Mit jelent az optimalizálás?

Save this PDF as:
 WORD  PNG  TXT  JPG

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Mit jelent az optimalizálás?"

Átírás

1 Mikroökon konómiai optimumfeladatok megoldási módszereim Alapvetõ deriválási szabálok. Feltételes szélsõ érték feladatok megoldása. Mit jelent az optimalizálás? feltételes szélsõérték-feladat döntési helzet feltárása egszerûsítõ feltevések, modellek döntési változók azonosítása választási lehetõségek, korlátozó feltételek döntési kritérium, célfüggvén, racionális magatartás, optimum: maimum- vag minimum a gazdálkodás fogalma, alkalmazási területek A hasznosság g maimalizálása egváltozós hasznossági függvének a határhaszon fogalma a határhaszon mint differenciahánados a határhaszon mint differenciálhánados a legfontosabb deriválási szabálok egváltozós hasznossági függvének szélsõ értékének meghatározása deriválással Kapcsolódó irodalom: Koppán Krisztián [005]: Módszertani segédlet... niversitas-gõr Kht , , o. 1

2 Egváltoz ltozós s hasznossági függvf ggvén A hasznossági függvén jelölése vag T. Mind a tankönvben, mind a példatárban találkozhatunk mindkét jelöléssel! 3,5 () 0 0,00 3,0 1 1,00 1,41,5 3 1,73,0 4,00 5,4 1,5 6,45 7,65 1,0 8,83 0,5 9 3, ,16 0,0 Ez csupán eg példa formulával megadott hasznossági függvénre! Miért jó hasznossági függvének a gökfüggvén és a logaritmusfüggvén? Az ( ) hasznossági függvén néhán pontja és grafikonja A határhaszon fogalma Total tilit Marginal tilit T M , ,4 T M A határhaszon mint differenciahánados nados 0 13 ( ) ( 1) ( 1) ( 0 ) tg1 1 0 ( ) ( 1) tg 1 ( ) ( ) 1 ( ) +6 1 ( ) ( ) ( 0 )

3 A határhaszon mint differenciálh lhánados ( ) ( 0 ) A 0 dt( ) M( ) T( ) d A legfontosabb deriválási szabálok... f ( ) f ( ) 1 f ( ) f ( ) g( ) g ( ) h h 0 ( ) ( ) 1 1 f ( ) f ( ) g g 0 ( ) ( ) 1 h( ) 7 h( ) 0... és s alkalmazásuk T ( ) M ( ) T ( ) 0,5 T ( ) 5 0, 3 T ( ) 0,5 0,5 1 0,8 1 M ( ) 50, M ( ) T ( ) 6 M ( ) 6 0,8 1 ( ) ln ( ) 3

4 Széls lsõ érték k meghatároz rozása deriválással vegünk eg telítõdési ponttal rendelkezõ hasznossági függvént pl. ( ) 6 ábrázoljuk! értelmezzük a telítõdési pontot! határozzuk meg a függvén maimumhelét a derivált (határhaszon függvén) zérushele segítségével! ezzel az optimumfeladatok megoldásának egik (bár nem minden esetben legkénelmesebb) módszerét elõ is készítettük! Feltételes teles széls lsõérték-feladatok megoldása: a legegszerûbb módszerm kétváltozós korlátozó feltételek értelmezése és felírása gakorlatias példák költségvetési halmaz és költségvetési egenes tengelmetszet, meredekség eltolódások, elfordulások kétváltozós célfüggvének értelmezése az optimális megoldás meghatározása az egik változót kifejezzük a korlátozó feltételbõl a kapott formulát a hasznossági függvénbe írjuk egváltozós hasznossági függvént kapunk ennek szélsõ értéke a korábbiak alapján meghatározható Kapcsolódó irodalom: Koppán [005] 19-0., 75. és 79. o. Korlátoz tozó feltételek telek a fogasztásban sban eg egetemi hallgató a félév elején 5000 Ft-os kártával töltötte fel mobilját a mobiltelefont csak két célra használja szülõk hívása: vezetékes hálózatba történõ hívás, kedvezménes idõszakban, 30 Ft/perc barátnõ/barát hívása: hálózaton belüli hívás, éjszaka, díja 15 Ft/perc 4

5 Jelölések jövedelem vag a fogasztásra költött pénzösszeg: I (esetünkben I = 5000 Ft) a termékekbõl vásárolt (vásárolható) menniség: és szülõkkel való beszélgetési idõ percben () barátnõvel/baráttal való beszélgetési idõ percben () az eges termékek árai: p és p hívás vezetékes hálózatba, kedvezménes idõszakban (p = 30) éjszakai hívás, hálózaton belül (p = 15) Költségvetési halmaz és költségvetési egenes általában I / p függõleges tengelmetszet I p p I p p I p p p meredekség A költségvetési egenes felírása, meredeksége és tengelmetszetei az elõzõ számpéldában. I / p A költsk ltségvetési egenes elmozdulásai I p A fenti változások értelmezése a korábbi konkrét példánkban. 5

6 A célfc lfüggvén és s a teljes optimumfeladat tételezzük fel, hog a telefonhívásokból származó hasznosság a következõ függvén szerint alakul: (, ) hogan használja fel a fenti fogasztó a leghasznosabb módon az 5000 Ft-os egenleget? a célfüggvén és a korlátozó feltétel felírása A megoldás s lépéseil fejezzük ki az egik változót a korlátozó feltételbõl a kapott formulát helettesítsük be a célfüggvénbe a célfüggvén egváltozóssá alakult keressük meg az egváltozós célfüggvén maimumhelét a korlátozó feltételbe való visszahelettesítéssel határozzuk meg a másik változó optimális értékét Optimumfeladatok eg másik m megoldási módszerem fontos elõzetes tudnivalók ez a megoldási módszer bír a legtöbb közgazdasági tartalommal a megoldás lénege grafikusan jól szemléltethetõ kétváltozós esetben a leginkább ajánlott eljárás a kétváltozós hasznossági függvének szintvonalai, közömbösségi görbék az optimális megoldás grafikus szemléltetése a helettesítési ráta és helettesítési határráta a parciális deriválás, kétváltozós hasznossági függvének parciális deriváltjai MRS meghatározása parciális deriváltak segítségével az MRS = költségvetési egenes meredeksége optimumfeltétel alapján történõ megoldás menete Kapcsolódó irodalom: Koppán [005] o. 6

7 Kétváltozós s hasznossági függvf ggvén diagramja és s szintvonalai Jól l viselkedõ közömbösségi görbg rbék A fogasztó optimális választv lasztásasa opt A E opt C D 0 1 A költségvetési egenes érinti az elérhetõ maimális hasznossági szinthez tartozó közömbösségi görbét. A költségvetési egenes meredeksége megegezik a közömbösségi görbe adott pontban mért meredekségével. 7

8 6 A 1 6 A helettesítési si rátar RS Kapcsolódó irodalom: Koppán [005] o. (, ) (, ) M M M M M M M M M M A helettesítési si határr rráta 0 15 MRS d d 10 A M MRS M (, ) (, ) Kapcsolódó irodalom: Koppán [005] o. Parciális deriválás (, ) (, ) (, ) (, ) 3 3 (, ) 6 3 (, ) 9 (, ) (, ) 1 (, ) 1 Kapcsolódó irodalom: Koppán [005] o. 8

9 A megoldás s lépései l a telefonos mintapéld ldán n keresztül a határhasznossági függvének meghatározása az optimumfeltétel formális felírása az optimumfeltétel egik változóra való rendezése és visszahelettesítési a korlátozó feltételbe az il módon egváltozóssá alakult korlátozó feltétel megoldása a másik változó optimális értékének meghatározása visszahelettesítéssel Optimális megoldás s eg másfajta m preferencia-rendez rendezés s esetén legen most a fogasztó hasznossági függvéne (, ) hogan értelmezhetjük a preferenciák ilen fajta változását? hogan alakulnak ebben az esetben az optimális beszélgetési idõtartamok? optimális megoldás 55,56, Optimumfeladatok a mikroökon konómia tananagban optimális fogasztási szerkezet: a maimális hasznosságot biztosító fogasztói kosár optimális munkavállalói döntés: a maimális életminõséget biztosító szabadidõ-jövedelem kombináció optimális intertemporális választás: a maimális hasznosságot biztosító jelenbeli és jövõbeli fogasztás kombináció optimális erõforrás-felhasználás adott költségkerettel megvalósítható maimális kibocsátás adott kibocsátás minimális költséggel mindig adott preferenciákkal és technológiákkal dolgozunk 9

10 Példa: optimális munkavállal llalói i döntd ntés Eg munkavállaló számára a szabadidõ és a bérjavak egüttes hasznosságát az (sz,j)=(sz-8)j függvén írja le, ahol sz a napi szabadidõ mennisége órákban, 8<sz<=4, j pedig a napi jövedelmet jelöli. Ábrázolja az életminõség közömbösségi térképét néhán közömbösségi görbe segítségével! Ábrázolja az életminõség költségvetési egenesét 300, 40 és 650 Ft-os órabér mellett! Mekkora az optimális munkamenniség 300 Ft-os órabér esetén? Mekkora a napi bérjövedelem? Példa: optimális intertemporális allokáci ció Tamás most írt alá eg kétéves, 8 millió Ft összegû megbízási szerzõdést. A megbízási díjat két részletben kapja: idén 5 millió Ft-ot, jövõre 3 milliót. A kamatláb 10 százalékos, Tamás intertemporális hasznossági függvéne (C 1,C )=lnc 1 +lnc. Határozza meg Tamás optimális intertemporális allokációját! Ábrázolja a szituációt! Megtakarító vag hitelfelvevõ pozícióban van Tamás az elsõ idõszakban Példa: optimális ténezõfelhasználás A termelési technológiát eg Q=K 0,4 L 0,6 alakú Cobb-Douglas-féle termelési függvén írja le. A rendelkezésre álló költségkeret 75 millió Ft, a munka után fizetett ténezõjövedelem 10 ezer Ft, a tõke utáni kamat pedig 0 százalékos. Határozza meg az adott költségkeretbõl megvalósítható maimális kibocsátási szintet és az ehhez tartozó optimális ténezõkombinációt! Határozza meg a 100 ezer darabos kibocsátási szinthez tartozó, minimális költséget biztosító, optimális ténezõkombinációt! Mekkora ez a minimális költség? 10

11 További nehezebb témakt makörök rugalmassági mutatók profitmaimalizálás, optimális kibocsátási nagság piaci szerkezetek versenpiac és monopólium árdiszkriminációs stratégiák monopolerõ esetén Cournot- és Stackelberg-duopólium vállalatok munkakereslete, optimális ténezõfelhasználás és kibocsátás az inputpiac oldaláról 11

1. gyakorlat. Oktatási segédlet hallgatók számára

1. gyakorlat. Oktatási segédlet hallgatók számára másik termék mennisége. gakorlat Transzformációs görbe, mikroökonómiai optimumfeladatok megoldásának alapmódszere Oktatási segédlet hallgatók számára Eg fontos közgazdasági alapmodell TLH, alternatív költség,

Részletesebben

2013/2014. tanév, őszi félév távoktatási tagozat, e-learning képzés

2013/2014. tanév, őszi félév távoktatási tagozat, e-learning képzés Mikroökonómia 2013/2014. tanév, őszi félév távoktatási tagozat, e-learning kézés Az oktató/tutortutor adatai r. Koán Krisztián Ph egetemi adjunktus személes fogadóóra időontja és hele: keddenként 10:00,

Részletesebben

A jövedelem- és árváltozások hatása a fogyasztói döntésre. Az ICC görbe. Az Engel-görbe. 4-5. előadás

A jövedelem- és árváltozások hatása a fogyasztói döntésre. Az ICC görbe. Az Engel-görbe. 4-5. előadás 4-5. előadás A jövedelem- és árváltozások hatása a fogasztói döntésre ICC és Engel-görbe, PCC és egéni keresleti függvén. A iaci keresleti görbe származtatása. A fogasztói többlet. Kereslet-rugalmassági

Részletesebben

4. lecke. A fogyasztási és munkavállalási döntés mikroökonómiai elmélete.

4. lecke. A fogyasztási és munkavállalási döntés mikroökonómiai elmélete. 4. lecke Hogan szerzik és hogan költik el jövedelmüket a háztartások? A fogasztási és munkavállalási döntés mikroökonómiai elmélete. Hogan élnek Kovácsék? Kovácsék folószámla-kivonata Tranzakció történet

Részletesebben

tutor adatai távoktatási csomag távoktatási tagozat, e-learning képzés

tutor adatai távoktatási csomag távoktatási tagozat, e-learning képzés Mikroökon konómia 2010/2011. tanév, õszi félév távoktatási tagozat, e-learning kézés Az oktató/tutor tutor adatai r. Koán Krisztián Ph egetemi adjunktus személes fogadóóra idõontja és hele: keddenként

Részletesebben

Koppány Krisztián, SZE Koppány Krisztián, SZE

Koppány Krisztián, SZE Koppány Krisztián, SZE 6. előadá Háztartáok tényezőpiaci döntéei A munkavállalói é az intertemporáli optimalizáció mikroökonómiai alapmodellje Alapvető özefüggéek Fogyaztái kiadá HÁZTARTÁS Jövedelem Munkaidő Megtakarítá (elhalaztott

Részletesebben

4. hét Fogyasztói preferenciák, (hasznosság) A PIACI KERESLET - ÉS AMI MÖGÖTTE VAN. Varian: fejezet

4. hét Fogyasztói preferenciák, (hasznosság) A PIACI KERESLET - ÉS AMI MÖGÖTTE VAN. Varian: fejezet 1 /7 4. hét Fogasztói preferenciák, hasznosság Varian: 3. 4. fejezet PII KERESLET - ÉS MI MÖGÖTTE VN Kereslet törvéne: növekvı árak keresett menniség csökken (és megfordítva) Miért csökken a keresett menniség,

Részletesebben

Mikroökonómia - 2. elıadás. Speciális közömbösségi görbék Az ICC és PCC

Mikroökonómia - 2. elıadás. Speciális közömbösségi görbék Az ICC és PCC Mikroökonómia - 2. elıadás Speciális közömbösségi görbék z I és P 1 FOGYSZTÓI DÖNTÉS TÉNYEZİI FOGYSZTÓ OPTIMÁLIS VÁLSZTÁS (ism.) Optimális választás: z U* és a költségvetési egenes érintési pontja (jól

Részletesebben

Mikroökonómia előadás. Dr. Kertész Krisztián Fogadóóra: minden szerdán között Helyszín: 311-es szoba

Mikroökonómia előadás. Dr. Kertész Krisztián   Fogadóóra: minden szerdán között Helyszín: 311-es szoba Mikroökonómia előadás Dr. Kertész Krisztián e-mail: k.krisztian@efp.hu Fogadóóra: minden szerdán 10.15 11.45. között Helyszín: 311-es szoba Irodalom Tankönyv: Jack Hirshleifer Amihai Glazer David Hirshleifer:

Részletesebben

Mikroökonómia előadás. Dr. Kertész Krisztián Fogadóóra: minden szerdán között Helyszín: 311-es szoba

Mikroökonómia előadás. Dr. Kertész Krisztián Fogadóóra: minden szerdán között Helyszín: 311-es szoba Mikroökonómia előadás Dr. Kertész Krisztián Fogadóóra: minden szerdán 10.15 11.45. között Helyszín: 311-es szoba Költségvetési egyenes Költségvetési egyenes = költségvetési korlát: azon X és Y jószágkombinációk

Részletesebben

5. hét Költségvetési korlát, a fogyasztó optimális döntése. PCC- és ICC-görbe, egyéni keresleti függvény és Engel-görbe.

5. hét Költségvetési korlát, a fogyasztó optimális döntése. PCC- és ICC-görbe, egyéni keresleti függvény és Engel-görbe. () htt://kgt.be.hu/ 1 /12 5. hét Költségvetési korlát, a fogasztó otiális döntése. P- és I-görbe, egéni keresleti függvén és Engel-görbe. Varian: 2. 5.6. fejezet MIT FOGYSZTÓ MEGENGEDHET MGÁNK KÖLTSÉGVETÉSI

Részletesebben

4. Egyéni és piaci kereslet. 4.1 Ár-ajánlati görbe (PCC)

4. Egyéni és piaci kereslet. 4.1 Ár-ajánlati görbe (PCC) 4. Egéni és iaci kereslet z előző részben megvizsgáltuk azt, hog miként határozható meg eg fogasztó otimális fogasztási szerkezete, illetve azt is elemeztük, hog eg költségvetési egenes helzetére miként

Részletesebben

Másodfokú függvények

Másodfokú függvények Másodfokú függvének Definíció: Azokat a valós számok halmazán értelmezett függvéneket, amelek hozzárendelési szabála f() = a + bc + c (a, b, c R, a ) alakú, másodfokú függvéneknek nevezzük. A másodfokú

Részletesebben

7. lecke FELADATOK. Elektronikus példatár Dr. Koppány Krisztián PhD, SZE 2012

7. lecke FELADATOK. Elektronikus példatár Dr. Koppány Krisztián PhD, SZE 2012 Elektronikus példatár Dr. Koppány Kritián PhD, SZE 7. lecke FELADATOK 3.) Egy munkavállaló ámára a napi abadidõ és övedelem együttes hanosságát az U (, ) ( 8) függvény íra le, ahol a napi abadidõ mennyisége

Részletesebben

Elektronikus példatár Dr. Koppány Krisztián PhD, SZE 2012

Elektronikus példatár Dr. Koppány Krisztián PhD, SZE 2012 Elektronikus éldatár r. Koán Krisztián Ph, SZE 22 5. lecke FELAATOK 9.) Vegük ismét a 6. feladat h) ontjában szerelő U 2 3 2 hasznossági függvénnel rendelkező hallgatót, aki 493 Ft-os mobilegenlegét eg

Részletesebben

Egyváltozós függvények differenciálszámítása II.

Egyváltozós függvények differenciálszámítása II. Egváltozós függvének differenciálszámítása II.. 2. 3. 4. 5. 6. 7. 8. Végezzen teljes függvénvizsgálatot! A függvénvizsgálat szokásos menete:. Értelmezési tartomán, tengelmetszetek 2. Szimmetriatulajdonságok:

Részletesebben

10. elıadás: Vállalati kínálat, iparági kínálat Piaci ár. A versenyzı vállalat kínálati döntése. A vállalat korlátai

10. elıadás: Vállalati kínálat, iparági kínálat Piaci ár. A versenyzı vállalat kínálati döntése. A vállalat korlátai (C) htt://kgt.bme.hu/ 1 /8.1. ábra. A versenzı vállalat keresleti görbéje. A iaci árnál a vállalati kereslet vízszintes. Magasabb árakon a vállalat semmit nem ad el, a iaci ár alatt edig a teljes keresleti

Részletesebben

Kétváltozós függvények ábrázolása síkmetszetek képzése által

Kétváltozós függvények ábrázolása síkmetszetek képzése által Kétváltozós függvének ábrázolása síkmetszetek képzése által ) Ábrázoljuk a z + felületet! Az [,] síkkal párhuzamos síkokkal z c) képzett metszetek körök: + c, tehát a felület z tengelű forgásfelület; Az

Részletesebben

7. Kétváltozós függvények

7. Kétváltozós függvények Matematika segédanag 7. Kétváltozós függvének 7.. Alapfogalmak Az A és B halmazok A B-vel jelölt Descartes-szorzatán azt a halmazt értjük, melnek elemei mindazon a, b) rendezett párok, amelekre a A és

Részletesebben

1. szemináriumi. feladatok. két időszakos fogyasztás/ megtakarítás

1. szemináriumi. feladatok. két időszakos fogyasztás/ megtakarítás 1. szemináriumi feladatok két időszakos fogyasztás/ megtakarítás 1. feladat Az általunk vizsgál gazdaság csupán két időszakig működik. A gazdaságban egy reprezentatív fogyasztó hoz döntéseket. A fogyasztó

Részletesebben

Közgazdaságtan BMEGT30A002 (Mikroökonómia BMEGT30A014) Kupcsik Réka október 4. 12:15-13:45 E305

Közgazdaságtan BMEGT30A002 (Mikroökonómia BMEGT30A014) Kupcsik Réka október 4. 12:15-13:45 E305 Közgazdaságtan BMEGT30A002 (Mikroökonómia BMEGT30A014) Kupcsik Réka 2016. október 4. 12:15-13:45 E305 Emlékeztető Első zh a 7. héten Az anyaga az 1-5. heteken tanultak Tesztek, számolási feladatok Mikor

Részletesebben

Gyakorló feladatok a 2. zh-ra MM hallgatók számára

Gyakorló feladatok a 2. zh-ra MM hallgatók számára Gyakorló feladatok a. zh-ra MM hallgatók számára 1. Egy vállalat termelésének technológiai feltételeit a Q L K függvény írja le. Rövid távon a vállalat 8 egységnyi tőkét használ fel. A tőke ára 000, a

Részletesebben

Közgazdaságtan 1. ELTE TáTK Közgazdaságtudományi Tanszék. 4. hét A KERESLETELMÉLET ALKALMAZÁSAI

Közgazdaságtan 1. ELTE TáTK Közgazdaságtudományi Tanszék. 4. hét A KERESLETELMÉLET ALKALMAZÁSAI KÖZGAZDASÁGTAN I. ELTE TáTK Közgazdaságtudományi Tanszék Közgazdaságtan 1. A KERESLETELMÉLET ALKALMAZÁSAI Bíró Anikó, K hegyi Gergely, Major Klára Szakmai felel s: K hegyi Gergely 2010. június Vázlat

Részletesebben

1) Adja meg a következő függvények legbővebb értelmezési tartományát! 2) Határozzuk meg a következő függvény értelmezési tartományát!

1) Adja meg a következő függvények legbővebb értelmezési tartományát! 2) Határozzuk meg a következő függvény értelmezési tartományát! Függvének Feladatok Értelmezési tartomán ) Adja meg a következő függvének legbővebb értelmezési tartománát! a) 5 b) + + c) d) lg tg e) ln + ln ( ) Megoldás: a) 5 b) + + = R c) és sosem teljesül. d) tg

Részletesebben

Teljes függvényvizsgálat példafeladatok

Teljes függvényvizsgálat példafeladatok Teljes függvénvizsgálat példafeladatok Végezz teljes függvénvizsgálatot az alábbi függvéneken! Az esetenként vázlatos megoldásokat a következő oldalakon találod, de javaslom, hog először önállóan láss

Részletesebben

Debreceni Egyetem AGTC

Debreceni Egyetem AGTC Debreceni Egyetem AGTC GAZDÁLKODÁSTUDOMÁNYI ÉS VIDÉKFEJLESZTÉSI KAR Gazdaságelméleti Intézet Közgazdaságtan és Környezetgazdaságtan Tanszék 4032 DEBRECEN, Böszörményi út 138., 4015 DEBRECEN Pf.36. : (52)

Részletesebben

1. A vállalat. 1.1 Termelés

1. A vállalat. 1.1 Termelés II. RÉSZ 69 1. A vállalat Korábbi fejezetekben már szóba került az, hogy különböző gazdasági szereplők tevékenykednek. Ezek közül az előző részben azt vizsgáltuk meg, hogy egy fogyasztó hogyan hozza meg

Részletesebben

Több valószínűségi változó együttes eloszlása, korreláció

Több valószínűségi változó együttes eloszlása, korreláció Tartalomjegzék Előszó... 6 I. Valószínűségelméleti és matematikai statisztikai alapok... 8 1. A szükséges valószínűségelméleti és matematikai statisztikai alapismeretek összefoglalása... 8 1.1. Alapfogalmak...

Részletesebben

Előadó: Dr. Kertész Krisztián

Előadó: Dr. Kertész Krisztián Előadó: Dr. Kertész Krisztián E-mail: k.krisztian@efp.hu A termelés költségei függenek a technológiától, az inputtényezők árától és a termelés mennyiségétől, de a továbbiakban a technológiának és az inputtényezők

Részletesebben

MIKROÖKONÓMIA I. Készítette: Kőhegyi Gergely, Horn Dániel. Szakmai felelős: Kőhegyi Gergely. 2010. június

MIKROÖKONÓMIA I. Készítette: Kőhegyi Gergely, Horn Dániel. Szakmai felelős: Kőhegyi Gergely. 2010. június MIKROÖKONÓMIA I. B Készült a TÁMOP-4.1.2-08/2/A/KMR-2009-0041pályázati projekt keretében Tartalomfejlesztés az ELTE TáTK Közgazdaságtudományi Tanszékén az ELTE Közgazdaságtudományi Tanszék az MTA Közgazdaságtudományi

Részletesebben

A lecke célja... A tényezőpiac keresleti és kínálati oldala. 14. hét / #1 A vállalatok termelési tényezők iránti kereslete. fogyasztási javak piaca

A lecke célja... A tényezőpiac keresleti és kínálati oldala. 14. hét / #1 A vállalatok termelési tényezők iránti kereslete. fogyasztási javak piaca 4. hét / # A vállalatok termelési tényezők iránti kereslete A vállalatok egyéni munkakereslete rövid és hosszú távon. Az iparági munkakeresleti görbe. A munkapiaci egyensúly és a munkavállalók gazdasági

Részletesebben

15. Többváltozós függvények differenciálszámítása

15. Többváltozós függvények differenciálszámítása 5. Többváltoós függvének differenciálsámítása 5.. Határoa meg a alábbi kétváltoós függvének elsőrendű parciális derivált függvéneit és a gradiens függvénét, valamint eek értékét a megadott pontban:, =

Részletesebben

Közgazdaságtan alapjai I. Dr. Karajz Sándor Gazdaságelméleti Intézet

Közgazdaságtan alapjai I. Dr. Karajz Sándor Gazdaságelméleti Intézet Közgazdaságtan alapjai I. Dr. Karajz Sándor Gazdaságelméleti Elérhetőség e-mail: karajz.sandor@uni-miskolc.hu tel.:46-565111/1899 Kötelező irodalom Szilágyi Dezsőné dr. szerk: Közgazdaságtan alapja I.

Részletesebben

Mikroökonómia 2009 őszi félév

Mikroökonómia 2009 őszi félév Mikroökonómia 2009 őszi félév Budapesti Corvinus Egyetem, Közgazdaságtudományi Kar. 3. előadás Fogyasztás és kereslet Előadó: Berde Éva A jelen előadás fóliáiban többször felhasználtam a Hirshleifer Glazer

Részletesebben

A technológia és költség dualitása: termelési függvény és költségfüggvények. A vállalat optimális döntése

A technológia és költség dualitása: termelési függvény és költségfüggvények. A vállalat optimális döntése 1 /11 (C) http://kgt.bme.hu/ A technológia és költség dualitása: termelési függvény és költségfüggvények. A vállalat optimális döntése Varian 20.3-6. 21. fejezet Termelési és hasznossági függvény (ismétlés

Részletesebben

KOMPARATÍV ELŐNYÖK TANA

KOMPARATÍV ELŐNYÖK TANA KMPARATÍV ELŐNYÖK TANA 2007.11.08. 1 Milen okai vannak a nemzetközi kereskedelemnek? eport import szerkezet nemzetközi cserearánok? nemzetközi csere makrogazdaság Feltételek: szabad árucsere nincsenek

Részletesebben

Mikroökonómia NGB_AK005_1

Mikroökonómia NGB_AK005_1 Mikroökonómia NGB_AK00_ Általános tudnivalók, követelmények Gazdálkodási és menedzsment, Kereskedelem és marketing, Közszolgálati, Műszaki menedzser, Logisztikai mérnök, Nemzetközi tanulmányok és Egészségügyi

Részletesebben

A FOGYASZTÓI MAGATARTÁS

A FOGYASZTÓI MAGATARTÁS A FOGYASZTÓI MAGATARTÁS Kiindulópont: a fogyasztó racionálisan viselkedik a termékek árai és a fogyasztó jövedelme mellett szükséglet-kielégítésének maximalizálására törekszik. A szükségletek kielégítéséhez

Részletesebben

MIKROÖKONÓMIA. Externális hatások: valamilyen külső gazdasági hatás következtében történik a változás.

MIKROÖKONÓMIA. Externális hatások: valamilyen külső gazdasági hatás következtében történik a változás. A közgazdaságtan társadalomtudomány, a társadalom tagjait vizsgálja. Közgazdaságtan főbb területei: 1. Mikroökonómia: egyéni viselkedéseket vizsgálja (1. féléves anyag) 2. Makroökonómia: a gazdasági szereplők

Részletesebben

Keresleti és kínálati függvény. Minden piacnak van egy keresleti és egy kínálati oldala, amelyeket a normatív közgazdaságtanban

Keresleti és kínálati függvény. Minden piacnak van egy keresleti és egy kínálati oldala, amelyeket a normatív közgazdaságtanban tehát attól függ, hogy x milyen értéket vesz fel. A függvényeket a közgazdaságtanban is a jól ismert derékszögû koordináta-rendszerben ábrázoljuk, ahol a változók nevének megfelelõen általában a vízszintes

Részletesebben

l.ch TÖBBVÁLTOZÓS FÜGGVÉNYEK HATÁRÉRTÉKE ÉS DIFFERENCIÁLHATÓSÁGA

l.ch TÖBBVÁLTOZÓS FÜGGVÉNYEK HATÁRÉRTÉKE ÉS DIFFERENCIÁLHATÓSÁGA l.ch TÖBBVÁLTOZÓS FÜGGVÉNYEK HATÁRÉRTÉKE ÉS DIFFERENCIÁLHATÓSÁGA A kétváltozós függvének két vlós számhoz rendelnek hozzá eg hrmdik vlós számot, másként foglmzv számpárokhoz rendelnek hozzá eg hrmdik számot.

Részletesebben

Minta. MELLÉKLETEK KÖZGAZDASÁG-MARKETING ALAPISMERETEK ÉRETTSÉGI VIZSGA ÍRÁSBELI TÉTEL Középszint TESZTFELADATOK. Mikroökonómia

Minta. MELLÉKLETEK KÖZGAZDASÁG-MARKETING ALAPISMERETEK ÉRETTSÉGI VIZSGA ÍRÁSBELI TÉTEL Középszint TESZTFELADATOK. Mikroökonómia MELLÉKLETEK KÖZGAZDASÁG-MARKETING ALAPISMERETEK ÉRETTSÉGI VIZSGA ÍRÁSBELI TÉTEL Középszint TESZTFELADATOK 1. Feleletválasztás Mikroökonómia a) Az alábbi jövedelemformák közül melyik a vállalkozó vállalkozói

Részletesebben

Levelező hallgatóknak pótzh lehetőség: a félév rendje szerinti pótlási napok egyikén

Levelező hallgatóknak pótzh lehetőség: a félév rendje szerinti pótlási napok egyikén Közgazdaságtan II. Mikroökonómia SGYMMEN202XXX Tantárgyfelelős: dr. Paget Gertrúd főiskolai docens Tárgyelőadó: dr. Paget Gertrúd főiskolai docens Gyakorlatvezető: dr. Paget Gertrúd Tantárgyi leírás építőmérnök

Részletesebben

Közgazdaságtan műszaki menedzsereknek II. SGYMMEN227XXX SGYMMEN2073XA. Tantárgyfelelős: dr. Paget Gertrúd főiskolai docens

Közgazdaságtan műszaki menedzsereknek II. SGYMMEN227XXX SGYMMEN2073XA. Tantárgyfelelős: dr. Paget Gertrúd főiskolai docens Közgazdaságtan műszaki menedzsereknek II. SGYMMEN227XXX SGYMMEN2073XA Tantárgyfelelős: dr. Paget Gertrúd főiskolai docens Tárgyelőadó: dr. Paget Gertrúd főiskolai docens Gyakorlatvezető: dr. Paget Gertrúd

Részletesebben

KÖZGAZDASÁGI- MARKETING ALAPISMERETEK

KÖZGAZDASÁGI- MARKETING ALAPISMERETEK ÉRETTSÉGI VIZSGA 2007. május 25. KÖZGAZDASÁGI- MARKETING ALAPISMERETEK 2007. május 25. 8:00 KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA Az írásbeli vizsga időtartama: 180 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI

Részletesebben

1.2.1 A gazdasági rendszer A gazdaság erőforrásai (termelési tényezők)

1.2.1 A gazdasági rendszer A gazdaság erőforrásai (termelési tényezők) Galbács Péter, Szemlér Tamás szerkesztésében Mikroökonómia TARTALOM Előszó 1. fejezet: Bevezetés 1.1 A közgazdaságtan tárgya, fogalma 1.1.1 A közgazdaságtan helye a tudományok rendszerében 1.1.2 A közgazdaságtan

Részletesebben

Mikroökonómia II. B. ELTE TáTK Közgazdaságtudományi Tanszék. 6. hét AZ IDŽ KÖZGAZDASÁGTANA, 1. rész

Mikroökonómia II. B. ELTE TáTK Közgazdaságtudományi Tanszék. 6. hét AZ IDŽ KÖZGAZDASÁGTANA, 1. rész MIKROÖKONÓMIA II. B ELTE TáTK Közgazdaságtudományi Tanszék Mikroökonómia II. B AZ IDŽ KÖZGAZDASÁGTANA, 1. rész Készítette: Szakmai felel s: 2011. február A tananyagot készítette: Jack Hirshleifer, Amihai

Részletesebben

I. modul: Bevezetés a

I. modul: Bevezetés a Koppány Krisztián k és tevékenységek a ZÖLD mikroökonómia tankönyvhöz 1 I. modul: Bevezetés a közgazdaságtanba 1. lecke: A közgazdaságtan tárgya és módszertani sajátosságai Az 1.1. leckéhez tartozó tananyagot

Részletesebben

Mikroökonómia elıadás

Mikroökonómia elıadás Mikroökonómia -. elıadás ÁLTLÁNOS EGYENSÚLY ELMÉLET 1 Bevezetés - mit tartalmaz az általános egyensúlyelmélet? Eddigi vizsgálatokban: egy piac viszonyai (részpiaci elemzés) a többi piac változatlanságát

Részletesebben

A termelés technológiai feltételei rövid és hosszú távon

A termelés technológiai feltételei rövid és hosszú távon 1 /12 A termelés technológiai feltételei rövid és hosszú távon Varian 18. Rgisztrált gazdasági szervezetek száma 2009.12.31 (SH) Társas vállalkozás 579 821 Ebbıl: gazdasági társaság: 533 232 Egyéni vállalkozás

Részletesebben

Mikroökonómia előadás. Dr. Kertész Krisztián

Mikroökonómia előadás. Dr. Kertész Krisztián Mikroökonómia előadás Dr. Kertész Krisztián k.krisztian@efp.hu A TERMELÉS KÖLTSÉGEI ÁRBEVÉTEL A termelés gazdasági költsége Gazdasági Explicit költség profit Gazdasági profit Számviteli költség Implicit

Részletesebben

A lecke célja... Korábbról ismert és új alapfogalmak, értelmezések. 10. hét Költségek és költségfüggvények rövid távon

A lecke célja... Korábbról ismert és új alapfogalmak, értelmezések. 10. hét Költségek és költségfüggvények rövid távon 10. hét Költségek és költségfüggvények rövid távon Számviteli és közgazdasági költségkategóriák. A költségek csoportosítása a termeléssel való viszony alapján. Rövid távú költség-függvények. Határköltség

Részletesebben

6. ELŐADÁS DIFFERENCIÁLSZÁMÍTÁS II. DIFFERENCIÁLÁSI SZABÁLYOK. BSc Matematika I. BGRMA1HNND, BGRMA1HNNC

6. ELŐADÁS DIFFERENCIÁLSZÁMÍTÁS II. DIFFERENCIÁLÁSI SZABÁLYOK. BSc Matematika I. BGRMA1HNND, BGRMA1HNNC 6. ELŐADÁS DIFFERENCIÁLSZÁMÍTÁS II. DIFFERENCIÁLÁSI SZABÁLYOK BSc Matematika I. BGRMAHNND, BGRMAHNNC A következő diákon szereplő állítások mindegyikét az előadáson fogjuk igazolni, és példákkal bőségesen

Részletesebben

2) Írja fel az alábbi lineáris függvény grafikonjának egyenletét! (3pont)

2) Írja fel az alábbi lineáris függvény grafikonjának egyenletét! (3pont) (11/1) Függvények 1 1) Ábrázolja az f()= -4 függvényt a [ ;10 ] intervallumon! (pont) ) Írja fel az alábbi lineáris függvény grafikonjának egyenletét! (3pont) 3) Ábrázolja + 1 - függvényt a [ ;] -on! (3pont)

Részletesebben

2. Házi feladat és megoldása (DE, KTK, 2014/2015 tanév első félév)

2. Házi feladat és megoldása (DE, KTK, 2014/2015 tanév első félév) . Házi feladat és megoldása (DE, KTK, 4/5 tanév első félév) () Határozza meg a következő függvények (első) deriváltját: 3 + f() ctg, g() (3 )3 tg, h() cos( 3 + e ), i() lg(ln(e + 4 ln )), j() (3) ln, k()

Részletesebben

Az f függvénynek van határértéke az x = 2 pontban és ez a határérték 3-mal egyenl½o lim f(x) = 3.

Az f függvénynek van határértéke az x = 2 pontban és ez a határérték 3-mal egyenl½o lim f(x) = 3. 0-06, II. félév. FELADATLAP Eredmének. Van határértéke, illetve foltonos az f függvén az alábbi pontokban? (a) = Az f függvénnek van határértéke az = pontban és ez a határérték -mal egenl½o f() =.! Az

Részletesebben

1. feladat megoldásokkal

1. feladat megoldásokkal 1. feladat megoldásokkal Az általunk vizsgált gazdaságban két iparág állít elő termékeket, az és az. A termelés során mindekét iparág reprezentatív vállalata két termelési tényező típust használ egy iparágspecifikusat,

Részletesebben

10. hét 10/A. A vállalati profitmaximalizálás. elvei. Piacok, piaci szerkezetek. Versenyző vállalatok piaci. magtartása.

10. hét 10/A. A vállalati profitmaximalizálás. elvei. Piacok, piaci szerkezetek. Versenyző vállalatok piaci. magtartása. 10. hét Versenyző vállalatok piaci magatartása A vállalati profitmaximalizálás általános elvei. iacok, piaci szerkezetek. Versenyző vállalatok kínálati magtartása. A lecke célja hogy az előadás anyagának,

Részletesebben

VC c y. Összeállította: Dr. Karner Cecília PhD egyetemi docens, tantárgyfelelős

VC c y. Összeállította: Dr. Karner Cecília PhD egyetemi docens, tantárgyfelelős Mikroökonómia alapfogalmak. Állandó költség (FC): Az a költség, mely rövid távon nem függ a termelés nagyságától, tehát összege a termelés bármely időszakában ugyanannyi, és ha a vállalat nem termel semmit,

Részletesebben

Líneáris függvények. Definíció: Az f(x) = mx + b alakú függvényeket, ahol m 0, m, b R elsfokú függvényeknek nevezzük.

Líneáris függvények. Definíció: Az f(x) = mx + b alakú függvényeket, ahol m 0, m, b R elsfokú függvényeknek nevezzük. Líneáris függvének Definíció: Az f() = m + b alakú függvéneket, ahol m, m, b R elsfokú függvéneknek nevezzük. Az f() = m + b képletben - a b megmutatja, hog a függvén hol metszi az tengelt, majd - az m

Részletesebben

A belföldi és a külföldi gazdasági szereplőket az alábbi adatokkal jellemezhetjük:

A belföldi és a külföldi gazdasági szereplőket az alábbi adatokkal jellemezhetjük: 1 feladat A belföldi és a külföldi gazdasági szereplőket az alábbi adatokkal jellemezhetjük: U i = D X,i D Y,i, ahol i = belföld,külföld Q X,belföld = K X,belföld Q X,külföld = K X,külföld Q Y,i = K 0,5,

Részletesebben

Mikroökonómia - Bevezetés, a piac

Mikroökonómia - Bevezetés, a piac Mikroökonómia szeminárium Bevezetés, a piac Budapesti Corvinus Egyetem Makroökonómia Tanszék 2011 szeptember 21. A témakör alapfogalmai Keresleti (kínálati) görbe - kereslet (kínálat) fogalma - kereslet

Részletesebben

KÖZGAZDASÁGI- MARKETING ALAPISMERETEK

KÖZGAZDASÁGI- MARKETING ALAPISMERETEK ÉRETTSÉGI VIZSGA 2007. október 24. KÖZGAZDASÁGI- MARKETING ALAPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2007. október 24. 14:00 Az írásbeli vizsga időtartama: 180 perc Pótlapok száma Tisztázati Piszkozati

Részletesebben

KÖZGAZDASÁGI- MARKETING ALAPISMERETEK

KÖZGAZDASÁGI- MARKETING ALAPISMERETEK Név:... osztály:... ÉRETTSÉGI VIZSGA 2006. május 18. KÖZGAZDASÁGI- MARKETING ALAPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2006. május 18. 14:00 Az írásbeli vizsga időtartama: 180 perc Pótlapok száma Tisztázati

Részletesebben

Határérték. Wettl Ferenc el adása alapján és Wettl Ferenc el adása alapján Határérték és

Határérték. Wettl Ferenc el adása alapján és Wettl Ferenc el adása alapján Határérték és 2015.09.28. és 2015.09.30. 2015.09.28. és 2015.09.30. 1 / Tartalom 1 A valós függvén fogalma 2 A határérték fogalma a végtelenben véges pontban Végtelen határértékek 3 A határértékek kiszámítása A rend

Részletesebben

1. Ábrázolja az f(x)= x-4 függvényt a [ 2;10 ] intervallumon! (2 pont) 2. Írja fel az alábbi lineáris függvény grafikonjának egyenletét!

1. Ábrázolja az f(x)= x-4 függvényt a [ 2;10 ] intervallumon! (2 pont) 2. Írja fel az alábbi lineáris függvény grafikonjának egyenletét! Függvények 1 1. Ábrázolja az f()= -4 függvényt a [ ;10 ] intervallumon!. Írja fel az alábbi lineáris függvény grafikonjának egyenletét! 3. Ábrázolja + 1 - függvényt a [ ;] -on! 4. Az f függvényt a valós

Részletesebben

Gazdasági matematika 1 Tantárgyi útmutató

Gazdasági matematika 1 Tantárgyi útmutató Módszertani Intézeti Tanszék Emberi erőforrások, gazdálkodási és menedzsment, pénzügy és számvitel szakok nappali tagozat Gazdasági matematika 1 Tantárgyi útmutató 2016/17 tanév I. félév 1/5 Tantárgy megnevezése

Részletesebben

Közgazdaságtan 1. ELTE TáTK Közgazdaságtudományi Tanszék. 3. hét A KERESLETELMÉLET ALAPJAI. HASZNOSSÁG, PREFERENCIÁK

Közgazdaságtan 1. ELTE TáTK Közgazdaságtudományi Tanszék. 3. hét A KERESLETELMÉLET ALAPJAI. HASZNOSSÁG, PREFERENCIÁK KÖZGAZDASÁGTAN I. ELTE TáTK Közgazdaságtudományi Tanszék Közgazdaságtan 1. A KERESLETELMÉLET ALAPJAI. HASZNOSSÁG, PREFERENCIÁK Bíró Anikó, K hegyi Gergely, Major Klára Szakmai felel s: K hegyi Gergely

Részletesebben

Segédanyagok a Mikroökonómia (N_ak05) címő tárgyhoz

Segédanyagok a Mikroökonómia (N_ak05) címő tárgyhoz Segédanyagok a Mikroökonómia (N_ak05) címő tárgyhoz Összeállította: Farkas Péter Gyır, 00. szeptember 3. /5 oldal Frissítések: Ssz. Dátum Frissítés tartalma. 00.09.3 Az anyag elsı változatának közzététele

Részletesebben

A fogyasztási kereslet elméletei

A fogyasztási kereslet elméletei 6. lecke A fogyasztási kereslet elméletei A GDP, a rendelkezésre álló jövedelem, a fogyasztás és a megtakarítás kapcsolata. Az abszolút jövedelem hipotézis és a keynesi fogyasztáselmélet. A permanens jövedelem

Részletesebben

A jövedelem- és árváltozások hatása a fogyasztói döntésre. Az ICC görbe. Az Engel-görbe. 4-5. előadás

A jövedelem- és árváltozások hatása a fogyasztói döntésre. Az ICC görbe. Az Engel-görbe. 4-5. előadás 4-5. előadás A jövedelem- és árváltozások hatása a fogasztói döntésre CC és Engel-görbe, PCC és egéni keresleti függvén. A iaci keresleti görbe származtatása. A fogasztói többlet. Kereslet-rugalmassági

Részletesebben

1 1 y2 =lnec x. 1 y 2 = A x2, ahol A R tetsz. y =± 1 A x 2 (A R) y = 3 3 2x+1 dx. 1 y dy = ln y = 3 2 ln 2x+1 +C. y =A 2x+1 3/2. 1+y = x.

1 1 y2 =lnec x. 1 y 2 = A x2, ahol A R tetsz. y =± 1 A x 2 (A R) y = 3 3 2x+1 dx. 1 y dy = ln y = 3 2 ln 2x+1 +C. y =A 2x+1 3/2. 1+y = x. Mat. A3 9. feladatsor 06/7, első félév. Határozzuk meg az alábbi differenciálegenletek típusát (eplicit-e vag implicit, milen rendű, illetve fokú, homogén vag inhomogén)! a) 3 (tg) +ch = 0 b) = e ln c)

Részletesebben

Sokszínû matematika 12. A KITÛZÖTT FELADATOK EREDMÉNYE

Sokszínû matematika 12. A KITÛZÖTT FELADATOK EREDMÉNYE Sokszínû matematika. A KITÛZÖTT FELADATOK EREDMÉNYE Számsorozatok SOKSZÍNÛ MATEMATIKA A KITÛZÖTT FELADATOK EREDMÉNYE. A számsorozat fogalma, példák sorozatokra. A pozitív páros számok sorozatának n-edik

Részletesebben

GAZDASÁGI ISMERETEK JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

GAZDASÁGI ISMERETEK JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Gazdasági ismeretek emelt szint 0622 ÉRETTSÉGI VIZSGA 2007. május 24. GAZDASÁGI ISMERETEK EMELT SZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM A javítás

Részletesebben

MIKROÖKONÓMIA - konzultáció - Termelés és piaci szerkezetek

MIKROÖKONÓMIA - konzultáció - Termelés és piaci szerkezetek MIKROÖKONÓMIA - konzultáció - Termelés és piaci szerkezetek Révész Sándor reveszsandor.wordpress.com 2011. december 20. Elmélet Termelési függvény Feladatok Parciális termelési függvény Adott a következ

Részletesebben

Feladatok a Gazdasági matematika II. tárgy gyakorlataihoz

Feladatok a Gazdasági matematika II. tárgy gyakorlataihoz Debreceni Egyetem Közgazdaságtudományi Kar Feladatok a Gazdasági matematika II tárgy gyakorlataihoz a megoldásra ajánlott feladatokat jelöli e feladatokat a félév végére megoldottnak tekintjük a nehezebb

Részletesebben

TANTÁRGYI PROGRAM Matematikai alapok I. útmutató

TANTÁRGYI PROGRAM Matematikai alapok I. útmutató BGF PÉNZÜGYI ÉS SZÁMVITELI KAR Módszertani Intézeti Tanszéki Osztály TANTÁRGYI PROGRAM Matematikai alapok I. útmutató 2014/2015. tanév I. félév Tantárgyi program Tantárgy megnevezése Matematikai alapok

Részletesebben

- 1 - Közgazdaságtani jelölés- és képletgyűjtemény (Mikroökonómia I. félév) JELÖLÉSEK:

- 1 - Közgazdaságtani jelölés- és képletgyűjtemény (Mikroökonómia I. félév) JELÖLÉSEK: - - Közgazdaságtani jelölés- és kéletgyűjtemény (Mikroökonómia I. félév) JEÖÉSEK: - munka (abour) - ár (rise) e - egyensúlyi ár - a munka ára ( munkabér (w)) A - föld (mint termelési (természeti) tényező)

Részletesebben

Gazdálkodási modul. Gazdaságtudományi ismeretek I. Közgazdaságtan. KÖRNYEZETGAZDÁLKODÁSI MÉRNÖKI MSc TERMÉSZETVÉDELMI MÉRNÖKI MSc

Gazdálkodási modul. Gazdaságtudományi ismeretek I. Közgazdaságtan. KÖRNYEZETGAZDÁLKODÁSI MÉRNÖKI MSc TERMÉSZETVÉDELMI MÉRNÖKI MSc Gazdálkodási modul Gazdaságtudományi ismeretek I. Közgazdaságtan KÖRNYEZETGAZDÁLKODÁSI MÉRNÖKI MSc TERMÉSZETVÉDELMI MÉRNÖKI MSc A termelési tényezők piaca 8. lecke A gazdasági szereplők piaci kapcsolatai

Részletesebben

Mikroökonómia Elıadásvázlat szeptember 13.

Mikroökonómia Elıadásvázlat szeptember 13. (C) tt://kgt.bme.u/ Mikroökonómia Elıadásvázlat. szetember 3. I. Marginalizmus és matematika Két vag több ténezı közötti kacsolat jellemzésére függvéneket asználunk, amelek a független (magarázó) és a

Részletesebben

7. előadás EGYÉNI DÖNTÉS

7. előadás EGYÉNI DÖNTÉS 7. előadás EGYÉNI DÖNTÉS Kertesi Gábor Varian 5. fejezete változtatásokkal; kiegészítve a kiadásminimalizálási probléma tárgyalásával. Az előadás nem érinti az adók megválasztásának problémáját (Varian

Részletesebben

Mikroökonómia II. ELTE TáTK Közgazdaságtudományi Tanszék. 2. hét ÁLTALÁNOS EGYENSÚLYELMÉLET, 1. rész

Mikroökonómia II. ELTE TáTK Közgazdaságtudományi Tanszék. 2. hét ÁLTALÁNOS EGYENSÚLYELMÉLET, 1. rész MIKROÖKONÓMIA II. ELTE TáTK Közgazdaságtudományi Tanszék Mikroökonómia II. ÁLTALÁNOS EGYENSÚLYELMÉLET, 1. rész Készítette: Szakmai felel s: 2011. február A tananyagot készítette: Jack Hirshleifer, Amihai

Részletesebben

KÖZGAZDASÁGTAN ÉRETTSÉGI VIZSGA FELADATOK

KÖZGAZDASÁGTAN ÉRETTSÉGI VIZSGA FELADATOK KÖZGAZDASÁGTAN ÉRETTSÉGI VIZSGA FELADATOK I. TÉTEL A. Olvassa el figyelmesen a következő kijelentéseket. a) Az első öt (1-től 5-ig) kijelentésre vonatkozóan jelölje a kijelentésnek megfelelő számot, és

Részletesebben

13. A zöldborsó piacra jellemző keresleti és kínálati függvények a következők P= 600 Q, és P=100+1,5Q, ahol P Ft/kg, és a mennyiség kg-ban értendő.

13. A zöldborsó piacra jellemző keresleti és kínálati függvények a következők P= 600 Q, és P=100+1,5Q, ahol P Ft/kg, és a mennyiség kg-ban értendő. 1. Minden olyan jószágkosarat, amely azonos szükségletkielégítési szintet (azonos hasznosságot) biztosít a fogyasztó számára,.. nevezzük a. költségvetési egyenesnek b. fogyasztói térnek c. közömbösségi

Részletesebben

Integrálszámítás (Gyakorló feladatok)

Integrálszámítás (Gyakorló feladatok) Integrálszámítás (Gyakorló feladatok). Határozatlan integrál. Alapintegrálok F. Számítsa ki az alábbi határozatlan integrálokat! a) (x x + ) b) (6x x + 5) c) (x + x + x ) d) ( x + x x e) ( ) + e x ) f)

Részletesebben

TANTÁRGYI PROGRAM Matematikai alapok I. útmutató

TANTÁRGYI PROGRAM Matematikai alapok I. útmutató BGF PÉNZÜGYI ÉS SZÁMVITELI KAR Módszertani Intézeti Tanszéki Osztály TANTÁRGYI PROGRAM Matematikai alapok I. útmutató 2013/2014. tanév II. félév Tantárgyi program Tantárgy megnevezése Matematikai alapok

Részletesebben

Közgazdaságtan I. (N_AKA6, NGB_AK007_1, NGF_AK057_1, NGF_EG007_1) Az oktató adatai. Kötelező és ajánlott irodalom

Közgazdaságtan I. (N_AKA6, NGB_AK007_1, NGF_AK057_1, NGF_EG007_1) Az oktató adatai. Kötelező és ajánlott irodalom Közgazdaságtan I. (N_AKA6, NGB_AK007_1, NGF_AK057_1, NGF_EG007_1) 2014/2015. tanév, őszi félév ÁLTALÁNOS TUDNIVALÓK Az oktató adatai Dr. Koppány Krisztián PhD egyetemi docens, dékánhelyettes fogadóóra

Részletesebben

Többváltozós, valós értékű függvények

Többváltozós, valós értékű függvények Többváltozós függvények Többváltozós, valós értékű függvények Többváltozós függvények Definíció: többváltozós függvények Azokat a függvényeket, melyeknek az értelmezési tartománya R n egy részhalmaza,

Részletesebben

Kamatfüggő beruházási kereslet, árupiaci egyensúly, IS-függvény

Kamatfüggő beruházási kereslet, árupiaci egyensúly, IS-függvény Kamatfüggő beruházási kereslet, árupiaci egyensúly, IS-függvény 84-85.) Bock Gyula [2001]: Makroökonómia feladatok. TRI-MESTER, Tatabánya. 38. o. 16-17. (Javasolt változtatások: 16. feladat: I( r) 500

Részletesebben

1. Parciális függvény, parciális derivált (ismétlés)

1. Parciális függvény, parciális derivált (ismétlés) Operációkutatás NYME Gazdaságinformatikus mesterképzés El adó: Kalmár János (kalmar[kukac]inf.nyme.hu) Többváltozós széls érték számítás Parciális függvény, parciális derivált Széls érték korlátos zárt

Részletesebben

Függvények. 1. Nevezetes függvények A hatványfüggvény

Függvények. 1. Nevezetes függvények A hatványfüggvény Függvének Tétel: Ha az = ϕ() függvén az = f () függvén inverze, akkor = ϕ() függvén grafikonja az = f () függvén képéből az = egenesre való tükrözéssel nerhető. Tétel: Minden szigorúan monoton függvénnek

Részletesebben

A változó költségek azon folyó költségek, amelyek nagysága a termelés méretétől függ.

A változó költségek azon folyó költségek, amelyek nagysága a termelés méretétől függ. Termelői magatartás II. A költségfüggvények: A költségek és a termelés kapcsolatát mutatja, hogyan változnak a költségek a termelés változásával. A termelési függvényből vezethető le, megkülönböztetünk

Részletesebben

KOVÁCS BÉLA, MATEMATIKA II.

KOVÁCS BÉLA, MATEMATIKA II. KOVÁCS BÉLA MATEmATIkA II 8 VIII Elsőrendű DIFFERENCIÁLEGYENLETEk 1 Alapvető ÖSSZEFÜGGÉSEk Elsőrendű differenciálegyenlet általános és partikuláris megoldása Az vagy (1) elsőrendű differenciálegyenlet

Részletesebben

Mikroökonómia (GTGKG601EGL) Egészségügyi szervező szakos levelező hallgatóknak

Mikroökonómia (GTGKG601EGL) Egészségügyi szervező szakos levelező hallgatóknak Mikroökonómia (GTGKG601EGL) Egészségügyi szervező szakos levelező hallgatóknak közgazdaságtan szükséglet mikroökonómia makroökonómia nemzetközi közgazdaságtan ceteris paribus elv piac kereslet kínálat

Részletesebben

Matematika. 4. konzultáció: Kétváltozós függvények szélsőértéke. Parciális függvény, parciális derivált

Matematika. 4. konzultáció: Kétváltozós függvények szélsőértéke. Parciális függvény, parciális derivált Matematika 1 NYME KTK, Egyetemi kiegészítő alapképzés 2004/2005. tanév, I. évf. I.félév Budapest Előadó: Dr. Takách Géza NyME FMK Informatikai Intézet 9400 Sopron, Bajcsy Zs. u. 9. GT fszt. 3. (99) 518

Részletesebben

2. szemináriumi. feladatok. Fogyasztás/ megtakarítás Több időszak Több szereplő

2. szemináriumi. feladatok. Fogyasztás/ megtakarítás Több időszak Több szereplő 2. szemináriumi feladatok Fogyasztás/ megtakarítás Több időszak Több szereplő 1. feladat Egy olyan gazdaságot vizsgálunk, ahol a fogyasztó exogén jövedelemfolyam és exogén kamat mellett hoz fogyasztási/megtakarítási

Részletesebben

módszertana Miben más és mivel foglalkozik a Mit tanultunk mikroökonómiából? és mivel foglalkozik a makroökonómia? Miért

módszertana Miben más és mivel foglalkozik a Mit tanultunk mikroökonómiából? és mivel foglalkozik a makroökonómia? Miért A makroökonómia tárgya és módszertana Mit tanultunk mikroökonómiából? Miben más és mivel foglalkozik a makroökonómia? Miért van külön makroökonómia? A makroökonómia módszertana. Miért fontos a makroökonómia

Részletesebben

Többváltozós függvények Feladatok

Többváltozós függvények Feladatok Többváltozós függvények Feladatok 2. szeptember 3. Határozzuk meg az alábbi sorozatok határértékét illetve torlódási pontjait!. ( n n2 + n n 3 2. ( n + n n5 n2 +2n+ 5 n n+ 3. ( sin(nπ/2 n n! Határozzuk

Részletesebben

1. MECHANIKA-MOZGÁSTAN GYAKORLAT (kidolgozta: Szüle Veronika, egy. ts.) Matematikai összefoglaló

1. MECHANIKA-MOZGÁSTAN GYAKORLAT (kidolgozta: Szüle Veronika, egy. ts.) Matematikai összefoglaló SZÉCHENYI ISTVÁN EGYETEM ALKALMAZOTT MECHANIKA TANSZÉK 1 MECHANIKA-MOZGÁSTAN GYAKORLAT (kidolgozt: Szüle Veronik, eg ts) Mtemtiki összefoglló 11 Mátrilgeri összefoglló: ) Mátri értelmezése, jelölése: Mátri:

Részletesebben

KÖZGAZDASÁGTAN I. Készítette: Bíró Anikó, K hegyi Gergely, Major Klára. Szakmai felel s: K hegyi Gergely. 2010. június

KÖZGAZDASÁGTAN I. Készítette: Bíró Anikó, K hegyi Gergely, Major Klára. Szakmai felel s: K hegyi Gergely. 2010. június KÖZGAZDASÁGTAN I. Készült a TÁMOP-4.1.2-08/2/a/KMR-2009-0041 pályázati projekt keretében Tartalomfejlesztés az ELTE TáTK Közgazdaságtudományi Tanszékén az ELTE Közgazdaságtudományi Tanszék az MTA Közgazdaságtudományi

Részletesebben