SZTE Elméleti Fizikai Tanszék. Dr. Czirják Attila tud. munkatárs, c. egyetemi docens. egyetemi docens. Elméleti Fizika Szeminárium, december 17.

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "SZTE Elméleti Fizikai Tanszék. Dr. Czirják Attila tud. munkatárs, c. egyetemi docens. egyetemi docens. Elméleti Fizika Szeminárium, december 17."

Átírás

1 Időfüggő kvantumos szórási folyamatok Szabó Lóránt Zsolt SZTE Elméleti Fizikai Tanszék Témavezetők: Dr. Czirják Attila tud. munkatárs, c. egyetemi docens Dr. Földi Péter egyetemi docens Elméleti Fizika Szeminárium, december 17.

2 Tartalom 1 Bevezetés Floquet-elmélet 2 Relativisztikus elektrontranszport oszcilláló potenciálgáton Motiváció, célkitűzés Transzmissziós valószínűségek Fano-típusú rezonanciák A folyamat téridőfüggése 3 Lézer által segített elektronszórás nanogömbön Motiváció, célkitűzés Gömbi Volkov-állapotok P m kernelfüggvények Sűrűségfüggvény gyenge tér közeĺıtésben Differenciális szórási hatáskeresztmetszetek 4 Összefoglalás Időfüggő kvantumos szórási folyamatok Tartalom Szabó L. Zs. 2 / 22

3 Bevezetés: Floquet-elmélet Floquet-tétel Ha az A(t) négyzetes mátrix τ periodikus és Φ(t) fundamentális megoldása az ẋ = A(t)x lineáris periodikus rendszernek, akkor Φ(t) is ugyanúgy periodikus, továbbá létezik P(t) négyzetes τ periodikus mátrix úgy, hogy Φ(t) = P(t) exp (Bt), ahol B is négyzetes mátrix. Periodikus Hamilton operátor: Ĥ(t) = Ĥ(t + τ) Hullámfüggvény: Ψ(X, t) = e ie F t/ F (X, t), F (X, t) = F (X, t + τ) Ψ(X, t) = e ie F t/ n= e inωt F n (X) Időfüggő kvantumos szórási folyamatok Bevezetés Szabó L. Zs. 3 / 22

4 Relativisztikus elektrontranszport oszcilláló potenciálgáton Motiváció, célkitűzés SiC szubsztráton epitaxiálisan növesztett grafénminták = 0.26eV tiltott sávval rendelkeznek, amely elválasztja a Dirac-egyenlet pozitív és negatív energiás sajátállapotokat. a Ekkor a diszperziós reláció a masszív relativisztikus Dirac-részecskéjéhez hasonló. a S. Y. Zhou et al., Nature Materials 6, 770 (2007) E tiltott sávot egy konstans + oszcilláló potenciállal befolyásoljuk a a L. Zs. Szabó et al., Physycal Review B 88, (2013) Időfüggő kvantumos szórási folyamatok Relativisztikus elektrontranszport oszcilláló potenciálgáton Szabó L. Zs. 4 / 22

5 Oszcilláló potenciálgát - relativisztikus modell ψ in (z, t) = e ik 0z i E 0 t 1 0 c k 0 E 0 +mc 2 0, k E 2 0 = ± 0 m 2 c 4 c Időfüggő kvantumos szórási folyamatok Relativisztikus elektrontranszport oszcilláló potenciálgáton Szabó L. Zs. 5 / 22

6 Dirac-egyenlet megoldása a 0 < z < L tartományban i [ ( t ψ(z, t) = cα 3 i z ) + βmc 2 + V 0 + Ω cos νt ] ψ(z, t) Megoldások [ ( E ϕ ± (z, t) = e ikz u ± ± (k)t (k) exp i + Ω ν sin νt )] u + (k) = 1 0 c k E + (k) V 0 +mc 2 0, u (k) = c k E (k) V 0 mc E ± (k) = ± m 2 c k 2 c 2 + V 0 Időfüggő kvantumos szórási folyamatok Relativisztikus elektrontranszport oszcilláló potenciálgáton Szabó L. Zs. 6 / 22

7 Floquet-féle alak [ ( E ϕ ± (z, t) = e ikz u ± ± (k)t (k) exp i + Ω ν sin νt )] Jacobi-Anger azonosság ) e i Ω Ω ν sin νt = J n( n= ν e inνt Megjelenő frekvenciák: E± (k) + nν Fix E 0 energia esetén: E ± (k) = E 0 ω n = E n = E 0 + nν Időfüggő kvantumos szórási folyamatok Relativisztikus elektrontranszport oszcilláló potenciálgáton Szabó L. Zs. 7 / 22

8 Hullámfüggvények E ± (k) = E 0, k n = E 2 n m 2 c 4, k 2 c 2 n = (En V0 ) 2 m 2 c 4 2 c 2 1-es és 3-as tartomány hullámfüggvénye Ψ 1 (z, t) = ψ in (z, t) + r n e iknz u + ( k n ) e iωnt + Ψ 1r (z, t) Ψ 3 (z, t) = ω n>0 ω n>0 t n e iknz u + (k n ) e iωnt + Ψ 3 (z, t) 2-es tartomány hullámfüggvénye Ψ 2 (z, t) = Ψ + 2 (z, t) + Ψ 2 (z, t), Ψ + 2 (z, t) = ( ) Ω J m e iωn+mt ω n>0 m ν [ a n e ik n z u + (k n) + b n e ik n z u + ( k n) ] Időfüggő kvantumos szórási folyamatok Relativisztikus elektrontranszport oszcilláló potenciálgáton Szabó L. Zs. 8 / 22

9 Időre átlagolt transzmissziós valószínűség T = 1 T T T (t)dt 0 E 0 = 1.1mc 2, ν = 0.2, L = 1 [a.u.] Időfüggő kvantumos szórási folyamatok Relativisztikus elektrontranszport oszcilláló potenciálgáton Szabó L. Zs. 9 / 22

10 Fano-típusú rezonanciák Ilyen csúcsokat már figyeltek meg korábban nemrelativisztikus oszcilláló potenciálgödör esetén. Ezek az ún. Fano-típusú rezonanciák. Rugalmatlan szórási folyamat: a bejövő részecske energiája lecsökken ν egész számú többszörösével, és a potenciál kötött állapota populálódik. Időfüggő kvantumos szórási folyamatok Relativisztikus elektrontranszport oszcilláló potenciálgáton Szabó L. Zs. 10 / 22

11 A folyamat téridőfüggése E 0 = 3mc 2, L = 10, V 0 = 1.85mc 2 és Ω = 0.5 Időfüggő kvantumos szórási folyamatok Relativisztikus elektrontranszport oszcilláló potenciálgáton Szabó L. Zs. 11 / 22

12 Lézer által segített elektronszórás nanogömbön Motiváció, célkitűzés A. Zewail úttörő munkássága: 4D képalkotás, ultragyors elektronmikroszkópia, foton-indukált közeli tér elektronmikroszkópia a a S. T. Park et al., New J. Phys. 12 (12), (2010) Időfüggő kvantumos szórási folyamatok Lézer által segített elektronszórás nanogömbön Szabó L. Zs. 12 / 22

13 Elektronszórás kemény gömb -ön lézertér jelenlétében ψ inc = exp{i [k 0 r k 0 cos θ 0 a sin ωt] iω 0 t} Időfüggő kvantumos szórási folyamatok Lézer által segített elektronszórás nanogömbön Szabó L. Zs. 13 / 22

14 Schrödinger-egyenlet megoldása [ ˆp 2 2M + Kramers-Henneberger transzformáció e ] Mc A ˆp Ψ = i t Ψ Ψ = exp [ a sin ωt z ]Φ(x, y, z; t) 2 2M 2 Φ = i Φ t Laboratóriumi koordináta-rendszer Ψ = Φ(x, y, z a sin ωt; t), a = ea 0 /Mωc Időfüggő kvantumos szórási folyamatok Lézer által segített elektronszórás nanogömbön Szabó L. Zs. 14 / 22

15 Hullámfüggvények Bejövő hullám: Gordon-Volkov állapot ψ inc = exp{i [k 0 r k 0 cos θ 0 a sin ωt] iω 0 t} Szórt hullámok: kifelé haladó gömbi Gordon-Volkov állapotok ψ scatt = l l=0 m= l n= A(n, l, m)h (1) l [k n r(t)]p m l [cos θ(t)] exp (imϕ) exp [ i(ω 0 + nω)t] r(t) = r 2 2rα(t) cos θ + α(t) 2, α(t) = a sin ωt, cos θ(t) = r cos θ α(t) r 2 2rα(t) cos θ + α(t), a = ea 0 2 Mωc Időfüggő kvantumos szórási folyamatok Lézer által segített elektronszórás nanogömbön Szabó L. Zs. 15 / 22

16 Hullámfüggvény illesztése [ψ(r, θ, ϕ, t) = ψ inc + ψ scatt ] r=r = 0, θ, ϕ, t ψ inc = n,l,m J n (k 0 a cos θ 0 )i l (l m)! (2l + 1) (l + m)! j l(k 0 r) P m l (cos θ 0 )P m l (cos θ) exp [im(ϕ ϕ 0 )] exp ( iω n t) ψ scatt = i l l n,l,m n,l (2l + 1)A(n, l, m )P m (l, l ; n k n a) h (1) l [k n r]pm l [cos θ] exp (im ϕ) exp { i [ω 0 + (n + n )ω] t} Időfüggő kvantumos szórási folyamatok Lézer által segített elektronszórás nanogömbön Szabó L. Zs. 16 / 22

17 P m szimbólumok egzaktul megadhatók P m (l, l ; s k n a) 1 (l m)! 2 (l + m)! 1 Pl m 1 (x)p m l (x)j s( k n a x) dx P m l (x)p q j (x) = l+j k=max( m+q, l j ) [l+k+j: even] P m l (x) = ( 1) m (1 x 2 ) m/2 l k=0 QlmjqP k m+q k (x) ( l k)( l+k 1 2 l ) 2 l k! x k m (k m)! x k J s ( k n ax) integrálja 1 F 2 = 1 F 2 (a 1 ;b 1,b 2,z) Γ(b 1 )Γ(b 2 ) Időfüggő kvantumos szórási folyamatok Lézer által segített elektronszórás nanogömbön Szabó L. Zs. 17 / 22

18 Valószínűségi sűrűségfüggvény logaritmusa külső tér nélkül E 0 = 0.25 ev, R = 5 nm Időfüggő kvantumos szórási folyamatok Lézer által segített elektronszórás nanogömbön Szabó L. Zs. 18 / 22

19 Valószínűségi sűrűségfüggvény logaritmusa külső térrel E 0 = 0.25 ev, R = 5 nm, ω = 1.5 ev Időfüggő kvantumos szórási folyamatok Lézer által segített elektronszórás nanogömbön Szabó L. Zs. 19 / 22

20 Totális differenciális hatáskeresztmetszet θ szögeloszlása E 0 = 4eV, ω = 1.5eV, F 0 = V /m Időfüggő kvantumos szórási folyamatok Lézer által segített elektronszórás nanogömbön Szabó L. Zs. 20 / 22

21 Totális differenciális hatáskeresztmetszet Szórt elektron energiája: E n = E 0 + n ω E 0 = 4eV, ω = 1.5eV, F 0 = V /m és V /m Időfüggő kvantumos szórási folyamatok Lézer által segített elektronszórás nanogömbön Szabó L. Zs. 21 / 22

22 Köszönetnyilvánítás Köszönöm a figyelmet! Szeretném köszönetemet kifejezni Benedict Mihálynak, Czirják Attilának, Földi Péternek és Varró Sándornak. Időfüggő kvantumos szórási folyamatok Köszönetnyilvánítás Szabó L. Zs. 22 / 22

Kvantumos jelenségek lézertérben

Kvantumos jelenségek lézertérben Kvantumos jelenségek lézertérben Atomfizika Benedict Mihály SZTE Elméleti Fizikai Tanszék Az előadást támogatta a TÁMOP-4.2.1/B-09/1/KONV-2010-0005 sz. Kutatóegyetemi Kiválósági Központ létrehozása a Szegedi

Részletesebben

Fluktuáló terű transzverz Ising-lánc dinamikája

Fluktuáló terű transzverz Ising-lánc dinamikája 2016. szeptember 8. Phys. Rev. B 93, 134305 Modell H(t) = 1 2 L 1 σi x σi+1 x h(t) 2 i=1 h(t)-fluktuáló mágneses tér. Hogyan terjednek jelek a zajos rendszerben? L σi z, i=1 Zajok típusai 1 fehér zaj 2

Részletesebben

Idegen atomok hatása a grafén vezet képességére

Idegen atomok hatása a grafén vezet képességére hatása a grafén vezet képességére Eötvös Loránd Tudományegyetem, Komplex Rendszerek Fizikája Tanszék Mahe Tisk'11 Vázlat 1 Kisérleti eredmények Kémiai szennyez k hatása a Fermi-energiára A vezet képesség

Részletesebben

Kvantum kontrol frekvencia csörpölt lézer indukált kónikus keresztez désekkel

Kvantum kontrol frekvencia csörpölt lézer indukált kónikus keresztez désekkel Kvantum kontrol frekvencia csörpölt lézer indukált kónikus keresztez désekkel Vibók Ágnes ELI-ALPS, ELI-HU Non-Prot Ltd. University of Debrecen Department of Theoretical Physics, Áttekintés 1 Kónikus keresztez

Részletesebben

MTA Lendület Ultragyors nanooptika kutatócsoport MTA Wigner Fizikai Kutatóközpont. Szeminárium: SZTE Elmélteti Fizikai Tanszék

MTA Lendület Ultragyors nanooptika kutatócsoport MTA Wigner Fizikai Kutatóközpont. Szeminárium: SZTE Elmélteti Fizikai Tanszék Koherencia és kvantum-klasszikus megfeleltetés ultragyors lézer-atom kölcsönhatásban Ayadi Viktor MTA Lendület Ultragyors nanooptika kutatócsoport MTA Wigner Fizikai Kutatóközpont Szeminárium: SZTE Elmélteti

Részletesebben

Kvantummechanika. - dióhéjban - Kasza Gábor július 5. - Berze TÖK

Kvantummechanika. - dióhéjban - Kasza Gábor július 5. - Berze TÖK Kvantummechanika - dióhéjban - Kasza Gábor 2016. július 5. - Berze TÖK 1 / 27 Mire fogunk választ kapni az előadásból? Miért KVANTUMmechanika? Miért részecske? Miért hullám? Mit mond a Schrödinger-egyenlet?

Részletesebben

REZGÉSTAN GYAKORLAT Kidolgozta: Dr. Nagy Zoltán egyetemi adjunktus

REZGÉSTAN GYAKORLAT Kidolgozta: Dr. Nagy Zoltán egyetemi adjunktus SZÉCHENYI ISTVÁN EGYETEM ALKALMAZOTT MECHANIKA TANSZÉK EZGÉSTAN GYAKOLAT Kidolozta: Dr. Na Zoltán eetemi adjunktus 5. feladat: Szabad csillapított rezőrendszer A c k ϕ c m k () q= q t m rúd c k Adott:

Részletesebben

FOTOKÉMIAI REAKCIÓK, REAKCIÓKINETIKAI ALAPOK

FOTOKÉMIAI REAKCIÓK, REAKCIÓKINETIKAI ALAPOK FOTOKÉMIAI REAKCIÓK, REAKCIÓKINETIKAI ALAPOK Légköri nyomanyagok forrásai: bioszféra hiroszféra litoszféra világűr emberi tevékenység AMI BELÉP, ANNAK TÁVOZNIA IS KELL! Légköri nyomanyagok nyelői: száraz

Részletesebben

Feketetest sugárzás. E = Q + W + W sug. E = Q + W + I * dt. ELTE II. Fizikus, 2005/2006 I. félév KISÉRLETI FIZIKA Hıtan (XI.

Feketetest sugárzás. E = Q + W + W sug. E = Q + W + I * dt. ELTE II. Fizikus, 2005/2006 I. félév KISÉRLETI FIZIKA Hıtan (XI. ELTE II. Fizikus, 2005/2006 I. félév KISÉRLETI FIZIKA Hıtan 0-. (XI. 29-30) Feketetest sugárzás A sugárzás egy újfajta energia transzport (W sug. ), ahol I * = S da, ρ t w j w, t w A kontinuitási egyenletbıl:

Részletesebben

Hálózatok számítása egyenáramú és szinuszos gerjesztések esetén. Egyenáramú hálózatok vizsgálata Szinuszos áramú hálózatok vizsgálata

Hálózatok számítása egyenáramú és szinuszos gerjesztések esetén. Egyenáramú hálózatok vizsgálata Szinuszos áramú hálózatok vizsgálata Hálózatok számítása egyenáramú és szinuszos gerjesztések esetén Egyenáramú hálózatok vizsgálata Szinuszos áramú hálózatok vizsgálata Egyenáramú hálózatok vizsgálata ellenállások, generátorok, belső ellenállások

Részletesebben

ω mennyiségek nem túl gyorsan változnak

ω mennyiségek nem túl gyorsan változnak Licenszvizsga példakérdések Fizika szak KVANTUMMECHANIKA Egy részecskére felírt Schrödinger egyenlet szétválasztható a három koordinátatengely irányában levő egydimenziós egyenletre ha a potenciális energiára

Részletesebben

Bevezetés a modern fizika fejezeteibe. 4. (b) Kvantummechanika. Utolsó módosítás: 2013. november 9. Dr. Márkus Ferenc BME Fizika Tanszék

Bevezetés a modern fizika fejezeteibe. 4. (b) Kvantummechanika. Utolsó módosítás: 2013. november 9. Dr. Márkus Ferenc BME Fizika Tanszék Bevezetés a modern fizika fejezeteibe 4. (b) Kvantummechanika Utolsó módosítás: 2013. november 9. 1 A legkisebb hatás elve (1) A legkisebb hatás elve (Hamilton-elv): S: a hatás L: Lagrange-függvény 2 A

Részletesebben

Kvantumos információ megosztásának és feldolgozásának fizikai alapjai

Kvantumos információ megosztásának és feldolgozásának fizikai alapjai Kvantumos információ megosztásának és feldolgozásának fizikai alapjai Kis Zsolt Kvantumoptikai és Kvantuminformatikai Osztály MTA Wigner Fizikai Kutatóközpont H-1121 Budapest, Konkoly-Thege Miklós út 29-33

Részletesebben

Atomok és molekulák elektronszerkezete

Atomok és molekulák elektronszerkezete Atomok és molekulák elektronszerkezete Szabad atomok és molekulák Schrödinger egyenlete Tekintsünk egy kvantummechanikai rendszert amely N n magból és N e elektronból áll. Koordinátáikat jelölje rendre

Részletesebben

Az inga mozgásának matematikai modellezése

Az inga mozgásának matematikai modellezése Az inga mozgásának matematikai modellezése Csizmadia László Bolyai Intézet, Szegedi Tudományegyetem Természet és Matematika Szeged, SZTE L. Csizmadia (Szeged) Őszi Kulturális Fesztivál, 2011. 2011.10.08.

Részletesebben

dinamikai tulajdonságai

dinamikai tulajdonságai Szilárdtest rácsok statikus és dinamikai tulajdonságai Szilárdtestek osztályozása kötéstípusok szerint Kötések eredete: elektronszerkezet k t ionok (atomtörzsek) tö Coulomb- elektronok kölcsönhatás lokalizáltak

Részletesebben

Kevert állapoti anholonómiák vizsgálata

Kevert állapoti anholonómiák vizsgálata Kevert állapoti anholonómiák vizsgálata Bucz Gábor Témavezet : Dr. Fehér László Dr. Lévay Péter Szeged, 2015.04.23. Bucz Gábor Kevert állapoti anholonómiák vizsgálata Szeged, 2015.04.23. 1 / 27 Tartalom

Részletesebben

Miért fontos számunkra az előző gyakorlaton tárgyalt lineáris algebrai ismeretek

Miért fontos számunkra az előző gyakorlaton tárgyalt lineáris algebrai ismeretek Az november 23-i szeminárium témája Rövid összefoglaló Miért fontos számunkra az előző gyakorlaton tárgyalt lineáris algebrai ismeretek felfrissítése? Tekintsünk ξ 1,..., ξ k valószínűségi változókat,

Részletesebben

4. Konzultáció: Periodikus jelek soros RC és RL tagokon, komplex ellenállás Részlet (nagyon béta)

4. Konzultáció: Periodikus jelek soros RC és RL tagokon, komplex ellenállás Részlet (nagyon béta) 4. Konzultáció: Periodikus jelek soros és tagokon, komplex ellenállás észlet (nagyon béta) "Elektrós"-Zoli 203. november 3. A jegyzetről Jelen jegyzet a negyedik konzultációm anyagának egy részletét tartalmazza.

Részletesebben

1. Feladatok merev testek fizikájának tárgyköréből

1. Feladatok merev testek fizikájának tárgyköréből 1. Feladatok merev testek fizikájának tárgyköréből Forgatónyomaték, impulzusmomentum, impulzusmomentum tétel 1.1. Feladat: (HN 13B-7) Homogén tömör henger csúszás nélkül gördül le az α szög alatt hajló

Részletesebben

2 59 1 3 4 5 6 7 8 99 10 11 12 13 14 New Transit Van 15 16 New Transit Van 17 18 New Transit Van 19 20 New Transit Van 21 22 23 24 25 [Nm] 370 [kw] [PS] 110 150 [Nm] 475 [kw] [PS] 180 245 [Nm] 250 [kw]

Részletesebben

Matematika szigorlat, Mérnök informatikus szak I máj. 12. Név: Nept. kód: Idő: 1. f. 2. f. 3. f. 4. f. 5. f. 6. f. Össz.: Oszt.

Matematika szigorlat, Mérnök informatikus szak I máj. 12. Név: Nept. kód: Idő: 1. f. 2. f. 3. f. 4. f. 5. f. 6. f. Össz.: Oszt. Matematika szigorlat, Mérnök informatikus szak I. 2009. máj. 12. Név: Nept. kód: Idő: 1. f. 2. f. 3. f. 4. f. 5. f. 6. f. Össz.: Oszt.: 180 perc 0-49 pont: elégtelen, 50-61 pont: elégséges, 62-73 pont:

Részletesebben

Sötét állapotok szerepe fénnyel indukált koherens kontroll folyamatokban

Sötét állapotok szerepe fénnyel indukált koherens kontroll folyamatokban Sötét állapotok szerepe fénnyel indukált koherens kontroll folyamatokban Kis Zsolt Kvantumoptikai és Kvantuminformatikai Osztály MTA Szilárdtestfizikai és Optikai Kutatóintézet H- Budapest, Konkoly-Thege

Részletesebben

Előadás menete. Magfúzióból nyerhető energia és az energiatermelés feltétele. Fúziós kutatási ágazatok

Előadás menete. Magfúzióból nyerhető energia és az energiatermelés feltétele. Fúziós kutatási ágazatok Előadás menete Magfúzióból nyerhető energia és az energiatermelés feltétele Fúziós kutatási ágazatok Hőmérséklet és sűrűségmérés egyik módszere plazmafizikában a Thomson szórás Fúziós kutatás célja A nap

Részletesebben

θ & új típusú differenciálegyenlet: vektormező egy körön lehetségesek PERIODIKUS MEGOLDÁSOK példa: legalapvetőbb modell az oszcillátorokra fixpont:

θ & új típusú differenciálegyenlet: vektormező egy körön lehetségesek PERIODIKUS MEGOLDÁSOK példa: legalapvetőbb modell az oszcillátorokra fixpont: 3. előadás & θ új típusú differenciálegyenlet: vektormező egy körön f ( θ ) lehetségesek PERIODIKUS MEGOLDÁSOK legalapvetőbb modell az oszcillátorokra példa: & θ sinθ θ & fixpont: θ & 0 θ θ & > 0 nyilak:

Részletesebben

MATEMATIKAI ÉS FIZIKAI ALAPOK

MATEMATIKAI ÉS FIZIKAI ALAPOK MATEMATIKAI ÉS FIZIKAI ALAPOK F:\EGYJEGYZ\20\alapok.doc 4 Feb 20 www.rmki.kfki.hu/~szego/egyjegyz. A Dirac-delta 2. Elektrodinamika mozgó közegekben 3. Függvénytranszformációk (Fourier transzformáció)

Részletesebben

É Ü ö Ü ú Ú ű Ó Ó ű ö Ó Ó ú ű Ü Ö Ó Ó ö Ó Ő ű Ó Ó ú Ü Ü Ó Ó Ó Ü Ó Í Í ö ö ö ö ö ú ú ö ű ú ö ö ö ú ö ú ű ö ö ű ö ö ö ű ö ö ö ú ö ö ú ö ö ö ö ö ú ö ö ö ö ú ö ú ö ö ö ö ö ö ú ö ö ö ö Í ö Ö ö ú ö ö ö ö Ó Í

Részletesebben

Í Ő É Ó É é Ö Á Á Á Ó é Ó é ö é Ö ű ö é ö ű ö é ö é é é é é é é é é é é é é é é é é é ü é é é Í é é é é ü é ö ü é ü é é ö ö é ú é é ü é é ü é é ü é ü é é é ú é Ó é é ú é ü é é ö é ö é Á Á Á Ó é Ó Í é ö

Részletesebben

ö í Ö Ó ü í ü ö Ö ö ü ü ö ö ö ö Ö ü ö ö Ö ü Ű Ö ö ü ú ű ö ö í ö ö í ü ö ö í í ö Á É ö Ö í ö Ö ü ö Ö ö ö ö ö ö ü í ü ö í ü ö ö ö Ö ü ö í ü í ö ö ö Ö ü ö Ö í í ö Ö ü ö Ö í ü ö Á É ö Ö í ü ö í ö ű ö ö ű ö

Részletesebben

ő ő ű í ó ú í ó í ó Á Á Á É ű ő ó ó ő ó ő Á É ó Á É ú Á É É Á ó Á Á Á Á Á É É ó Á É í É É í É ú ú ú ó ó Ö ú É ú ó ő ú ó í É É É É Ö Ö É Á É É É Ő Ó É ő ó ó í ő ú ő ő ű í ó ú Ő Ö ú É ú ú ő ő É É ő ő ő ő

Részletesebben

ö é é ü Ő Ö é ü ö é é ü é é ó é ü ü é é é é é í é ü é é é é é é ö é é ö ö é ü ö ö é ü í é ü ü é é é ü é ö é é é ó é é é é é ü ö é é ü ú ö é é é é ö é é ö é é ó é ó é é í é é ó é é ó é é í ó é é ü ü é ó

Részletesebben

ü ő ő ü ő ő ö ö ő ö í ü ő í ö ö í ő ö ő ű ú ő í ü ő ö ő Í ö ö ő ö ö ő ő ö ő í Í í ü ö ő í ü ü ú ü ö ö ő ü ő ö ő í ü ő í ö ö ő ő ő í í ő í ő ő Á Ó Í í í ő ű ú ő í í ő ő Í ő í ő í í Í í ő í ő í ő ő íí ő

Részletesebben

1 2 3 4 5 A B 6 7 8 9 [Nm] 370 350 330 310 290 270 250 [kw] [PS] 110 150 100 136 90 122 80 109 70 95 230 210 60 82 190 170 150 50 40 68 54 130 110 90 140 PS 100 PS 125 PS 30 20 41 27 70 1000 1500 2000

Részletesebben

1 2 3 4 5 7 9 A B 10 11 12 13 14 15 16 17 18 19 [Nm] 370 350 330 310 290 270 250 230 210 190 170 150 130 110 90 140 PS 100 PS 125 PS 70 1000 1500 2000 2500 3000 3500 4000 RPM [kw] [PS] 110 150 100 136

Részletesebben

1 2 3 4 5 6 7 A B 8 9 10 11 [Nm] 370 [kw] [PS] 110 150 350 330 310 100 136 90 122 290 270 80 109 250 70 95 230 210 60 82 190 50 68 170 150 40 54 130 110 90 140 PS 125 PS 100 PS 30 20 41 27 70 1000 1500

Részletesebben

2 3 4 5 6 7 8 9 A B A B 11 12 13 [Nm] 370 350 330 310 290 270 250 230 210 190 [kw] [PS] 110 150 100 136 90 122 80 109 70 95 60 82 50 68 170 150 40 54 130 110 90 140 PS 85 PS 110 PS 70 1000 1500 2000 2500

Részletesebben

Fizikai kémia 2. Előzmények. A Lewis-féle kötéselmélet A VB- és az MO-elmélet, a H 2+ molekulaion

Fizikai kémia 2. Előzmények. A Lewis-féle kötéselmélet A VB- és az MO-elmélet, a H 2+ molekulaion 06.07.5. Fizikai kémia. 4. A VB- és az -elmélet, a H + molekulaion Dr. Berkesi ttó ZTE Fizikai Kémiai és Anyagtudományi Tanszéke 05 Előzmények Az atomok szerkezetének kvantummehanikai leírása 90-30-as

Részletesebben

2010. augusztus szeptember 3. Tihany

2010. augusztus szeptember 3. Tihany Neutrínó oszcilláció és kvantummechanikai tárgyalása Atomfizikai Tanszék Eötvös Egyetem, Budapest 2010. augusztus 30. - szeptember 3. Tihany M.B. BSc dolgozata alapján Tartalom aaa Neutrínó eltünési mérések

Részletesebben

Az egydimenziós harmonikus oszcillátor

Az egydimenziós harmonikus oszcillátor Az egydimenziós harmonikus oszcillátor tárgyalása az általános formalizmus keretében November 7, 006 Példaképpen itt megmutatjuk, hogyan lehet a kvantumos egydimenziós harmonikus oszcillátort tárgyalni

Részletesebben

1 2 3 4 5 6 7 112 8 9 10 11 12 13 [Nm] 400 375 350 325 300 275 250 225 200 175 150 125 114 kw 92 kw 74 kw [155 PS] [125 PS] [100 PS] kw [PS] 140 [190] 130 [176] 120 [163] 110 [149] 100 [136] 90 [122] 80

Részletesebben

MODELLEK ÉS ALGORITMUSOK ELŐADÁS

MODELLEK ÉS ALGORITMUSOK ELŐADÁS MODELLEK ÉS ALGORITMUSOK ELŐADÁS Szerkesztette: Balogh Tamás 214. december 7. Ha hibát találsz, kérlek jelezd a info@baloghtamas.hu e-mail címen! Ez a Mű a Creative Commons Nevezd meg! - Ne add el! - Így

Részletesebben

P vízhullámok) interferenciáját. A két hullám hullámfüggvénye:

P vízhullámok) interferenciáját. A két hullám hullámfüggvénye: Hullámok találkozása, interferencia Ha a tér egy pontjában két hullám van jelen, akkor hatásuk ott valamilyen módon összegződik. A hullámok összeadódását interferenciának nevezzük. Mi az interferencia

Részletesebben

Fehérzajhoz a konstans érték kell - megoldás a digitális szűrő Összegezési súlyok sin x/x szerint (ez akár analóg is lehet!!!)

Fehérzajhoz a konstans érték kell - megoldás a digitális szűrő Összegezési súlyok sin x/x szerint (ez akár analóg is lehet!!!) DSP processzorok: 1 2 3 HP zajgenerátor: 4 Shift regiszter + XOR kapu: 2 n állapot Autókorrelációs függvény: l. pénzdobálás: (sin x/x) 2 burkoló! Fehérzajhoz a konstans érték kell - megoldás a digitális

Részletesebben

Gyorsítók. Veszprémi Viktor ATOMKI, Debrecen. Supported by NKTH and OTKA (H07-C 74281) 2009. augusztus 17 Hungarian Teacher Program, CERN 1

Gyorsítók. Veszprémi Viktor ATOMKI, Debrecen. Supported by NKTH and OTKA (H07-C 74281) 2009. augusztus 17 Hungarian Teacher Program, CERN 1 Gyorsítók Veszprémi Viktor ATOMKI, Debrecen Supported by NKTH and OTKA (H07-C 74281) 2009. augusztus 17 Hungarian Teacher Program, CERN 1 Az anyag felépítése Részecskefizika kvark, lepton Erős, gyenge,

Részletesebben

Atommodellek de Broglie hullámhossz Davisson-Germer-kísérlet

Atommodellek de Broglie hullámhossz Davisson-Germer-kísérlet Atommodellek de Broglie hullámhossz Davisson-Germer-kísérlet Utolsó módosítás: 2016. május 4. 1 Előzmények Az atomok színképe (1) A fehér fény komponensekre bontható: http://en.wikipedia.org/wiki/spectrum

Részletesebben

Folyadékszcintillációs spektroszkópia jegyz könyv

Folyadékszcintillációs spektroszkópia jegyz könyv Folyadékszcintillációs spektroszkópia jegyz könyv Zsigmond Anna Julia Fizika MSc I. Mérés vezet je: Horváth Ákos Mérés dátuma: 2010. október 21. Leadás dátuma: 2010. november 8. 1 1. Bevezetés A mérés

Részletesebben

Koordinátarendszerek

Koordinátarendszerek Koordinátarendszerek KO 1 Koordinátarendszerek Ponthalmazok előállításai Koordinátarendszerek KO Két gyakran alkalmazott síkbeli koordinátarendszer Derékszögű (Descartes féle) koordinátarendszer Síkbeli

Részletesebben

Á Ő ö Ö ő ú ő ö ő ú ö ő ö Á Ö ö Í ö ő ő ü ü ű ő Í ő ü ö ö ő ö ö ő Í ü ű Í Í Á Í Á Áú ú Í Ü ö ö É ú ü ö ú ö ü Í ő Á ő ü ő Á ú Ö Í Á Í ú Á ű Á ú ú Á ű ő ö ö ö ü ő Á Á Á Á Ő Á Á Ő É Á Á ö Í ő ü ü ü ö Á Í

Részletesebben

DR. KOVÁCS ERNŐ ELEKTRONIKA II. (DISZKRÉT FÉLVEZETŐK, ERŐSÍTŐK) ELŐADÁS JEGYZET

DR. KOVÁCS ERNŐ ELEKTRONIKA II. (DISZKRÉT FÉLVEZETŐK, ERŐSÍTŐK) ELŐADÁS JEGYZET MISKOLCI EGYETEM VILLAMOSMÉRNÖKI INTÉZET ELEKTROTECHNIKAI- ELEKTRONIKAI TANSZÉK DR. KOVÁCS ERNŐ ELEKTRONIKA II. (DISZKRÉT FÉLVEZETŐK, ERŐSÍTŐK) ELŐADÁS JEGYZET 2003. 2.0. Diszkrét félvezetők és alkalmazásaik

Részletesebben

CHT& NSZT Hoeffding NET mom. stabilis. 2011. november 9.

CHT& NSZT Hoeffding NET mom. stabilis. 2011. november 9. CHT& NSZT Hoeffding NET mom. stabilis Becslések, határeloszlás tételek Székely Balázs 2011. november 9. CHT& NSZT Hoeffding NET mom. stabilis 1 CHT és NSZT 2 Hoeffding-egyenlőtlenség Alkalmazása: Beengedés

Részletesebben

Shift regiszter + XOR kapu: 2 n állapot

Shift regiszter + XOR kapu: 2 n állapot DSP processzorok: 1 2 HP zajgenerátor: 3 Shift regiszter + XOR kapu: 2 n állapot Autókorrelációs függvény: l. pénzdobálás: (sin x/x) 2 burkoló! 4 Fehérzajhoz a konstans érték kell - megoldás a digitális

Részletesebben

A lézer alapjairól (az iskolában)

A lézer alapjairól (az iskolában) A lézer alapjairól (az iskolában) Dr. Sükösd Csaba c. egyetemi tanár Budapesti Műszaki és Gazdaságtudományi Egyetem Tartalom Elektromágneses hullám (fény) kibocsátása Hogyan bocsát ki fényt egy atom? o

Részletesebben

A Schrödinger-egyenlet és egyszerű alkalmazásai

A Schrödinger-egyenlet és egyszerű alkalmazásai Jelen dokumentumra a Creative Commons Nevezd meg! Ne add el! Ne változtasd meg! 3. licenc feltételei érvényesek: a művet a felhasználó másolhatja, többszörözheti, továbbadhatja, amennyiben feltünteti a

Részletesebben

Pelletek térfogatának meghatározása Bayes-i analízissel

Pelletek térfogatának meghatározása Bayes-i analízissel Pelletek térfogatának meghatározása Bayes-i analízissel Szepesi Tamás KFKI-RMKI, Budapest, Hungary P. Cierpka, Kálvin S., Kocsis G., P.T. Lang, C. Wittmann 2007. február 27. Tartalom 1. Motiváció ELM-keltés

Részletesebben

KVANTUMMECHANIKA. a11.b-nek

KVANTUMMECHANIKA. a11.b-nek KVANTUMMECHANIKA a11.b-nek HŐMÉRSÉKLETI SUGÁRZÁS 1 Hősugárzás: elektromágneses hullám A sugárzás által szállított energia: intenzitás I, T és λkapcsolata? Példa: Nap (6000 K): sárga (látható) Föld (300

Részletesebben

Elektrotechnika- Villamosságtan

Elektrotechnika- Villamosságtan Elektrotechnika- Villamosságtan Általános áramú hálózatok 1 Magyar Attila Tömördi Katalin Alaptörvények-áttekintés Alaptörvények Áram, feszültség, teljesítmény, potenciál Források Ellenállás Kondenzátor

Részletesebben

Hullámtan és optika. Rezgések és hullámok; hangtan Rezgéstan Hullámtan Optika Geometriai optika Hullámoptika

Hullámtan és optika. Rezgések és hullámok; hangtan Rezgéstan Hullámtan Optika Geometriai optika Hullámoptika Rezgések és hullámok; hngtn Rezgéstn Hullámtn Optik Geometrii optik Hullámoptik Hullámtn és optik Ajánlott irodlom Budó Á.: Kísérleti fizik I, III. (Tnkönyvkidó, 99) Demény-Erostyák-Szbó-Trócsányi: Fizik

Részletesebben

Feladatok a Gazdasági matematika II. tárgy gyakorlataihoz

Feladatok a Gazdasági matematika II. tárgy gyakorlataihoz Debreceni Egyetem Közgazdaságtudományi Kar Feladatok a Gazdasági matematika II tárgy gyakorlataihoz a megoldásra ajánlott feladatokat jelöli e feladatokat a félév végére megoldottnak tekintjük a nehezebb

Részletesebben

Kvantummechanika feladatgyűjtemény

Kvantummechanika feladatgyűjtemény Kvantummechanika feladatgyűjtemény Szunyogh László, Udvardi László, Ujfalusi László, Varga Imre 4. február 3. Előszó A fizikus alapképzésben központi jelentőségű a Kvantummechanika tárgy oktatása, hiszen

Részletesebben

Alkalmazás a makrókanónikus sokaságra: A fotongáz

Alkalmazás a makrókanónikus sokaságra: A fotongáz Alkalmazás a makrókanónikus sokaságra: A fotongáz A fotonok az elektromágneses sugárzás hordozó részecskéi. Spinkvantumszámuk S=, tehát kvantumstatisztikai szempontból bozonok. Fotonoknak habár a spinkvantumszámuk,

Részletesebben

a Bohr-féle atommodell (1913) Niels Hendrik David Bohr ( )

a Bohr-féle atommodell (1913) Niels Hendrik David Bohr ( ) a Bohr-féle atommodell (1913) Niels Hendrik David Bohr (1885-1962) atomok gerjesztése és ionizációja elektronnal való bombázással (1913-1914) James Franck (1882-1964) Gustav Ludwig Hertz (1887-1975) Nobel-díj

Részletesebben

Elektromos vezetési tulajdonságok

Elektromos vezetési tulajdonságok Elektromos vezetési tulajdonságok Vezetési jelenségek (transzportfolyamatok) fenomenologikus leírása Termodinamikai hajtóerő: kémiai potenciál különbség: Egyensúlyban lévő rendszer esetén: = U TS δ = δx

Részletesebben

DINAMIKAI VIZSGÁLAT ÁLLAPOTTÉRBEN. 2003.11.06. Dr. Aradi Petra, Dr. Niedermayer Péter: Rendszertechnika segédlet 1

DINAMIKAI VIZSGÁLAT ÁLLAPOTTÉRBEN. 2003.11.06. Dr. Aradi Petra, Dr. Niedermayer Péter: Rendszertechnika segédlet 1 DINAMIKAI VIZSGÁLAT ÁLLAPOTTÉRBEN 2003..06. Dr. Aradi Petra, Dr. Niedermayer Péter: Rendszertechnika segédlet Egy bemenetű, egy kimenetű rendszer u(t) diff. egyenlet v(t) zárt alakban n-edrendű diff. egyenlet

Részletesebben

Rezgőmozgás. A mechanikai rezgések vizsgálata, jellemzői és dinamikai feltétele

Rezgőmozgás. A mechanikai rezgések vizsgálata, jellemzői és dinamikai feltétele Rezgőmozgás A mechanikai rezgések vizsgálata, jellemzői és dinamikai feltétele A rezgés fogalma Minden olyan változás, amely az időben valamilyen ismétlődést mutat rezgésnek nevezünk. A rezgések fajtái:

Részletesebben

Bordács Sándor doktorjelölt. anyagtudományban. nyban. Dr. Kézsmárki István Prof. Yohinori Tokura Prof. Ryo Shimano

Bordács Sándor doktorjelölt. anyagtudományban. nyban. Dr. Kézsmárki István Prof. Yohinori Tokura Prof. Ryo Shimano Bordács Sándor doktorjelölt Túl l a távoli t infrán: THz spektroszkópia pia az anyagtudományban nyban Dr. Kézsmárki István Prof. Yohinori Tokura Prof. Ryo Shimano Terahertz sugárz rzás THz tartomány: frekvencia:

Részletesebben

Digitális képek szegmentálása. 5. Textúra. Kató Zoltán.

Digitális képek szegmentálása. 5. Textúra. Kató Zoltán. Digitális képek szegmentálása 5. Textúra Kató Zoltán http://www.cab.u-szeged.hu/~kato/segmentation/ Textúra fogalma Sklansky: Egy képen egy területnek állandó textúrája van ha a lokális statisztikák vagy

Részletesebben

Szilárdtestek el e ek e tr t o r n o s n zer e k r ez e et e e t

Szilárdtestek el e ek e tr t o r n o s n zer e k r ez e et e e t Szilárdtestek elektronszerkezete Kvantummechanikai leírás Ismétlés: Schrödinger egyenlet, hullámfüggvény, hidrogén-atom, spin, Pauli-elv, periódusos rendszer 2 Szilárdtestek egyelektron-modellje a magok

Részletesebben

Tartalom. Typotex Kiadó

Tartalom. Typotex Kiadó Tartalom Előszó 13 1. A kvantumelmélet kezdetei 15 1.1. A Planck-féle sugárzási törvény és a szigetelő kristályok hőkapacitása 15 1.2. A fényelektromos jelenség: Lénárd és Einstein 19 1.3. Az atomos gázok

Részletesebben

Matematika (mesterképzés)

Matematika (mesterképzés) Matematika (mesterképzés) Környezet- és Településmérnököknek Debreceni Egyetem Műszaki Kar, Műszaki Alaptárgyi Tanszék Vinczéné Varga A. Környezet- és Településmérnököknek 2016/2017/I 1 / 29 Lineáris tér,

Részletesebben

Kutatóegyetemi Kiválósági Központ 1. Szuperlézer alprogram: lézerek fejlesztése, alkalmazásai felkészülés az ELI-re Dr. Varjú Katalin egyetemi docens

Kutatóegyetemi Kiválósági Központ 1. Szuperlézer alprogram: lézerek fejlesztése, alkalmazásai felkészülés az ELI-re Dr. Varjú Katalin egyetemi docens Kutatóegyetemi 1. Szuperlézer alprogram: lézerek fejlesztése, alkalmazásai felkészülés az ELI-re Dr. Varjú Katalin egyetemi docens Lézer = speciális fény koherens (fázisban) kicsi a divergenciája (irányított)

Részletesebben

Az elektron hullámtermészete. Készítette Kiss László

Az elektron hullámtermészete. Készítette Kiss László Az elektron hullámtermészete Készítette Kiss László Az elektron részecske jellemzői Az elektront Joseph John Thomson fedezte fel 1897-ben. 1906-ban Nobel díj! Az elektronoknak, az elektromos és mágneses

Részletesebben

Méréstechnika. Rezgésmérés. Készítette: Ángyán Béla. Iszak Gábor. Seidl Áron. Veszprém. [Ide írhatja a szöveget] oldal 1

Méréstechnika. Rezgésmérés. Készítette: Ángyán Béla. Iszak Gábor. Seidl Áron. Veszprém. [Ide írhatja a szöveget] oldal 1 Méréstechnika Rezgésmérés Készítette: Ángyán Béla Iszak Gábor Seidl Áron Veszprém 2014 [Ide írhatja a szöveget] oldal 1 A rezgésekkel kapcsolatos alapfogalmak A rezgés a Magyar Értelmező Szótár megfogalmazása

Részletesebben

Kör alakú szupravezető grafén rendszer kvantumos és szemiklasszikus vizsgálata

Kör alakú szupravezető grafén rendszer kvantumos és szemiklasszikus vizsgálata Kör alakú szupravezető grafén rendszer kvantumos és szemiklasszikus vizsgálata Hagymási Imre IV. éves fizikus Témavezető: Cserti József Eötvös Loránd Tudományegyetem Természettudományi Kar Komplex Rendszerek

Részletesebben

2 51 3 4 5 6 7 8 9 10 11 12 13 14 15 [Nm] 350 330 310 290 270 250 230 210 190 170 150 130 110 90 70 130 PS 110 PS 85 PS [kw] [PS] 100 136 90 122 80 109 70 95 60 82 50 68 40 54 30 41 20 27 10 14 [Nm] 400

Részletesebben

Az összefonódás elemi tárgyalása Benedict Mihály

Az összefonódás elemi tárgyalása Benedict Mihály Az összefonódás elemi tárgyalása Benedict Mihály Elméleti Fizikai Iskola Tihany 2010, augusztus 31 Kétrészű rendszerek, tiszta állapotok, Schmidt fölbontás és az összefonódási mértékek Példák a kvantumoptikából

Részletesebben

Legyen a rések távolsága d, az üveglemez vastagsága w! Az üveglemez behelyezése

Legyen a rések távolsága d, az üveglemez vastagsága w! Az üveglemez behelyezése 6. Gyakorlat 38B-1 Kettős rést 600 nm hullámhosszúságú fénnyel világitunk meg és ezzel egy ernyőn interferenciát hozunk létre. Ezután igen vékony flintüvegből (n = 1,65) készült lemezt helyezünk csak az

Részletesebben

Bevezetés a modern fizika fejezeteibe. 4. (a) Kvantummechanika. Utolsó módosítás: november 15. Dr. Márkus Ferenc BME Fizika Tanszék

Bevezetés a modern fizika fejezeteibe. 4. (a) Kvantummechanika. Utolsó módosítás: november 15. Dr. Márkus Ferenc BME Fizika Tanszék Bevezetés a modern fizika fejezeteibe 4. (a) Kvantummechanika Utolsó módosítás: 2015. november 15. 1 Előzmények Az atomok színképe (1) A fehér fény komponensekre bontható: http://en.wikipedia.org/wiki/spectrum

Részletesebben

Monte Carlo módszerek a statisztikus fizikában. Az Ising modell. 8. előadás

Monte Carlo módszerek a statisztikus fizikában. Az Ising modell. 8. előadás Monte Carlo módszerek a statisztikus fizikában. Az Ising modell. 8. előadás Démon algoritmus az ideális gázra időátlag fizikai mennyiségek átlagértéke sokaságátlag E, V, N pl. molekuláris dinamika Monte

Részletesebben

Mechanikai rezgések Ismétlő kérdések és feladatok Kérdések

Mechanikai rezgések Ismétlő kérdések és feladatok Kérdések Mechanikai rezgések Ismétlő kérdések és feladatok Kérdések 1. Melyek a rezgőmozgást jellemző fizikai mennyiségek?. Egy rezgés során mely helyzetekben maximális a sebesség, és mikor a gyorsulás? 3. Milyen

Részletesebben

Felügyelt önálló tanulás - Analízis III.

Felügyelt önálló tanulás - Analízis III. Felügyelt önálló tanulás - Analízis III Kormos Máté Differenciálható sokaságok Sokaságok Röviden, sokaságoknak nevezzük azokat az objektumokat, amelyek egy n dimenziós térben lokálisan k dimenziósak Definíció:

Részletesebben

Azonos és egymással nem kölcsönható részecskékből álló kvantumos rendszer makrókanónikus sokaságban.

Azonos és egymással nem kölcsönható részecskékből álló kvantumos rendszer makrókanónikus sokaságban. Kvantum statisztika A kvantummechanika előadások során már megtanultuk, hogy az anyagot felépítő részecskék nemklasszikus, hullámtulajdonságokkal is rendelkeznek aminek következtében viselkedésük sok szempontból

Részletesebben

A TANTÁRGY ADATLAPJA

A TANTÁRGY ADATLAPJA A TANTÁRGY ADATLAPJA 1. A képzési program adatai 1.1 Felsőoktatási intézmény BABEŞ-BOLYAI TUDOMÁNYEGYETEM 1.2 Kar FIZIKA 1.3 Intézet A MAGYAR TAGOZAT FIZIKA INTÉZETE 1.4 Szakterület FIZIKA / ALKALMAZOTT

Részletesebben

Rezgés, Hullámok. Rezgés, oszcilláció. Harmonikus rezgő mozgás jellemzői

Rezgés, Hullámok. Rezgés, oszcilláció. Harmonikus rezgő mozgás jellemzői Rezgés, oszcilláció Rezgés, Hullámok Fogorvos képzés 2016/17 Szatmári Dávid (david.szatmari@aok.pte.hu) 2016.09.26. Bármilyen azonos időközönként ismétlődő mozgást, periodikus mozgásnak nevezünk. A rezgési

Részletesebben

A kísérlet, mérés megnevezése célkitűzései: Váltakozó áramú körök vizsgálata, induktív ellenállás mérése, induktivitás értelmezése.

A kísérlet, mérés megnevezése célkitűzései: Váltakozó áramú körök vizsgálata, induktív ellenállás mérése, induktivitás értelmezése. A kísérlet, mérés megnevezése célkitűzései: Váltakozó áramú körök vizsgálata, induktív ellenállás mérése, induktivitás értelmezése. Eszközszükséglet: tanulói tápegység funkcionál generátor tekercsek digitális

Részletesebben

Zitterbewegung. általános elmélete. Grafén Téli Iskola 2011. 02. 04. Dávid Gyula ELTE TTK Atomfizikai Tanszék

Zitterbewegung. általános elmélete. Grafén Téli Iskola 2011. 02. 04. Dávid Gyula ELTE TTK Atomfizikai Tanszék A Zitterbewegung általános elmélete Grafén Téli Iskola 2011. 02. 04. Dávid Gyula ELTE TTK Atomfizikai Tanszék 1. Mi a Zitterbewegung? A Zitterbewegung általános elmélete 2. Kvantumdinamika Heisenberg-képben

Részletesebben

A Compton-effektus vizsgálata

A Compton-effektus vizsgálata A Compton-effektus vizsgálata Csanád Máté 2017. március 30. 1. A Thomson-szórás Az elektromágneses sugárzás atomokra gyakorolt hatása a XX. század elején intenzíven kutatott terület volt, elég csak az

Részletesebben

A hullámok terjedése során a közegrészecskék egyensúlyi helyzetük körül rezegnek, azaz átlagos elmozdulásuk zérus.

A hullámok terjedése során a közegrészecskék egyensúlyi helyzetük körül rezegnek, azaz átlagos elmozdulásuk zérus. HULLÁMOK MECHANIKAI HULLÁMOK Mechanikai hullám: ha egy rugalmas közeg egyensúlyi állapotát megbolygatva az előidézett zavar tovaterjed a közegben. A zavart a hullámforrás váltja ki. A hullámok terjedése

Részletesebben

Fermi Dirac statisztika elemei

Fermi Dirac statisztika elemei Fermi Dirac statisztika elemei A Fermi Dirac statisztika alapjai Nagy részecskeszámú rendszerek fizikai jellemzéséhez statisztikai leírást kell alkalmazni. (Pl. gázokra érvényes klasszikus statisztika

Részletesebben

Számítógépvezérelt irányítás és szabályozás elmélete (Bevezetés a rendszer- és irányításelméletbe, Computer Controlled Systems) 7.

Számítógépvezérelt irányítás és szabályozás elmélete (Bevezetés a rendszer- és irányításelméletbe, Computer Controlled Systems) 7. Számítógépvezérelt irányítás és szabályozás elmélete (Bevezetés a rendszer- és irányításelméletbe, Computer Controlled Systems) 7. előadás Szederkényi Gábor Pázmány Péter Katolikus Egyetem Információs

Részletesebben

Sztochasztikus folyamatok alapfogalmak

Sztochasztikus folyamatok alapfogalmak Matematikai Modellalkotás Szeminárium 2012. szeptember 4. 1 Folytonos idejű Markov láncok 2 3 4 1 Folytonos idejű Markov láncok 2 3 4 Folytonos idejű Markov láncok I Adott egy G = (V, E) gráf Folytonos

Részletesebben

Elektron-gyorsítás Alfvén-hullám impluzusok által aktív galaxismagokban

Elektron-gyorsítás Alfvén-hullám impluzusok által aktív galaxismagokban Elektron-gyorsítás Alfvén-hullám impluzusok által aktív galaxismagokban Előadó: Kun Emma, PhD hallgató, SZTE Témavezető: Gergely Árpád László, SZTE Munkatársak: Horváth Zsolt, SZTE Keresztes Zoltán, SZTE

Részletesebben

Lássuk be, hogy nem lehet a három pontot úgy elhelyezni, hogy egy inerciarendszerben

Lássuk be, hogy nem lehet a három pontot úgy elhelyezni, hogy egy inerciarendszerben Feladat: A háromtest probléma speciális megoldásai Arra vagyunk kiváncsiak, hogy a bolygó mozgásnak milyen egyszerű egyensúlyi megoldásai vannak három bolygó esetén. Az így felmerülő három-test probléma

Részletesebben

1. Komplex függvények dierenciálhatósága, Cauchy-Riemann egyenletek. Hatványsorok, elemi függvények

1. Komplex függvények dierenciálhatósága, Cauchy-Riemann egyenletek. Hatványsorok, elemi függvények 1. Komplex függvények dierenciálhatósága, Cauchy-Riemann egyenletek. Hatványsorok, elemi függvények 1.1. Dierenciálhatóság 1.1. deníció. Legyen a z 0 pont az f(z) függvény értelmezési tartományának torlódási

Részletesebben

Fizika II. segédlet táv és levelező

Fizika II. segédlet táv és levelező Fizika II. segédlet táv és levelező Horváth Árpád 2012. június 9. A 284/6. alakú feladatsorszámok a Lökös Mayer Sebestyén Tóthné féle Kandós Fizika példatárra, a 38C-28 típusúak a Hudson Nelson: Útban

Részletesebben

Számítógépvezérelt irányítás és szabályozás elmélete (Bevezetés a rendszer- és irányításelméletbe, Computer Controlled Systems) 9. el?

Számítógépvezérelt irányítás és szabályozás elmélete (Bevezetés a rendszer- és irányításelméletbe, Computer Controlled Systems) 9. el? Számítógépvezérelt irányítás és szabályozás elmélete (Bevezetés a rendszer- és irányításelméletbe, Computer Controlled Systems) 9. el?adás Szederkényi Gábor Pázmány Péter Katolikus Egyetem Információs

Részletesebben

A MOLEKULADINAMIKAI MÓDSZEREK SZISZTEMATIKUS TÁRGYALÁSA: KLASSZIKUS DINAMIKA A POSTERIORI KORREKCIÓJA

A MOLEKULADINAMIKAI MÓDSZEREK SZISZTEMATIKUS TÁRGYALÁSA: KLASSZIKUS DINAMIKA A POSTERIORI KORREKCIÓJA A MOLEKULADINAMIKAI MÓDSZEREK SZISZTEMATIKUS TÁRGYALÁSA: KLASSZIKUS DINAMIKA A POSTERIORI KORREKCIÓJA KLASSZIKUS DINAMIKA Klasszkus magok mozognak egy elre elkészített potencálfelületen. Potencálfelület

Részletesebben

Hangterjedés akadályozott terekben

Hangterjedés akadályozott terekben Hangterjedés akadályozott terekben Hangelnyelés, hanggátlás: hangszigetelés Augusztinovicz Fülöp segédlet, 2014. Szakirodalom P. Nagy József: A hangszigetelés elmélete és gyakorlata Akadémiai Kiadó, Budapest,

Részletesebben

Kémiai alapismeretek 2. hét

Kémiai alapismeretek 2. hét Kémiai alapismeretek 2. hét Horváth Attila Pécsi Tudományegyetem, Természettudományi Kar, Kémia Intézet, Szervetlen Kémiai Tanszék 2014. szeptember 9.-12. 1/13 2014/2015 I. félév, Horváth Attila c Hullámtermészet:

Részletesebben