrmódszer). Lagrange interpoláció. Lineáris regresszió.

Numerikus módszerek: Nemlineáris egyenlet megoldása (Newton módszer, húrmódszer). Lagrange interpoláció. Lineáris regresszió. YBL - SGYMMAT202XXX Matematika II. Tantárgyfelelős: Dr. Joós Antal Tárgyelőadó: Dr. Joós Antal Tantárgyi leírás Oktatási cél: Azoknak a matematikai alapoknak a megszerzése, melyek a szaktárgyak elsajátításához

Részletesebben

MATEMATIKA C 12. évfolyam 4. modul Még egyszer!

MATEMATIKA C 12. évfolyam 4. modul Még egyszer! MATEMATIKA C 1. évfolyam 4. modul Még egyszer! Készítette: Kovács Károlyné Matematika C 1. évfolyam 4. modul: Még eygszer! Tanári útmutató A modul célja Időkeret Ajánlott korosztály Modulkapcsolódási pontok

Részletesebben

Rövid tantárgyi leírás. Előfeltétel. A tantárgy neve SZABV31 Szorobán. 2 3 m SZV I-VIII.

Rövid tantárgyi leírás. Előfeltétel. A tantárgy neve SZABV31 Szorobán. 2 3 m SZV I-VIII. Rövid tantárgyi leírás SZABV31 Szorobán Cél: A hallgatók megismertetése a japán számolóeszköz történetével, használatával. A négy alapművelet tanítási módszereinek, lehetőségeinek elsajátíttatása. Felkészítés

Részletesebben

Hogyan óvjuk meg értékes festményeinket?

Hogyan óvjuk meg értékes festményeinket? Hogyan óvjuk meg értékes festményeinket? Hajnal Péter Bolyai Intézet, SZTE, Szeged 2013. április Bevezető példa I. Feladat Adott egy konvex nyolcszög. Bevezető példa I. Feladat Adott egy konvex nyolcszög.

Részletesebben

Vizsga Lineáris algebra tárgyból. 2012/13 akadémiai év, I. félév

Vizsga Lineáris algebra tárgyból. 2012/13 akadémiai év, I. félév 1 Vizsga Lineáris algebra tárgyból 2012/13 akadémiai év, I. félév TARTALOM: 1. Elméleti anyag (melyet a vizsgára meg kell tanulni)...2. old. 2. A vizsga lebonyolítása, osztályozás...3. old. 2.1 Vizsga

Részletesebben

LINEÁRIS ALGEBRA. matematika alapszak. Euklideszi terek. SZTE Bolyai Intézet, őszi félév. Euklideszi terek LINEÁRIS ALGEBRA 1 / 40

LINEÁRIS ALGEBRA. matematika alapszak. Euklideszi terek. SZTE Bolyai Intézet, őszi félév. Euklideszi terek LINEÁRIS ALGEBRA 1 / 40 LINEÁRIS ALGEBRA matematika alapszak SZTE Bolyai Intézet, 2016-17. őszi félév Euklideszi terek Euklideszi terek LINEÁRIS ALGEBRA 1 / 40 Euklideszi tér Emlékeztető: A standard belső szorzás és standard

Részletesebben

MILYEN ÚJDONSÁGOK VANNAK AZ OFI ÚJ TANKÖNYVEIBEN? OSZTÁLY

MILYEN ÚJDONSÁGOK VANNAK AZ OFI ÚJ TANKÖNYVEIBEN? OSZTÁLY A NEMZETI ALAPTANTERVHEZ ILLESZKEDŐ TANKÖNYV, TANESZKÖZ ÉS NEMZETI KÖZOKTATÁSI PORTÁL FEJLESZTÉSE TÁMOP-3.1.2-B/13-2013-0001 MILYEN ÚJDONSÁGOK VANNAK AZ OFI ÚJ TANKÖNYVEIBEN? 5-6-7. OSZTÁLY KEDVES ÖTÖDIKES!

Részletesebben

Matematika szóbeli érettségi témakörök 2016/2017-es tanév őszi vizsgaidőszak

Matematika szóbeli érettségi témakörök 2016/2017-es tanév őszi vizsgaidőszak Matematika szóbeli érettségi témakörök 2016/2017-es tanév őszi vizsgaidőszak Halmazok Halmazok egyenlősége Részhalmaz, valódi részhalmaz Üres halmaz Véges és végtelen halmaz Halmazműveletek (unió, metszet,

Részletesebben

MATEMATIKA TANMENET SZAKKÖZÉPISKOLA 9.A-9.C-9.D OSZTÁLY HETI 4 ÓRA 37 HÉT/ ÖSSZ 148 ÓRA

MATEMATIKA TANMENET SZAKKÖZÉPISKOLA 9.A-9.C-9.D OSZTÁLY HETI 4 ÓRA 37 HÉT/ ÖSSZ 148 ÓRA MINŐSÉGIRÁNYÍTÁSI ELJÁRÁS MELLÉKLET Tanmenetborító Azonosító: ME-III.1./1 Változatszám: 2 Érvényesség 2013. 01. 01. kezdete: Oldal/összes: 1/5 Fájlnév: ME- III.1.1.Tanmenetborító SZK- DC-2013 MATEMATIKA

Részletesebben

Matematika szigorlat, Mérnök informatikus szak I máj. 12. Név: Nept. kód: Idő: 1. f. 2. f. 3. f. 4. f. 5. f. 6. f. Össz.: Oszt.

Matematika szigorlat, Mérnök informatikus szak I máj. 12. Név: Nept. kód: Idő: 1. f. 2. f. 3. f. 4. f. 5. f. 6. f. Össz.: Oszt. Matematika szigorlat, Mérnök informatikus szak I. 2009. máj. 12. Név: Nept. kód: Idő: 1. f. 2. f. 3. f. 4. f. 5. f. 6. f. Össz.: Oszt.: 180 perc 0-49 pont: elégtelen, 50-61 pont: elégséges, 62-73 pont:

Részletesebben

MATEMATIKA 5-6. Motiváció és közelítés a mindennapokhoz az OFI kísérleti tankönyveiben

MATEMATIKA 5-6. Motiváció és közelítés a mindennapokhoz az OFI kísérleti tankönyveiben A Nemzeti Alaptantervhez illeszkedő tankönyv-, taneszköz-, és Nemzeti Közoktatási Portál fejlesztése TÁMOP-3.1.2-B/13-2013-0001 MATEMATIKA 5-6. Motiváció és közelítés a mindennapokhoz az OFI kísérleti

Részletesebben

Tudomány és művészetek tehetséggondozó műhely záró foglalkozás és kiállítás

Tudomány és művészetek tehetséggondozó műhely záró foglalkozás és kiállítás NTP-KKI-B-15 A köznevelés és kulturális intézményekben működő tehetséggondozó programok támogatása Tudomány és művészetek tehetséggondozó műhely záró foglalkozás és kiállítás Tudomány és művészetek tehetséggondozó

Részletesebben

Tantárgytömbösítés a matematika tantárgyban 5. évfolyamon

Tantárgytömbösítés a matematika tantárgyban 5. évfolyamon TÁMOP-3.1.4-08/2-2008-0123 Kompetencia alapú oktatás a Bonyhádi Oktatási Nevelési Intézményben Tantárgytömbösítés a matematika tantárgyban 5. évfolyamon Készítette: Bölcsföldi Árpádné A BONI Arany János

Részletesebben

TANTÁRGYI ADATLAP. Mechatronika/Mechatronikus mérnök Végzettség

TANTÁRGYI ADATLAP. Mechatronika/Mechatronikus mérnök Végzettség TANTÁRGYI ADATLAP 1. A tanulmányi program jellemzői 1.1 A felsőoktatási intézmény Sapientia Erdélyi Magyar Tudományegyetem 1.2 Kar Marosvásárhelyi Műszaki és Humán Tudományok Kar 1.3 Tanszék Gépészmérnöki

Részletesebben

OKTATOTT IDEGEN NYELV

OKTATOTT IDEGEN NYELV Az iskola neve: Bercsényi Miklós Katolikus Gimnázium és Kollégium, Általános Iskola, Óvoda Címe: 5200 Törökszentmiklós, Almásy út 1. Telefon/fax: 06-56/390-002 E-mail: tmbercsenyi@gmail.com Igazgató: Kocsis

Részletesebben

Csak azon felhasználókra vonatkozik, akik 2003. március 1-jétõl léptek be az elõfizetõi rendszerbe. Új cikkek Kapcsolódó anyagok CD-mellékleten

Csak azon felhasználókra vonatkozik, akik 2003. március 1-jétõl léptek be az elõfizetõi rendszerbe. Új cikkek Kapcsolódó anyagok CD-mellékleten Tartalomjegyzék Az Ön könyve tartalmazza A megjelenés dátuma Szerkezeti felépítés Szerzõk Használati útmutató A PEDAGÓGIAI FELADATOK 1. A tanulás-tanítás tervezése 1.1 Kerettanterv Tudnivalók, javaslatok,

Részletesebben

Numerikus matematika vizsga

Numerikus matematika vizsga 1. Az a = 2, t = 4, k = 3, k + = 2 számábrázolási jellemzők mellett hány pozitív, normalizált lebegőpontos szám ábrázolható? Adja meg a legnagyobb ábrázolható számot! Mi lesz a 0.8-hoz rendelt lebegőpontos

Részletesebben

Oktatási azonosító Tantárgy Elért pontszám Magyar nyelv Matematika Magyar nyelv Matematika

Oktatási azonosító Tantárgy Elért pontszám Magyar nyelv Matematika Magyar nyelv Matematika Oktatási azonosító Tantárgy Elért pontszám 76894971600 Magyar nyelv 28 76894971600 Matematika 18 75983808936 Magyar nyelv 22 75983808936 Matematika 17 78988181589 Magyar nyelv 32 78988181589 Matematika

Részletesebben

MATEMATIKA TANMENET SZAKKÖZÉPISKOLA 11.E OSZTÁLY HETI 4 ÓRA 37 HÉT/ ÖSSZ 148 ÓRA

MATEMATIKA TANMENET SZAKKÖZÉPISKOLA 11.E OSZTÁLY HETI 4 ÓRA 37 HÉT/ ÖSSZ 148 ÓRA MINŐSÉGIRÁNYÍTÁSI ELJÁRÁS MELLÉKLET Tanmenetborító Azonosító: ME-III.1./1 Változatszám: 2 Érvényesség 2013. 09. 01. kezdete: Oldal/összes: 1/5 Fájlnév: ME- III.1.1.Tanmenetborító SZK- DC-2013 MATEMATIKA

Részletesebben

Szerző: Arián Péterné, Bánné Mészáros Anikó Téma Óraszám Tanári bemutató Tanulói tevékenység Módszertan Óratípus Eszközök. 5. évfolyam...

Szerző: Arián Péterné, Bánné Mészáros Anikó Téma Óraszám Tanári bemutató Tanulói tevékenység Módszertan Óratípus Eszközök. 5. évfolyam... Szerző: Arián Péterné, Bánné észáros Anikó Téma Óraszám Tanári bemutató Tanulói tevékenység ódszertan Óratípus szközök Tantárgy: atematika Tartalom 5. évfolyam... 2 Gondolkodási módszerek... 2 Számtan,

Részletesebben

3. előadás. Elemi geometria Terület, térfogat

3. előadás. Elemi geometria Terület, térfogat 3. előadás Elemi geometria Terület, térfogat Tetraéder Négy, nem egy síkban lévő pont által meghatározott test. 4 csúcs, 6 él, 4 lap Tetraéder Minden tetraédernek egyértelműen létezik körülírt- és beírt

Részletesebben

MATEMATIKA - STATISZTIKA TANSZÉK

MATEMATIKA - STATISZTIKA TANSZÉK MATEMATIKA - STATISZTIKA TANSZÉK 1. A Kodolányi János Főiskolán végzett kutatások Tananyagfejlesztés A kutatási téma címe, rövid leírása Várható eredmények vagy célok; részeredmények Kutatás kezdete és

Részletesebben

Matematika A 9. szakiskolai évfolyam. 15. modul SÍKIDOMOK. Készítette: Vidra Gábor

Matematika A 9. szakiskolai évfolyam. 15. modul SÍKIDOMOK. Készítette: Vidra Gábor Matematika A 9. szakiskolai évfolyam 15. modul SÍKIDOMOK Készítette: Vidra Gábor MATEMATIKA A 9. SZAKISKOLAI ÉVFOLYAM 15. modul: SÍKIDOMOK TANÁRI ÚTMUTATÓ 2 A modul célja Időkeret Ajánlott korosztály Modulkapcsolódási

Részletesebben

Osztályozóvizsga követelményei

Osztályozóvizsga követelményei Osztályozóvizsga követelményei Képzés típusa: Tantárgy: Általános iskola Matematika Évfolyam: 1 Emelt óraszámú csoport Emelt szintű csoport Vizsga típusa: Írásbeli Követelmények, témakörök: Halmazok összehasonlítása

Részletesebben

9. ÉVFOLYAM. Tájékozottság a racionális számkörben. Az azonosságok ismerete és alkalmazásuk. Számok abszolútértéke, normál alakja.

9. ÉVFOLYAM. Tájékozottság a racionális számkörben. Az azonosságok ismerete és alkalmazásuk. Számok abszolútértéke, normál alakja. 9. ÉVFOLYAM Gondolkodási módszerek A szemléletes fogalmak definiálása, tudatosítása. Módszer keresése az összes eset áttekintéséhez. A szükséges és elégséges feltétel megkülönböztetése. A megismert számhalmazok

Részletesebben

Matematika B/1. Tartalomjegyzék. 1. Célkit zések. 2. Általános követelmények. 3. Rövid leírás. 4. Oktatási módszer. Biró Zsolt. 1.

Matematika B/1. Tartalomjegyzék. 1. Célkit zések. 2. Általános követelmények. 3. Rövid leírás. 4. Oktatási módszer. Biró Zsolt. 1. Matematika B/1 Biró Zsolt Tartalomjegyzék 1. Célkit zések 1 2. Általános követelmények 1 3. Rövid leírás 1 4. Oktatási módszer 1 5. Követelmények, pótlások 2 6. Program (el adás) 2 7. Program (gyakorlat)

Részletesebben

Síkbarajzolható gráfok, rúdszerkezetek, transzformátorok

Síkbarajzolható gráfok, rúdszerkezetek, transzformátorok Síkbarajzolható gráfok, rúdszerkezetek, transzformátorok Recski András Budapesti Mőszaki és Gazdaságtudományi Egyetem A végtelen sokféle szabályos sokszög közül csak hárommal lehet a síkot parkettázni

Részletesebben

Korrózió kommunikációs dosszié KORRÓZIÓ. ANYAGMÉRNÖK NAPPALI BSc KÉPZÉS, SZABADON VÁLASZTHATÓ TÁRGY TANTÁRGYI KOMMUNIKÁCIÓS DOSSZIÉ

Korrózió kommunikációs dosszié KORRÓZIÓ. ANYAGMÉRNÖK NAPPALI BSc KÉPZÉS, SZABADON VÁLASZTHATÓ TÁRGY TANTÁRGYI KOMMUNIKÁCIÓS DOSSZIÉ KORRÓZIÓ ANYAGMÉRNÖK NAPPALI BSc KÉPZÉS, SZABADON VÁLASZTHATÓ TÁRGY TANTÁRGYI KOMMUNIKÁCIÓS DOSSZIÉ MISKOLCI EGYETEM MŰSZAKI ANYAGTUDOMÁNYI KAR KÉMIAI INTÉZET Miskolc, 2014. Tartalom jegyzék 1. Tantárgyleírás,

Részletesebben

Összeállította Horváth László egyetemi tanár

Összeállította Horváth László egyetemi tanár Óbudai Egyetem Neumann János Informatikai Kar Intelligens Mérnöki Rendszerek Intézet Intelligens Mérnöki Rendszerek Szakirány a Mérnök informatikus alapszakon Összeállította Horváth László Budapest, 2011

Részletesebben

Geometria. a. Alapfogalmak: pont, egyenes, vonal, sík, tér (Az alapfogalamakat nem definiáljuk)

Geometria. a. Alapfogalmak: pont, egyenes, vonal, sík, tér (Az alapfogalamakat nem definiáljuk) 1. Térelemek Geometria a. Alapfogalmak: pont, egyenes, vonal, sík, tér (Az alapfogalamakat nem definiáljuk) b. Def: félegyenes, szakasz, félsík, féltér. c. Kölcsönös helyzetük: i. pont és (egyenes vagy

Részletesebben

2016. január 28., csütörtök

2016. január 28., csütörtök 2016. január 28., csütörtök Felfedezés, Játék és Alkotás ÉLMÉNYMŰHELY ÚJSZÁSZON, A SZOLNOKI MŰSZAKI SZC RÓZSA IMRE KÖZÉPISKOLÁJA ÉS KOLLÉGIUMÁBAN Cím: 5052 Újszász Dózsa György út 23. Programunk a Nemzeti

Részletesebben

NT-17202 Matematika 10. (Heuréka) Tanmenetjavaslat

NT-17202 Matematika 10. (Heuréka) Tanmenetjavaslat NT-17202 Matematika 10. (Heuréka) Tanmenetjavaslat A Dr. Gerőcs László Számadó László Matematika 10. tankönyv A Heuréka-sorozat tagja, így folytatása a Matematika 9. tankönyvnek. Ez a kötet is elsősorban

Részletesebben

A MATEMATIKAI SZOFTVEREK ALKALMAZÁSI KÉSZSÉGÉT, VALAMINT A TÉRSZEMLÉLETET FEJLESZTŐ TANANYAGOK KIDOLGOZÁSA A DEBRECENI EGYETEM MŰSZAKI KARÁN

A MATEMATIKAI SZOFTVEREK ALKALMAZÁSI KÉSZSÉGÉT, VALAMINT A TÉRSZEMLÉLETET FEJLESZTŐ TANANYAGOK KIDOLGOZÁSA A DEBRECENI EGYETEM MŰSZAKI KARÁN A MATEMATIKAI SZOFTVEREK ALKALMAZÁSI KÉSZSÉGÉT, VALAMINT A TÉRSZEMLÉLETET FEJLESZTŐ TANANYAGOK KIDOLGOZÁSA A DEBRECENI EGYETEM MŰSZAKI KARÁN Dr. Kocsis Imre DE Műszaki Kar Dr. Papp Ildikó DE Informatikai

Részletesebben

1. Generátorrendszer. Házi feladat (fizikából tudjuk) Ha v és w nem párhuzamos síkvektorok, akkor generátorrendszert alkotnak a sík vektorainak

1. Generátorrendszer. Házi feladat (fizikából tudjuk) Ha v és w nem párhuzamos síkvektorok, akkor generátorrendszert alkotnak a sík vektorainak 1. Generátorrendszer Generátorrendszer. Tétel (Freud, 4.3.4. Tétel) Legyen V vektortér a T test fölött és v 1,v 2,...,v m V. Ekkor a λ 1 v 1 + λ 2 v 2 +... + λ m v m alakú vektorok, ahol λ 1,λ 2,...,λ

Részletesebben

OM azonosító: 201573 GIMNÁZIUMI OSZTÁLYOK. angol, német, Emelt óraszámban angol nyelv oktatása. 20

OM azonosító: 201573 GIMNÁZIUMI OSZTÁLYOK. angol, német, Emelt óraszámban angol nyelv oktatása. 20 Az iskola neve: Bercsényi Miklós Katolikus Gimnázium és Kollégium, Általános Iskola, Óvoda Címe: 5200 Törökszentmiklós, Almásy út 1. Telefon/fax: 06-56/390-002 E-mail: tmbercsenyi@gmail.com Igazgató: Kocsis

Részletesebben

A MATEMATIKA ÉRETTSÉGI VIZSGA ÁLTALÁNOS KÖVETELMÉNYEI. A vizsga formája. Közé pszinten: írásbeli Emelt szinten: írásbeli és szóbeli

A MATEMATIKA ÉRETTSÉGI VIZSGA ÁLTALÁNOS KÖVETELMÉNYEI. A vizsga formája. Közé pszinten: írásbeli Emelt szinten: írásbeli és szóbeli Az érettségi vizsga követelményei 1 MATEK A vizsga formája Közé pszinten: írásbeli Emelt szinten: írásbeli és szóbeli A MATEMATIKA ÉRETTSÉGI VIZSGA ÁLTALÁNOS KÖVETELMÉNYEI A matematika érettségi vizsga

Részletesebben

1. Mátrixösszeadás és skalárral szorzás

1. Mátrixösszeadás és skalárral szorzás 1 Mátrixösszeadás és skalárral szorzás Mátrixok tömör jelölése T test Az M = a i j T n m azt az n sorból és m oszlopból álló mátrixot jelöli, amelyben az i-edik sor j-edik eleme a i j T Példák [ ] Ha M

Részletesebben

MATEMATIKA TANMENET SZAKKÖZÉPISKOLA 9.A, 9.D. OSZTÁLY HETI 4 ÓRA 37 HÉT ÖSSZ: 148 ÓRA

MATEMATIKA TANMENET SZAKKÖZÉPISKOLA 9.A, 9.D. OSZTÁLY HETI 4 ÓRA 37 HÉT ÖSSZ: 148 ÓRA MINŐSÉGIRÁNYÍTÁSI ELJÁRÁS MELLÉKLET Tanmenetborító ME-III.1./1 2 Azonosító: Változatszám : Érvényesség kezdete: Oldal/összes: 1/6 Fájlnév: ME- III.1.1.Tanmenetborító SZK-DC-2013 2013. 09. 01. MATEMATIKA

Részletesebben

Matematika 5. évfolyam

Matematika 5. évfolyam Matematika 5. évfolyam Heti 4 óra, Évi 144 óra Célok és feladatok - a biztos számfogalom kialakítása, számolási készség fejlesztése - a számkör bővítése a nagy számokkal, törtekkel és az egész számokkal

Részletesebben

6. OSZTÁLY. Az évi munka szervezése, az érdeklõdés felkeltése Feladatok a 6. osztály anyagából. Halmazok Ismétlés (halmaz megadása, részhalmaz)

6. OSZTÁLY. Az évi munka szervezése, az érdeklõdés felkeltése Feladatok a 6. osztály anyagából. Halmazok Ismétlés (halmaz megadása, részhalmaz) 6. OSZTÁLY Óraszám 1. 1. Az évi munka szervezése, az érdeklõdés felkeltése a 6. osztály anyagából Tk. 13/elsõ mintapélda 42/69 70. 96/elsõ mintapélda 202/16. 218/69. 2 3. 2 3. Halmazok Ismétlés (halmaz

Részletesebben

Az osztályozóvizsgák követelményrendszere 9. évfolyam

Az osztályozóvizsgák követelményrendszere 9. évfolyam Az osztályozóvizsgák követelményrendszere 9. évfolyam Kombinatorika, halmazok Összeszámlálási feladatok Halmazok, halmazműveletek, halmazok elemszáma Logikai szita Számegyenesek intervallumok Algebra és

Részletesebben

MATEMATIKA A és B variáció

MATEMATIKA A és B variáció MATEMATIKA A és B variáció A Híd 2. programban olyan fiatalok vesznek részt, akik legalább elégséges érdemjegyet kaptak matematikából a hatodik évfolyam végén. Ezzel együtt az adatok azt mutatják, hogy

Részletesebben

8. modul: NÉGYSZÖGEK, SOKSZÖGEK

8. modul: NÉGYSZÖGEK, SOKSZÖGEK MATEMATIK A 9. évfolyam 8. modul: NÉGYSZÖGEK, SOKSZÖGEK KÉSZÍTETTE: VIDRA GÁBOR Matematika A 9. évfolyam. 8. modul: NÉGYSZÖGEK, SOKSZÖGEK Tanári útmutató 2 A modul célja Időkeret Ajánlott korosztály Modulkapcsolódási

Részletesebben

NT Matematika 11. (Heuréka) Tanmenetjavaslat

NT Matematika 11. (Heuréka) Tanmenetjavaslat NT-17302 Matematika 11. (Heuréka) Tanmenetjavaslat A Dr. Gerőcs László Számadó László Matematika 11. tankönyv a Heuréka-sorozat harmadik tagja. Ebben a segédanyagban ehhez a könyvhöz a tizenegyedikes tananyag

Részletesebben

ÁLLAM ÉS JOGTUDOMÁNYI KAR TANTÁRGYI PROGRAMOK JOGI FELSŐOKTATÁSI SZAKKÉPZÉS LEVELEZŐ TAGOZAT

ÁLLAM ÉS JOGTUDOMÁNYI KAR TANTÁRGYI PROGRAMOK JOGI FELSŐOKTATÁSI SZAKKÉPZÉS LEVELEZŐ TAGOZAT ÁLLAM ÉS JOGTUDOMÁNYI KAR TANTÁRGYI PROGRAMOK JOGI FELSŐOKTATÁSI SZAKKÉPZÉS LEVELEZŐ TAGOZAT KÖTELEZŐ NYELVI KURZUSOK OROSZ NYELVBŐL 1. Szak megnevezése: Jogi felsőoktatási szakképzés, levelező 2. A tantárgy

Részletesebben

Minden programra felvételi eljárásban választjuk ki a tanulókat.

Minden programra felvételi eljárásban választjuk ki a tanulókat. Az iskola neve: Bercsényi Miklós Katolikus Gimnázium és Kollégium, Általános Iskola, Óvoda Címe: 5200 Törökszentmiklós, Almásy út 1. Telefon/fax: 06-56/390-002 E-mail: tmbercsenyi@gmail.com Igazgató: Kocsis

Részletesebben

Didaktika 1. Tanügyi és iskolai szabályozás. 3. Tantervi követelmények

Didaktika 1. Tanügyi és iskolai szabályozás. 3. Tantervi követelmények Didaktika 1. Tanügyi és iskolai szabályozás 3. Tantervi követelmények A tanítási-tanulási folyamat rendszeralkotó tényezői Képzési inputok (tanterv, kurzustartalmak) Transzformáció (oktatási folyamat)

Részletesebben

MATEMATIKA TANMENET. 9. osztály. 4 óra/hét. Budapest, 2014. szeptember

MATEMATIKA TANMENET. 9. osztály. 4 óra/hét. Budapest, 2014. szeptember MATEMATIKA TANMENET 9. osztály 4 óra/hét Budapest, 2014. szeptember 2 Évi óraszám: 144 óra Heti óraszám: 4 óra Ismerkedés, év elejei feladatok, szintfelmérő írása 2 óra I. Kombinatorika, halmazok 13 óra

Részletesebben

Osztályozóvizsga követelményei

Osztályozóvizsga követelményei Osztályozóvizsga követelményei Képzés típusa: Tantárgy: Nyolcosztályos gimnázium Matematika Évfolyam: 11 Emelt óraszámú csoport Emelt szintű csoport Vizsga típusa: Írásbeli Követelmények, témakörök: Gondolkodási

Részletesebben

Tanmenet Matematika 8. osztály HETI ÓRASZÁM: 3,5 óra ( 4-3) ÉVES ÓRASZÁM: 126 óra

Tanmenet Matematika 8. osztály HETI ÓRASZÁM: 3,5 óra ( 4-3) ÉVES ÓRASZÁM: 126 óra Tanmenet Matematika 8. osztály HETI ÓRASZÁM: 3,5 óra ( 4-3) ÉVES ÓRASZÁM: 126 óra A Kiadó javaslata alapján összeállította: Látta:...... Harmath Lajos munkaközösség vezető tanár Jóváhagyta:... igazgató

Részletesebben

ÁLLAM ÉS JOGTUDOMÁNYI KAR TANTÁRGYI PROGRAMOK JOGI FELSŐOKTATÁSI SZAKKÉPZÉS LEVELEZŐ TAGOZAT

ÁLLAM ÉS JOGTUDOMÁNYI KAR TANTÁRGYI PROGRAMOK JOGI FELSŐOKTATÁSI SZAKKÉPZÉS LEVELEZŐ TAGOZAT ÁLLAM ÉS JOGTUDOMÁNYI KAR TANTÁRGYI PROGRAMOK JOGI FELSŐOKTATÁSI SZAKKÉPZÉS LEVELEZŐ TAGOZAT KÖTELEZŐ NYELVI KURZUSOK ANGOL NYELVBŐL 1. Szak megnevezése: Jogi felsőoktatási szakképzés, levelező 2. A tantárgy

Részletesebben

MATEMATIKA tanterv emelt szint 11-12. évfolyam

MATEMATIKA tanterv emelt szint 11-12. évfolyam MATEMATIKA tanterv emelt szint 11-12. évfolyam Batthyány Kázmér Gimnázium, 2004. 1 TARTALOM 11.osztály (222 óra)... 3 1. Gondolkodási műveletek (35 óra)... 3 2. Számelmélet, algebra (64 óra)... 3 3. Függvények,

Részletesebben

PTE PMMFK Levelező-távoktatás, villamosmérnök szak

PTE PMMFK Levelező-távoktatás, villamosmérnök szak PTE PMMFK Levelező-távoktatás, villamosmérnök szak MATEMATIKA (A tantárgy tartalma és a tananyag elsajátításának időterve.) Összeállította: Kis Miklós adjunktus Tankönyvek (mindhárom félévre): 1. Scharnitzky

Részletesebben

Féléves óraszám. AM1 18 Kollokvium 4 - MÉGM, MM. AM1 18 Kollokvium 5 - MM. AM1 5 Kollokvium 2 - Dr. Miskolczi Ildikó

Féléves óraszám. AM1 18 Kollokvium 4 - MÉGM, MM. AM1 18 Kollokvium 5 - MM. AM1 5 Kollokvium 2 - Dr. Miskolczi Ildikó SZOLNOKI FŐISKOLA Gazdasági és vidékfejlesztési agrármérnök (BSc), Mezőgazdasági és élelmiszeripari gépészmérnök (BSc) és Műszaki menedzser (BSc) szakos Levelező tagozatos I. évfolyamos hallgatók (Szolnok)

Részletesebben

Lássuk be, hogy nem lehet a három pontot úgy elhelyezni, hogy egy inerciarendszerben

Lássuk be, hogy nem lehet a három pontot úgy elhelyezni, hogy egy inerciarendszerben Feladat: A háromtest probléma speciális megoldásai Arra vagyunk kiváncsiak, hogy a bolygó mozgásnak milyen egyszerű egyensúlyi megoldásai vannak három bolygó esetén. Az így felmerülő három-test probléma

Részletesebben

I. Gondolkodási módszerek: (6 óra) 1. Gondolkodási módszerek, a halmazelmélet elemei, a logika elemei. 1. Számfogalom, műveletek (4 óra)

I. Gondolkodási módszerek: (6 óra) 1. Gondolkodási módszerek, a halmazelmélet elemei, a logika elemei. 1. Számfogalom, műveletek (4 óra) MATEMATIKA NYEK-humán tanterv Matematika előkészítő év Óraszám: 36 óra Tanítási ciklus 1 óra / 1 hét Részletes felsorolás A tananyag felosztása: I. Gondolkodási módszerek: (6 óra) 1. Gondolkodási módszerek,

Részletesebben

Tanmenetjavaslat a 6. osztályos matematika kísérleti tankönyvhöz

Tanmenetjavaslat a 6. osztályos matematika kísérleti tankönyvhöz MATEMATIKA 6. Tanmenetjavaslat a 6. osztályos matematika kísérleti tankönyvhöz Témák 1. Játékos feladatok Egyszerű, matematikailag is értelmezhető hétköznapi szituációk megfogalmazása szóban és írásban.

Részletesebben

Matematika. 9.osztály: Ajánlott tankönyv és feladatgyűjtemény: Matematika I-II. kötet (Apáczai Kiadó; AP-090803 és AP-090804)

Matematika. 9.osztály: Ajánlott tankönyv és feladatgyűjtemény: Matematika I-II. kötet (Apáczai Kiadó; AP-090803 és AP-090804) Matematika A definíciókat és tételeket (bizonyítás nélkül) ki kell mondani, a tananyagrészekhez tartozó alap- és közepes nehézségű feladatokat kell tudni megoldani A javítóvizsga 60 -es írásbeliből áll.

Részletesebben

MAGISTER GIMNÁZIUM TANMENET 2012-2013 9. OSZTÁLY

MAGISTER GIMNÁZIUM TANMENET 2012-2013 9. OSZTÁLY MAGISTER GIMNÁZIUM TANMENET 2012-2013 9. OSZTÁLY Heti 4 óra Évi 148 óra Készítette: Ellenőrizte: Literáti Márta matematika tanár.. igazgató 1 / 5 I. Az általános iskolai ismeretek ismétlése 1. óra: Műveletek

Részletesebben

TANTÁRGYI PROGRAM Matematikai alapok I. útmutató

TANTÁRGYI PROGRAM Matematikai alapok I. útmutató BGF PÉNZÜGYI ÉS SZÁMVITELI KAR Módszertani Intézeti Tanszéki Osztály TANTÁRGYI PROGRAM Matematikai alapok I. útmutató 2014/2015. tanév I. félév Tantárgyi program Tantárgy megnevezése Matematikai alapok

Részletesebben

PTE PMMFK Levelező-távoktatás, villamosmérnök szak

PTE PMMFK Levelező-távoktatás, villamosmérnök szak PTE PMMFK Levelező-távoktatás, villamosmérnök szak MATEMATIKA (A tantárgy tartalma és a tananyag elsajátításának időterve.) Összeállította: Kis Miklós adjunktus Tankönyvek Megegyeznek az 1. és 2. félévben

Részletesebben

MATEMATIKA 1-2. ÉVFOLYAM

MATEMATIKA 1-2. ÉVFOLYAM A Nemzeti Alaptantervhez illeszkedő tankönyv-, taneszköz-, és Nemzeti Közoktatási Portál fejlesztése TÁMOP-3.1.2-B/13-2013-0001 MATEMATIKA 1-2. ÉVFOLYAM Kiadványok 1. évfolyam Tankönyv I-II. kötet Munkafüzet

Részletesebben

Tanácsadási módszerek és technikák I. (tematika)

Tanácsadási módszerek és technikák I. (tematika) Tanácsadási módszerek és technikák I. (tematika) 1. Tárgy azonosítói 1.1. Képző intézmény: SZIE GTK TTI 1.2. Képzési forma: levelező 1.3. Szaknév: Vezetés és szervezés (MSc) mesterszak 1.4. Tárgynév: Tanácsadási

Részletesebben

Bocskai István Gimnázium, Szakközépiskola, Egységes Pedagógiai Szakszolgálat és Szakmai Szolgáltató

Bocskai István Gimnázium, Szakközépiskola, Egységes Pedagógiai Szakszolgálat és Szakmai Szolgáltató Bocskai István Gimnázium, Szakközépiskola, Egységes Pedagógiai Szakszolgálat és Szakmai Szolgáltató OM azonosító: 200886 Cím: 3900 Szerencs, Ondi út 1. Telefon: 47/362-533 47/361-444 47/362-132 Fax: 47/362-533/102-es

Részletesebben

A MATEMATIKA ÉRETTSÉGI VIZSGA ÁLTALÁNOS KÖVETELMÉNYEI

A MATEMATIKA ÉRETTSÉGI VIZSGA ÁLTALÁNOS KÖVETELMÉNYEI A MATEMATIKA ÉRETTSÉGI VIZSGA ÁLTALÁNOS KÖVETELMÉNYEI A vizsga formája Középszinten: írásbeli Emelt szinten: írásbeli és szóbeli A matematika érettségi vizsga célja A matematika érettségi vizsga célja

Részletesebben

Matematika B/1. Tartalomjegyzék. 1. Célkit zések. 2. Általános követelmények. Biró Zsolt. 1. Célkit zések Általános követelmények 1

Matematika B/1. Tartalomjegyzék. 1. Célkit zések. 2. Általános követelmények. Biró Zsolt. 1. Célkit zések Általános követelmények 1 Matematika B/1 Biró Zsolt Tartalomjegyzék 1. Célkit zések 1 2. Általános követelmények 1 3. Rövid leírás 2 4. Oktatási módszer 2 5. Követelmények, pótlások 2 6. Tematika 2 6.1. Alapfogalmak, matematikai

Részletesebben

MATEMATIKA. 9 10. évfolyam. Célok és feladatok. Fejlesztési követelmények

MATEMATIKA. 9 10. évfolyam. Célok és feladatok. Fejlesztési követelmények MATEMATIKA 9 10. évfolyam 1066 MATEMATIKA 9 10. évfolyam Célok és feladatok A matematikatanítás célja és ennek kapcsán feladata, hogy megalapozza a tanulók korszerű, alkalmazásra képes matematikai műveltségét,

Részletesebben

Reiman István: Matematika

Reiman István: Matematika Reiman István: Matematika Reiman István Matematika Budapest, 2011 Reiman István, Typotex, 2011 Az 1992-es kiadás alapján készült. Lektorálták: Laczkó László, Pálmay Lóránt, Urbán János ISBN 978 963 279

Részletesebben

V É G E S E L E M M Ó D S Z E R M É R N Ö K I M E C H A N I K A I A L K A LM A Z Á S A I

V É G E S E L E M M Ó D S Z E R M É R N Ö K I M E C H A N I K A I A L K A LM A Z Á S A I ALKALMAZOTT MECHANIKA TANSZÉK V É G E S E L E M M Ó D S Z E R M É R N Ö K I M E C H A N I K A I A L K A LM A Z Á S A I Előadásvázlat a Multidiszciplináris Műszaki Tudományi Doktori Iskola hallgatói számára

Részletesebben

ELTE, matematika alapszak

ELTE, matematika alapszak Matematika alapszak szerkezete 1. év ELTE, matematika alapszak NORMÁL Kb 60 fő (HALADÓ) Kb 40 fő INTENZÍV Kb 30 fő Zempléni András oktatási igazgatóhelyettes Matematikai Intézet matematikai elemző 2. és

Részletesebben