Kvantummechanikai alapok I.

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Kvantummechanikai alapok I."

Átírás

1 Kvantummechanikai alapok I. Dr. Berta Miklós szeptember / 41

2 Állapotfüggvény. Dinamikai egyenlet. Ψ(r, t) 2 / 41

3 Állapotfüggvény. Dinamikai egyenlet. Ψ(r, t) Ψ(r, t)-csak a hely és idõ komplex függvénye 3 / 41

4 Állapotfüggvény. Dinamikai egyenlet. Ψ(r, t) Ψ(r, t)-csak a hely és idõ komplex függvénye Ψ 2 dv annak a valószínûsége, hogy a vizsgált objektum a t idõpillanatban az r helyvektorral jellemzett dv térfogatban található. 4 / 41

5 Állapotfüggvény. Dinamikai egyenlet. Ψ(r, t) Ψ(r, t)-csak a hely és idõ komplex függvénye Ψ 2 dv annak a valószínûsége, hogy a vizsgált objektum a t idõpillanatban az r helyvektorral jellemzett dv térfogatban található. Az állapotfüggvény idõbeli fejlõdését a Schrödinger-egyenlet írja le. Ψ(r, t) ĤΨ(r, t) = i t Ĥ - a rendszer Hamiltonoperátora i = 1 - az imaginárius egység = h 2π - a módosított Planckállandó (h = 6, Js) 5 / 41

6 Állapotfüggvény. Dinamikai egyenlet. Ψ(r, t) Ψ(r, t)-csak a hely és idõ komplex függvénye Ψ 2 dv annak a valószínûsége, hogy a vizsgált objektum a t idõpillanatban az r helyvektorral jellemzett dv térfogatban található. Az állapotfüggvény idõbeli fejlõdését a Schrödinger-egyenlet írja le. Ψ(r, t) ĤΨ(r, t) = i t Ĥ - a rendszer Hamiltonoperátora i = 1 - az imaginárius egység = h 2π - a módosított Planckállandó (h = 6, Js) Az állapotfüggvény normálási feltétele: Ψ(r, t) 2 dv = 1 (V ) 6 / 41

7 Állapotfüggvény. Dinamikai egyenlet. Ψ(r, t) Ψ(r, t)-csak a hely és idõ komplex függvénye Ψ 2 dv annak a valószínûsége, hogy a vizsgált objektum a t idõpillanatban az r helyvektorral jellemzett dv térfogatban található. Az állapotfüggvény idõbeli fejlõdését a Schrödinger-egyenlet írja le. Ψ(r, t) ĤΨ(r, t) = i t Ĥ - a rendszer Hamiltonoperátora i = 1 - az imaginárius egység = h 2π - a módosított Planckállandó (h = 6, Js) Az állapotfüggvény normálási feltétele: Ψ(r, t) 2 dv = 1 (V ) 7 / 41

8 A zikai mennyiségek,mint operátorok A klasszikus zikában minden zikai mennyiség kifejezhetõ a klasszikus állapotot meghatározó két állapothatározóval, amelyek a koordináta és impulzus. 8 / 41

9 A zikai mennyiségek,mint operátorok A klasszikus zikában minden zikai mennyiség kifejezhetõ a klasszikus állapotot meghatározó két állapothatározóval, amelyek a koordináta és impulzus. A kvantumzikában a zikai mennyiségekhez speciális lineáris operátorokat rendelünk! 9 / 41

10 A zikai mennyiségek,mint operátorok A klasszikus zikában minden zikai mennyiség kifejezhetõ a klasszikus állapotot meghatározó két állapothatározóval, amelyek a koordináta és impulzus. A kvantumzikában a zikai mennyiségekhez speciális lineáris operátorokat rendelünk! Az alapvetõ hozzárendelések: p k ˆp k = i x k x k ˆx k = x k. 10 / 41

11 A zikai mennyiségek,mint operátorok A klasszikus zikában minden zikai mennyiség kifejezhetõ a klasszikus állapotot meghatározó két állapothatározóval, amelyek a koordináta és impulzus. A kvantumzikában a zikai mennyiségekhez speciális lineáris operátorokat rendelünk! Az alapvetõ hozzárendelések: p k ˆp k = i x k x k ˆx k = x k. Lássuk, hogyan képezzük egy tömegpont Hamiltonoperátorát! 11 / 41

12 Potenciáltérben mozgó tömegpont Hamiltonoperátora A tömegpont összenergiája, mint az impulzus és koordináta függvénye nem más, mint a Hamiltonfüggvény. 12 / 41

13 Potenciáltérben mozgó tömegpont Hamiltonoperátora A tömegpont összenergiája, mint az impulzus és koordináta függvénye nem más, mint a Hamiltonfüggvény. H(p, r) = p.p 2m + V (r) = 1 2m (p2 x + p 2 y + p 2 z ) + V (x, y, z) 13 / 41

14 Potenciáltérben mozgó tömegpont Hamiltonoperátora A tömegpont összenergiája, mint az impulzus és koordináta függvénye nem más, mint a Hamiltonfüggvény. H(p, r) = p.p 2m + V (r) = 1 2m (p2 x + p 2 y + p 2 z ) + V (x, y, z) Térjünk át a Hamiltonoperátorra: Ĥ = 1 2m (ˆp x ˆp x + ˆp y ˆp y + ˆp z ˆp z ) + V (x, y, z). Ĥ = i 2 2 2m ( 2 x y + 2 ) + V (x, y, z). 2 z 2 Ĥ = 2 + V (x, y, z). 2m 14 / 41

15 Heisenbergféle határozatlansági reláció ˆx(ˆp x Ψ(x)) = x.( i Ψ(x) ) = i x Ψ(x) x x 15 / 41

16 Heisenbergféle határozatlansági reláció ˆx(ˆp x Ψ(x)) = x.( i Ψ(x) ) = i x Ψ(x) x x ˆp x (ˆxΨ(x)) = i x Ψ(x) (x.ψ(x)) = i (Ψ(x) + x ) x 16 / 41

17 Heisenbergféle határozatlansági reláció ˆx(ˆp x Ψ(x)) = x.( i Ψ(x) ) = i x Ψ(x) x x ˆp x (ˆxΨ(x)) = i x Ψ(x) (x.ψ(x)) = i (Ψ(x) + x ) x ˆx(ˆp x Ψ(x)) ˆp x (ˆxΨ(x)) 17 / 41

18 Heisenbergféle határozatlansági reláció ˆx(ˆp x Ψ(x)) = x.( i Ψ(x) ) = i x Ψ(x) x x ˆp x (ˆxΨ(x)) = i x Ψ(x) (x.ψ(x)) = i (Ψ(x) + x ) x ˆx(ˆp x Ψ(x)) ˆp x (ˆxΨ(x)) ˆx ˆp x ˆp x ˆx = [ˆx, ˆp x ] = i W.Heisenberg 18 / 41

19 Heisenbergféle határozatlansági reláció ˆx(ˆp x Ψ(x)) = x.( i Ψ(x) ) = i x Ψ(x) x x ˆp x (ˆxΨ(x)) = i x Ψ(x) (x.ψ(x)) = i (Ψ(x) + x ) x ˆx(ˆp x Ψ(x)) ˆp x (ˆxΨ(x)) ˆx ˆp x ˆp x ˆx = [ˆx, ˆp x ] = i W.Heisenberg [ˆx, ˆpx ] operátorok kommutátora 19 / 41

20 Heisenbergféle határozatlansági reláció ˆx(ˆp x Ψ(x)) = x.( i Ψ(x) ) = i x Ψ(x) x x ˆp x (ˆxΨ(x)) = i x Ψ(x) (x.ψ(x)) = i (Ψ(x) + x ) x ˆx(ˆp x Ψ(x)) ˆp x (ˆxΨ(x)) ˆx ˆp x ˆp x ˆx = [ˆx, ˆp x ] = i W.Heisenberg [ˆx, ˆpx ] operátorok kommutátora Azokat az operátorokat, amelyek kommutátora 0, kompatibilis operátoroknak nevezzük! 20 / 41

21 Stacionér megoldások A potenciáltérben mozgó tömegpont Schrödinger - egyenlete idõfüggetlen potenciál esetében: 2 y, z, t) Ψ(x, y, z, t) + V (x, y, z).ψ(x, y, z, t) = i Ψ(x, 2m t 21 / 41

22 Stacionér megoldások A potenciáltérben mozgó tömegpont Schrödinger - egyenlete idõfüggetlen potenciál esetében: 2 y, z, t) Ψ(x, y, z, t) + V (x, y, z).ψ(x, y, z, t) = i Ψ(x, 2m t Keressük a megoldást e i E t ψ(x, y, z) alakban. Ezt behelyettesítve, majd egyszerûsítve: 2 2m 2m E ( V (x, y, z))e i t ψ(x, y, z) = e i E t Eψ(x, y, z) 2 ψ(x, y, z) = k 2 ψ(x, y, z) k 2 = 2m(E V (x,y,z)) 2 22 / 41

23 Stacionér megoldások A potenciáltérben mozgó tömegpont Schrödinger - egyenlete idõfüggetlen potenciál esetében: 2 y, z, t) Ψ(x, y, z, t) + V (x, y, z).ψ(x, y, z, t) = i Ψ(x, 2m t Keressük a megoldást e i E t ψ(x, y, z) alakban. Ezt behelyettesítve, majd egyszerûsítve: 2 2m 2m E ( V (x, y, z))e i t ψ(x, y, z) = e i E t Eψ(x, y, z) 2 ψ(x, y, z) = k 2 ψ(x, y, z) k 2 = 2m(E V (x,y,z)) 2 23 / 41

24 Dobozba zárt elektron Elektron egy dimenzióban, ha mozgását egy a hosszúságú szakaszra korlátozzuk. 24 / 41

25 Dobozba zárt elektron Elektron egy dimenzióban, ha mozgását egy a hosszúságú szakaszra korlátozzuk. Az elektron idõben állandósult állapotát leíró állapotfüggvény tértõl függõ ψ(x) része eleget kell tegyen az állóhullám-egyenletnek. 25 / 41

26 Dobozba zárt elektron Elektron egy dimenzióban, ha mozgását egy a hosszúságú szakaszra korlátozzuk. Az elektron idõben állandósult állapotát leíró állapotfüggvény tértõl függõ ψ(x) része eleget kell tegyen az állóhullám-egyenletnek. d 2 ψ(x) dx 2 = k 2 ψ(x) 26 / 41

27 Dobozba zárt elektron Elektron egy dimenzióban, ha mozgását egy a hosszúságú szakaszra korlátozzuk. Az elektron idõben állandósult állapotát leíró állapotfüggvény tértõl függõ ψ(x) része eleget kell tegyen az állóhullám-egyenletnek. d 2 ψ(x) dx 2 = k 2 ψ(x) A megoldás a dobozon kívül azonosan nulla kell legyen, hiszen végtelen nagy taszító potenciált tettünk fel a doboz falainál az elektron nem hagyhatja el a dobozt! 27 / 41

28 Dobozba zárt elektron Elektron egy dimenzióban, ha mozgását egy a hosszúságú szakaszra korlátozzuk. Az elektron idõben állandósult állapotát leíró állapotfüggvény tértõl függõ ψ(x) része eleget kell tegyen az állóhullám-egyenletnek. d 2 ψ(x) dx 2 = k 2 ψ(x) A megoldás a dobozon kívül azonosan nulla kell legyen, hiszen végtelen nagy taszító potenciált tettünk fel a doboz falainál az elektron nem hagyhatja el a dobozt! A dobozon belül az elektron viszont szabadon mozoghat, azaz itt V (x, y, z) = / 41

29 Dobozba zárt elektron Elektron egy dimenzióban, ha mozgását egy a hosszúságú szakaszra korlátozzuk. Az elektron idõben állandósult állapotát leíró állapotfüggvény tértõl függõ ψ(x) része eleget kell tegyen az állóhullám-egyenletnek. d 2 ψ(x) dx 2 = k 2 ψ(x) A megoldás a dobozon kívül azonosan nulla kell legyen, hiszen végtelen nagy taszító potenciált tettünk fel a doboz falainál az elektron nem hagyhatja el a dobozt! A dobozon belül az elektron viszont szabadon mozoghat, azaz itt V (x, y, z) = / 41

30 Az egyenletet két peremfeltétel mellett kell megoldani, amelyek a ψ(0) = 0 és ψ(a) = / 41

31 Az egyenletet két peremfeltétel mellett kell megoldani, amelyek a ψ(0) = 0 és ψ(a) = 0. Az egyenlet megegyezik a harmonikus rezgéseket meghatározó egyenlettel, csak benne az idõváltozó helyett helyváltozó szerepel. Megoldása harmonikus függvény. 31 / 41

32 Az egyenletet két peremfeltétel mellett kell megoldani, amelyek a ψ(0) = 0 és ψ(a) = 0. Az egyenlet megegyezik a harmonikus rezgéseket meghatározó egyenlettel, csak benne az idõváltozó helyett helyváltozó szerepel. Megoldása harmonikus függvény. ψ(x) = A sin (kx + φ) 32 / 41

33 Az egyenletet két peremfeltétel mellett kell megoldani, amelyek a ψ(0) = 0 és ψ(a) = 0. Az egyenlet megegyezik a harmonikus rezgéseket meghatározó egyenlettel, csak benne az idõváltozó helyett helyváltozó szerepel. Megoldása harmonikus függvény. ψ(x) = A sin (kx + φ) Figyelembe véve a peremfeltételeket: φ = 0 és k = nπ a, ahol n = 1, 2, 3, / 41

34 Az egyenletet két peremfeltétel mellett kell megoldani, amelyek a ψ(0) = 0 és ψ(a) = 0. Az egyenlet megegyezik a harmonikus rezgéseket meghatározó egyenlettel, csak benne az idõváltozó helyett helyváltozó szerepel. Megoldása harmonikus függvény. ψ(x) = A sin (kx + φ) Figyelembe véve a peremfeltételeket: φ = 0 és k = nπ a, ahol n = 1, 2, 3,... Mivel: k 2 = 2mE = n2 π 2 2 a, 2 34 / 41

35 Az egyenletet két peremfeltétel mellett kell megoldani, amelyek a ψ(0) = 0 és ψ(a) = 0. Az egyenlet megegyezik a harmonikus rezgéseket meghatározó egyenlettel, csak benne az idõváltozó helyett helyváltozó szerepel. Megoldása harmonikus függvény. ψ(x) = A sin (kx + φ) Figyelembe véve a peremfeltételeket: φ = 0 és k = nπ a, ahol n = 1, 2, 3,... Mivel: k 2 = 2mE = n2 π 2 2 a, 2 Így: E n = 2 π 2 2ma 2 n2 35 / 41

36 Mivel: a 0 ψ(x) 2 dx = / 41

37 Mivel: Ennek alapján A = 2 a. a 0 ψ(x) 2 dx = / 41

38 Mivel: Ennek alapján A = 2 a. a 0 ψ(x) 2 dx = 1. ψ(x) = 2 a sin nπ a x 38 / 41

39 Mivel: Ennek alapján A = 2 a. a 0 ψ(x) 2 dx = 1. ψ(x) = 2 a sin nπ a x Általánosan igaz, ha egy mikroobjektum mozgását térben korlátozzuk, akkor energiája csak diszkrét energiaértékeket vehet fel. Vegyük észre, hogy a rendszer legkisebb energiája nem nulla, hanem valamilyen pozitív érték. Zérusponti energia. 39 / 41

40 40 / 41

41 Köszönöm a gyelmet! 41 / 41

Kvantummechanika gyakorlat Beadandó feladatsor Határid : 4. heti gyakorlatok eleje

Kvantummechanika gyakorlat Beadandó feladatsor Határid : 4. heti gyakorlatok eleje Kvantummechanika gyakorlat 015 1. Beadandó feladatsor Határid : 4. heti gyakorlatok eleje 1. Mutassuk meg, hogy A és B tetsz leges operátorokra igaz, hogy e B A e B = A + [B, A] + 1![ B, [B, A] ] +....

Részletesebben

Elektronok mozgása nanostruktúrákban 2-D elektrongáz, kvantumdrót és kvantumpötty

Elektronok mozgása nanostruktúrákban 2-D elektrongáz, kvantumdrót és kvantumpötty Elektronok mozgása nanostruktúrákban 2-D elektrongáz, kvantumdrót és kvantumpötty Dr. Berta Miklós bertam@sze.hu 2017. október 26. 1 / 11 Tekintsünk egy olyan kristályrácsot, amelynek minden mérete sokkal

Részletesebben

SCHRÖDINGER-EGYENLET SCHRÖDINGER-EGYENLET

SCHRÖDINGER-EGYENLET SCHRÖDINGER-EGYENLET SCHRÖDINGER-EGYENLET A Scrödinger-egyenlet a kvantummecanika mozgásegyenlet, Newton II. törvényével analóg. Nem vezetető le korábbi elvekből, de intuitívan bevezetető. Egy atározott energiával és impulzussal

Részletesebben

Bevezetés a modern fizika fejezeteibe. 4. (b) Kvantummechanika. Utolsó módosítás: 2013. november 9. Dr. Márkus Ferenc BME Fizika Tanszék

Bevezetés a modern fizika fejezeteibe. 4. (b) Kvantummechanika. Utolsó módosítás: 2013. november 9. Dr. Márkus Ferenc BME Fizika Tanszék Bevezetés a modern fizika fejezeteibe 4. (b) Kvantummechanika Utolsó módosítás: 2013. november 9. 1 A legkisebb hatás elve (1) A legkisebb hatás elve (Hamilton-elv): S: a hatás L: Lagrange-függvény 2 A

Részletesebben

1 A kvantummechanika posztulátumai

1 A kvantummechanika posztulátumai A kvantummechanika posztulátumai October 29, 2006 A kvantummechanika posztulátumai Célunk felépíteni a kvantummechanikát posztulátumok segítségével úgy ahogy az elemi hullámmechanika során eljártunk. Arra

Részletesebben

Molekulák világa 1. kémiai szeminárium

Molekulák világa 1. kémiai szeminárium GoBack Molekulák világa 1. kémiai szeminárium Szilágyi András 2008. október 6. Molekulák világa 1. kémiai szeminárium Molekuláris bionika szak I. év 1 Kvantummechanika Klasszikus fizika eszközei tömegpont

Részletesebben

A spin. November 28, 2006

A spin. November 28, 2006 A spin November 28, 2006 1 A spin a kvantummechanikában Az elektronnak és sok más kvantummechanikai részecskének is van egy saját impulzusnyomatéka amely független a mozgásállapottól. (Úgy is mondhatjuk,

Részletesebben

Kvantummechanika. - dióhéjban - Kasza Gábor július 5. - Berze TÖK

Kvantummechanika. - dióhéjban - Kasza Gábor július 5. - Berze TÖK Kvantummechanika - dióhéjban - Kasza Gábor 2016. július 5. - Berze TÖK 1 / 27 Mire fogunk választ kapni az előadásból? Miért KVANTUMmechanika? Miért részecske? Miért hullám? Mit mond a Schrödinger-egyenlet?

Részletesebben

Atomok és molekulák elektronszerkezete

Atomok és molekulák elektronszerkezete Atomok és molekulák elektronszerkezete Szabad atomok és molekulák Schrödinger egyenlete Tekintsünk egy kvantummechanikai rendszert amely N n magból és N e elektronból áll. Koordinátáikat jelölje rendre

Részletesebben

Néhány mozgás kvantummechanikai tárgyalása

Néhány mozgás kvantummechanikai tárgyalása Néhány ozgás kvantuechanikai tárgyalása Mozzanatok: A Schrödinger-egyenlet felírása ĤΨ EΨ Hailton-operátor egállapítása a kinetikus energiaoperátor felírása, vagy 3 dienziós ozgásra, Descartes-féle koordinátarendszerben

Részletesebben

2015/16/1 Kvantummechanika B 2.ZH

2015/16/1 Kvantummechanika B 2.ZH 2015/16/1 Kvantummechanika B 2.ZH 2015. december 10. Információk 0. A ZH ideje minimum 90 perc, maximum 180 perc. 1. Az összesen elérhet pontszám 270 pont. 2. A jeles érdemjegy eléréséhez nem szükséges

Részletesebben

January 16, ψ( r, t) ψ( r, t) = 1 (1) ( ψ ( r,

January 16, ψ( r, t) ψ( r, t) = 1 (1) ( ψ ( r, Közelítő módszerek January 16, 27 1 A variációs módszer A variációs módszer szintén egy analitikus közelítő módszer. Olyan esetekben alkalmazzuk mikor ismert az analitikus alak amelyben keressük a sajátfüggvényt,

Részletesebben

2. REZGÉSEK Harmonikus rezgések: 2.2. Csillapított rezgések

2. REZGÉSEK Harmonikus rezgések: 2.2. Csillapított rezgések . REZGÉSEK.1. Harmonikus rezgések: Harmonikus erő: F = D x D m ẍ= D x (ezt a mechanikai rendszert lineáris harmonikus oszcillátornak nevezik) (Oszcillátor körfrekvenciája) ẍ x= Másodrendű konstansegyütthatós

Részletesebben

A Schrödinger-egyenlet és egyszerű alkalmazásai

A Schrödinger-egyenlet és egyszerű alkalmazásai Jelen dokumentumra a Creative Commons Nevezd meg! Ne add el! Ne változtasd meg! 3. licenc feltételei érvényesek: a művet a felhasználó másolhatja, többszörözheti, továbbadhatja, amennyiben feltünteti a

Részletesebben

Energiatételek - Példák

Energiatételek - Példák 9. Előadás Húzott rúd potenciális energiája: Hooke-modell: σ = Eε Geom. hetséges Geometriai egyenlet: + geom. peremfeltételek: u εx = ε = x u(0) = 0 ul () = 0 du dx Energiatételek Példák = k l 0 pudx l

Részletesebben

KVANTUMJELENSÉGEK ÚJ FIZIKA

KVANTUMJELENSÉGEK ÚJ FIZIKA KVANTUMJELENSÉGEK ÚJ FIZIKA 196 Erwin Scrödinger HULLÁMMECHANIKA 197 Werner Heisenberg MÁTRIXMECHANIKA A két különböző fizikai megközelítésről később Paul Dirac bebizonyította, ogy EGYENÉRTÉKŰEK. Erwin

Részletesebben

Klasszikus és kvantum fizika

Klasszikus és kvantum fizika Klasszikus és kvantum fizika valamint a Wigner függvény T.S. Biró MTA Fizikai Kutatóközpont, Budapest 2017. november 13. T.S.Biró Wigner 115, Budapest, 2017. Nov. 15. Biró Klassz kvantum 1 / 22 Abstract

Részletesebben

3. A KVANTUMMECHANIKA MATEMATIKAI ÉS FIZIKAI ALAPJAI

3. A KVANTUMMECHANIKA MATEMATIKAI ÉS FIZIKAI ALAPJAI 3. A KVANTUMMECHANIKA MATEMATIKAI ÉS FIZIKAI ALAPJAI Az előző fejezetben már láttuk, hogy Schrödinger hullámegyenlete képes a mikrofizikai objektumok energiaállapotaiban jelentkező kvantumos (diszkrét)

Részletesebben

Kifejtendő kérdések június 13. Gyakorló feladatok

Kifejtendő kérdések június 13. Gyakorló feladatok Kifejtendő kérdések 2016. június 13. Gyakorló feladatok 1. Adott egy egyenletes térfogati töltéssel rendelkező, R sugarú gömb, melynek felületén a potenciál U 0. Az elektromos potenciál definíciója (1p)

Részletesebben

Differenciálegyenletek numerikus integrálása április 9.

Differenciálegyenletek numerikus integrálása április 9. Differenciálegyenletek numerikus integrálása 2018. április 9. Differenciálegyenletek Olyan egyenletek, ahol a megoldást függvény alakjában keressük az egyenletben a függvény és deriváltjai szerepelnek

Részletesebben

Thomson-modell (puding-modell)

Thomson-modell (puding-modell) Atommodellek Thomson-modell (puding-modell) A XX. század elejére világossá vált, hogy az atomban található elektronok ugyanazok, mint a katódsugárzás részecskéi. Magyarázatra várt azonban, hogy mi tartja

Részletesebben

Bevezetés az atomfizikába

Bevezetés az atomfizikába az atomfizikába Berta Miklós SZE, Fizika és Kémia Tsz. 2006. október 25. Bevezetés Bevezetés 2 / 57 Bevezetés Bevezetés Makrovilág Klasszikus fizika Mikrovilág Jó-e a klasszikus fizika itt is? Túl kell

Részletesebben

Fermi Dirac statisztika elemei

Fermi Dirac statisztika elemei Fermi Dirac statisztika elemei A Fermi Dirac statisztika alapjai Nagy részecskeszámú rendszerek fizikai jellemzéséhez statisztikai leírást kell alkalmazni. (Pl. gázokra érvényes klasszikus statisztika

Részletesebben

AZ ELEKTRON MÁGNESES MOMENTUMA. H mágneses erœtérben az m mágneses dipólmomentummal jellemzett testre M = m H forgatónyomaték hat.

AZ ELEKTRON MÁGNESES MOMENTUMA. H mágneses erœtérben az m mágneses dipólmomentummal jellemzett testre M = m H forgatónyomaték hat. AZ ELEKTRON MÁGNESES MOMENTUMA Mágneses dipólmomentum: m H mágneses erœtérben az m mágneses dipólmomentummal jellemzett testre M = m H forgatónyomaték hat. M = m H sinϕ (Elektromos töltés, q: monopólus

Részletesebben

SÍKBELI KERINGŐMOZGÁS SÍKBELI KERINGŐMOZGÁS

SÍKBELI KERINGŐMOZGÁS SÍKBELI KERINGŐMOZGÁS SÍKBELI KERINGŐMOZGÁS Időtő függeten Schrödinger-egyenet két dimenziós körmozgásra: h V E 8π m x y R V x ha x y R ha x y R Poárkoordináták: SÍKBELI KERINGŐMOZGÁS x y rcos r sin r x x r x r y y r y r x

Részletesebben

2, = 5221 K (7.2)

2, = 5221 K (7.2) 7. Gyakorlat 4A-7 Az emberi szem kb. 555 nm hullámhossznál a Iegnagyobb érzékenységű. Adjuk meg annak a fekete testnek a hőmérsékletét, amely sugárzásának a spektrális teljesitménye ezen a hullámhosszon

Részletesebben

A Hamilton-Jacobi-egyenlet

A Hamilton-Jacobi-egyenlet A Hamilton-Jacobi-egyenlet Ha sikerül olyan kanonikus transzformációt találnunk, amely a Hamilton-függvényt zérusra transzformálja akkor valamennyi új koordináta és impulzus állandó lesz: H 0 Q k = H P

Részletesebben

Kvantummechanika feladatgyűjtemény

Kvantummechanika feladatgyűjtemény Kvantummechanika feladatgyűjtemény Szunyogh László, Udvardi László, Ujfalusi László, Varga Imre 4. február 3. Előszó A fizikus alapképzésben központi jelentőségű a Kvantummechanika tárgy oktatása, hiszen

Részletesebben

az Aharonov-Bohm effektus a vektorpotenciál problémája E = - 1/c A/ t - φ és B = x A csak egy mértéktranszformáció erejéig meghatározott nincs fizikai

az Aharonov-Bohm effektus a vektorpotenciál problémája E = - 1/c A/ t - φ és B = x A csak egy mértéktranszformáció erejéig meghatározott nincs fizikai az Aharonov-Bohm effektus a vektorpotenciál problémája E = - 1/c A/ t - φ és B = x A csak egy mértéktranszformáció erejéig meghatározott nincs fizikai jelentése? a kvantummechanikában ih m» a hullámfüggvény

Részletesebben

Pere Balázs október 20.

Pere Balázs október 20. Végeselem anaĺızis 1. előadás Széchenyi István Egyetem, Alkalmazott Mechanika Tanszék 2014. október 20. Mi az a VégesElem Anaĺızis (VEA)? Mi az a VégesElem Anaĺızis (VEA)? Mi az a VégesElem Anaĺızis (VEA)?

Részletesebben

Tárgymutató. dinamika, 5 dinamikai rendszer, 4 végtelen sok állapotú, dinamikai törvény, 5 dinamikai törvények, 12 divergencia,

Tárgymutató. dinamika, 5 dinamikai rendszer, 4 végtelen sok állapotú, dinamikai törvény, 5 dinamikai törvények, 12 divergencia, Tárgymutató állapottér, 3 10, 107 általánosított impulzusok, 143 147 általánosított koordináták, 143 147 áramlás, 194 197 Arisztotelész mozgástörvényei, 71 77 bázisvektorok, 30 centrifugális erő, 142 ciklikus

Részletesebben

Sajátértékek és sajátvektorok. mf1n1a06- mf1n2a06 Csabai István

Sajátértékek és sajátvektorok. mf1n1a06- mf1n2a06 Csabai István Sajátértékek és sajátvektorok A fizika numerikus módszerei I. mf1n1a06- mf1n2a06 Csabai István Lineáris transzformáció Vektorok lineáris transzformációja: általános esetben az x vektor iránya és nagysága

Részletesebben

Rezgőmozgás. A mechanikai rezgések vizsgálata, jellemzői és dinamikai feltétele

Rezgőmozgás. A mechanikai rezgések vizsgálata, jellemzői és dinamikai feltétele Rezgőmozgás A mechanikai rezgések vizsgálata, jellemzői és dinamikai feltétele A rezgés fogalma Minden olyan változás, amely az időben valamilyen ismétlődést mutat rezgésnek nevezünk. A rezgések fajtái:

Részletesebben

Diszkrét matematika I. gyakorlat

Diszkrét matematika I. gyakorlat Diszkrét matematika I. gyakorlat 2. ZH 2014. november 28. A csoport 1. Feladat. (5 pont) Határozza meg a z 1 = 2 + 2i komplex szám trigonometrikus alakját, majd adja meg a z 1 z 2 és z 1 z 2 komplex számok

Részletesebben

Permutációk véges halmazon (el adásvázlat, február 12.)

Permutációk véges halmazon (el adásvázlat, február 12.) Permutációk véges halmazon el adásvázlat 2008 február 12 Maróti Miklós Ennek az el adásnak a megértéséhez a következ fogalmakat kell tudni: ismétlés nélküli variáció leképezés indulási és érkezési halmaz

Részletesebben

Az egydimenziós harmonikus oszcillátor

Az egydimenziós harmonikus oszcillátor Az egydimenziós harmonikus oszcillátor tárgyalása az általános formalizmus keretében November 7, 006 Példaképpen itt megmutatjuk, hogyan lehet a kvantumos egydimenziós harmonikus oszcillátort tárgyalni

Részletesebben

Elektron mozgása kristályrácsban Drude - féle elektrongáz

Elektron mozgása kristályrácsban Drude - féle elektrongáz Elektron mozgása kristályrácsban Drude - féle elektrongáz Dr. Berta Miklós bertam@sze.hu 2017. október 13. 1 / 24 Drude - féle elektrongáz Tapasztalat alapján a fémekben vannak szabad töltéshordozók. Szintén

Részletesebben

Forgó molekulák áthaladása apertúrán

Forgó molekulák áthaladása apertúrán Forgó molekulák áthaladása apertúrán Egy egyszer kvantummechanikai modell Dömötör Piroska SZTE-TTIK Elméleti Fizikai Tanszék Tanszéki szeminárium, Szeged, 215. február 26. Bevezetés A vizsgálandó kérdés

Részletesebben

Kvantumszimulátorok. Szirmai Gergely MTA SZFKI. Graphics: Harald Ritsch / Rainer Blatt, IQOQI

Kvantumszimulátorok. Szirmai Gergely MTA SZFKI. Graphics: Harald Ritsch / Rainer Blatt, IQOQI Kvantumszimulátorok Szirmai Gergely MTA SZFKI Graphics: Harald Ritsch / Rainer Blatt, IQOQI A kvantummechanika körülvesz tranzisztor számítógép, mobiltelefon A kvantummechanika körülvesz tranzisztor számítógép,

Részletesebben

Kézirat a Bevezetés a modern fizika fejezeteibe c. tárgyhoz írta: Márkus Ferenc (BME Fizika Tanszék) (utolsó módosítás: november 9.) 4.

Kézirat a Bevezetés a modern fizika fejezeteibe c. tárgyhoz írta: Márkus Ferenc (BME Fizika Tanszék) (utolsó módosítás: november 9.) 4. Kézirat a Bevezetés a modern fizika fejezeteibe c. tárgyhoz írta: Márkus Ferenc (BME Fizika Tanszék) (utolsó módosítás: 2013. november 9.) 4. szakasz Kísérleti előzmények: Az atomok színképe Kvantummechanika

Részletesebben

Kinematika szeptember Vonatkoztatási rendszerek, koordinátarendszerek

Kinematika szeptember Vonatkoztatási rendszerek, koordinátarendszerek Kinematika 2014. szeptember 28. 1. Vonatkoztatási rendszerek, koordinátarendszerek 1.1. Vonatkoztatási rendszerek A test mozgásának leírása kezdetén ki kell választani azt a viszonyítási rendszert, amelyből

Részletesebben

ω mennyiségek nem túl gyorsan változnak

ω mennyiségek nem túl gyorsan változnak Licenszvizsga példakérdések Fizika szak KVANTUMMECHANIKA Egy részecskére felírt Schrödinger egyenlet szétválasztható a három koordinátatengely irányában levő egydimenziós egyenletre ha a potenciális energiára

Részletesebben

Differenciálegyenletek

Differenciálegyenletek DE 1 Ebben a részben I legyen mindig pozitív hosszúságú intervallum DE Definíció: differenciálegyenlet Ha D n+1 nyílt halmaz, f:d folytonos függvény, akkor az y (n) (x) f ( x, y(x), y'(x),..., y (n-1)

Részletesebben

Runge-Kutta módszerek

Runge-Kutta módszerek Runge-Kutta módszerek A Runge-Kutta módszerek az Euler módszer továbbfejlesztésének, javításának tekinthetők, kezdeti értékkel definiált differenciál egyenletek megoldására. Előnye hogy a megoldás során

Részletesebben

A Relativisztikus kvantummechanika alapjai

A Relativisztikus kvantummechanika alapjai A Relativisztikus kvantummechanika alapjai January 25, 2005 A kvantummechanika Schrödinger egyenletének a felírása után azonnal kiderül, hogy ez az egyenlet nem relativisztikusan kovariáns. (Aránylag könnyen

Részletesebben

Geometriai vagy kinematikai természetű feltételek: kötések vagy. kényszerek. 1. Egy apró korong egy mozdulatlan lejtőn vagy egy gömb belső

Geometriai vagy kinematikai természetű feltételek: kötések vagy. kényszerek. 1. Egy apró korong egy mozdulatlan lejtőn vagy egy gömb belső Kényszerek Geometriai vagy kinematikai természetű feltételek: kötések vagy kényszerek. Példák: 1. Egy apró korong egy mozdulatlan lejtőn vagy egy gömb belső felületén mozog. Kényszerek Geometriai vagy

Részletesebben

3. A kvantummechanikai szemlélet kialakulása

3. A kvantummechanikai szemlélet kialakulása 3. A kvantummechanikai szemlélet kialakulása A korábbi fejezetben tárgyalt atomelmélet megteremtette a modern kémiai alapjait, azonban rengeteg kérdés mégis megválaszolatlan maradt, különösen a miért nincs

Részletesebben

Alkalmazott spektroszkópia

Alkalmazott spektroszkópia Alkalmazott spektroszkópia 009 Bányai István MR és a fémionok: koordinációs kémiai alkalmazások Bányai István Debreceni Egyetem TEK Kolloid- és Környezetkémiai Tanszék A mágnesség A mágneses erő: F pp

Részletesebben

SZTE Elméleti Fizikai Tanszék. Dr. Czirják Attila tud. munkatárs, c. egyetemi docens. egyetemi docens. Elméleti Fizika Szeminárium, december 17.

SZTE Elméleti Fizikai Tanszék. Dr. Czirják Attila tud. munkatárs, c. egyetemi docens. egyetemi docens. Elméleti Fizika Szeminárium, december 17. Időfüggő kvantumos szórási folyamatok Szabó Lóránt Zsolt SZTE Elméleti Fizikai Tanszék Témavezetők: Dr. Czirják Attila tud. munkatárs, c. egyetemi docens Dr. Földi Péter egyetemi docens Elméleti Fizika

Részletesebben

Szélsőérték feladatok megoldása

Szélsőérték feladatok megoldása Szélsőérték feladatok megoldása A z = f (x,y) függvény lokális szélsőértékének meghatározása: A. Szükséges feltétel: f x (x,y) = 0 f y (x,y) = 0 egyenletrendszer megoldása, amire a továbbiakban az x =

Részletesebben

Differenciálegyenletek december 13.

Differenciálegyenletek december 13. Differenciálegyenletek 2018. december 13. Elsőrendű DE Definíció. Az elsőrendű differenciálegyenlet általános alakja y = f (x, y), ahol f (x, y) adott kétváltozós függvény. Minden y = y(x) függvény, amire

Részletesebben

Az elméleti mechanika alapjai

Az elméleti mechanika alapjai Az elméleti mechanika alapjai Tömegpont, a továbbiakban részecske. A jelenségeket a háromdimenziós térben és időben játszódnak le: r helyzetvektor v dr dt ṙ, a dr dt r a részecske sebessége illetve gyorsulása.

Részletesebben

Kvantummechanika gyakorlo feladatok 1 - Megoldások. 1. feladat: Az eltolás operátorának megtalálásával teljesen analóg módon fejtsük Taylor-sorba

Kvantummechanika gyakorlo feladatok 1 - Megoldások. 1. feladat: Az eltolás operátorának megtalálásával teljesen analóg módon fejtsük Taylor-sorba Kvatummechaika gyakorlo felaatok - Megolások felaat: z eltolás operátoráak megtalálásával teljese aalóg móo fejtsük Taylor-sorba a hullámfüggvéyt a változójába: ψr θ ϕ + ϕ ψr θ ϕ + ψr θ ϕ ϕ + ψr θ ϕ ϕ

Részletesebben

A kvantummechanikai atommodell

A kvantummechanikai atommodell A kvantummechanikai atommodell A kvantummechanika alapjai A Heinsenberg-féle határozatlansági reláció A kvantummechanikai atommodell A kvantumszámok értelmezése A Stern-Gerlach kísérlet Az Einstein-de

Részletesebben

Matematika III. harmadik előadás

Matematika III. harmadik előadás Matematika III. harmadik előadás Kézi Csaba Debreceni Egyetem, Műszaki Kar Debrecen, 2013/14 tanév, I. félév Kézi Csaba (DE) Matematika III. harmadik előadás 2013/14 tanév, I. félév 1 / 13 tétel Az y (x)

Részletesebben

Atommodellek. Az atom szerkezete. Atommodellek. Atommodellek. Atommodellek, A Rutherford-kísérlet. Atommodellek

Atommodellek. Az atom szerkezete. Atommodellek. Atommodellek. Atommodellek, A Rutherford-kísérlet. Atommodellek Démokritosz: a világot homogén szubsztanciájú oszthatatlan részecskék, atomok és a közöttük lévı őr alkotja. Az atom szerkezete Egy atommodellt akkor fogadunk el érvényesnek, ha megmagyarázza a tapasztalati

Részletesebben

Atomfizika. A hidrogén lámpa színképei. Elektronok H atom. Fényképlemez. emisszió H 2. gáz

Atomfizika. A hidrogén lámpa színképei. Elektronok H atom. Fényképlemez. emisszió H 2. gáz Atomfizika A hidrogén lámpa színképei - Elektronok H atom emisszió Fényképlemez V + H 2 gáz Az atom és kvantumfizika fejlődésének fontos szakasza volt a hidrogén lámpa színképeinek leírása, és a vonalas

Részletesebben

Fizikai kémia 2. ZH I. kérdések I. félévtől

Fizikai kémia 2. ZH I. kérdések I. félévtől Fizikai kémia 2. ZH I. kérdések 2018-19 I. félévtől Szükséges adatok, állandók és összefüggések: c= 2,99792458 10 8 m/s; e= 1,602177 10-19 C; h=6,62608 10-34 Js; N A= 6,02214 10 23 mol -1 ; me= 9,10939

Részletesebben

Utolsó el adás. Wettl Ferenc BME Algebra Tanszék, Wettl Ferenc (BME) Utolsó el adás / 20

Utolsó el adás. Wettl Ferenc BME Algebra Tanszék,   Wettl Ferenc (BME) Utolsó el adás / 20 Utolsó el adás Wettl Ferenc BME Algebra Tanszék, http://www.math.bme.hu/~wettl 2013-12-09 Wettl Ferenc (BME) Utolsó el adás 2013-12-09 1 / 20 1 Dierenciálegyenletek megoldhatóságának elmélete 2 Parciális

Részletesebben

Mágneses monopólusok?

Mágneses monopólusok? 1 Mágneses monopólusok? (Atomcsill 2015 február) Palla László ELTE Elméleti Fizikai Tanszék 2 Maxwell egyenletek potenciálok, mértéktranszformáció legegyszerűbb e.m. mezők A klasszikus e g rendszer A monopólus

Részletesebben

Molekulák de Broglie hullámának terjedése

Molekulák de Broglie hullámának terjedése Ábrók Levente Molekulák de Broglie hullámának terjedése Fizika BSc szakdolgozat Ábrók Levente az ELTE TTK Fizika BSc hallgatója Témavezető: Belső konzulens: Kis Zsolt MTA Szilárdtestfizikai és Optikai

Részletesebben

dinamikai tulajdonságai

dinamikai tulajdonságai Szilárdtest rácsok statikus és dinamikai tulajdonságai Szilárdtestek osztályozása kötéstípusok szerint Kötések eredete: elektronszerkezet k t ionok (atomtörzsek) tö Coulomb- elektronok kölcsönhatás lokalizáltak

Részletesebben

Kétrészecskés rendszerek szétesésének számítógépes szimulációja

Kétrészecskés rendszerek szétesésének számítógépes szimulációja Kétrészecskés rendszerek szétesésének számítógépes szimulációja Szakdolgozat Bodor Áron Csaba ELTE TTK, Fizika BSc, Fizikus szakirány Témavezető Dr. Horváth Ákos ELTE TTK Atomfizikai tanszék Budapest,

Részletesebben

Nanotudomány Dióhéjban a kvantummechanikáról. Reichardt András. September 11, 2017

Nanotudomány Dióhéjban a kvantummechanikáról. Reichardt András. September 11, 2017 Nanotudomány 2017 Dióhéjban a kvantummechanikáról Reichardt András September 11, 2017 1 Előzmények Planck-féle sugárzási törvény Fényelektromos jelenség Atomos gázok színképe De Broglie - anyaghullámok

Részletesebben

kv2n1p18 Kvantumkémia

kv2n1p18 Kvantumkémia Kiegészítő fejezetek a fizikai kémiához kv2n1p18 Kvantumkémia Szalay Péter Kémiai Intézet Eötvös Loránd Tudományegyetem szalay@chem.elte.hu Ajánlott irodalom Fizikai Kémia (4): Elméleti Kémia (emelt szint)

Részletesebben

3. A kvantummechanikai szemlélet kialakulása

3. A kvantummechanikai szemlélet kialakulása 3. A kvantummechanikai szemlélet kialakulása A korábbi fejezetben tárgyalt atomelmélet megteremtette a modern kémiai alapjait, azonban rengeteg kérdés mégis megválaszolatlan maradt, különösen a miért nincs

Részletesebben

Gépészmérnöki alapszak, Mérnöki fizika ZH, október 10.. CHFMAX. Feladatok (maximum 3x6 pont=18 pont)

Gépészmérnöki alapszak, Mérnöki fizika ZH, október 10.. CHFMAX. Feladatok (maximum 3x6 pont=18 pont) 1. 2. 3. Mondat E1 E2 Gépészmérnöki alapszak, Mérnöki fizika ZH, 2017. október 10.. CHFMAX NÉV: Neptun kód: Aláírás: g=10 m/s 2 Előadó: Márkus / Varga Feladatok (maximum 3x6 pont=18 pont) 1) Az l hosszúságú

Részletesebben

2. (d) Hővezetési problémák II. főtétel - termoelektromosság

2. (d) Hővezetési problémák II. főtétel - termoelektromosság 2. (d) Hővezetési problémák II. főtétel - termoelektromosság Utolsó módosítás: 2015. március 10. Kezdeti érték nélküli problémák (1) 1 A fél-végtelen közeg a Az x=0 pontban a tartományban helyezkedik el.

Részletesebben

Mechanika I-II. Példatár

Mechanika I-II. Példatár Budapesti Műszaki és Gazdaságtudományi Egyetem Műszaki Mechanika Tanszék Mechanika I-II. Példatár 2012. május 24. Előszó A példatár célja, hogy támogassa a mechanika I. és mechanika II. tárgy oktatását

Részletesebben

1. ábra. 24B-19 feladat

1. ábra. 24B-19 feladat . gyakorlat.. Feladat: (HN 4B-9) A +Q töltés egy hosszúságú egyenes szakasz mentén oszlik el egyenletesen (ld.. ábra.). Számítsuk ki az E elektromos térerősséget a vonal. ábra. 4B-9 feladat irányában lévő,

Részletesebben

Hatványsorok, Fourier sorok

Hatványsorok, Fourier sorok a Matematika mérnököknek II. című tárgyhoz Hatványsorok, Fourier sorok Hatványsorok, Taylor sorok Közismert, hogy ha 1 < x < 1 akkor 1 + x + x 2 + x 3 + = n=0 x n = 1 1 x. Az egyenlet baloldalán álló kifejezés

Részletesebben

rnök k informatikusoknak 1. FBNxE-1 Klasszikus mechanika

rnök k informatikusoknak 1. FBNxE-1 Klasszikus mechanika Fizika mérnm rnök k informatikusoknak 1. FBNxE-1 Mechanika. előadás Dr. Geretovszky Zsolt 1. szeptember 15. Klasszikus mechanika A fizika azon ága, melynek feladata az anyagi testek mozgására vonatkozó

Részletesebben

http://www.flickr.com Az atommag állapotait kvantummechanikai állapotfüggvénnyel írjuk le. A mag paritását ezen fv. paritása adja meg. Paritás: egy állapot tértükrözéssel szemben mutatott viselkedését

Részletesebben

Q 1 D Q 2 (D x) 2 (1.1)

Q 1 D Q 2 (D x) 2 (1.1) . Gyakorlat 4B-9 Két pontszerű töltés az x tengelyen a következőképpen helyezkedik el: egy 3 µc töltés az origóban, és egy + µc töltés az x =, 5 m koordinátájú pontban van. Keressük meg azt a helyet, ahol

Részletesebben

Komplex számok. Wettl Ferenc előadása alapján Wettl Ferenc előadása alapján Komplex számok / 18

Komplex számok. Wettl Ferenc előadása alapján Wettl Ferenc előadása alapján Komplex számok / 18 Komplex számok Wettl Ferenc előadása alapján 2015.09.23. Wettl Ferenc előadása alapján Komplex számok 2015.09.23. 1 / 18 Tartalom 1 Számok A számfogalom bővülése 2 Algebrai alak Trigonometrikus alak Egységgyökök

Részletesebben

FIZIKA II. Dr. Rácz Ervin. egyetemi docens

FIZIKA II. Dr. Rácz Ervin. egyetemi docens FIZIKA II. Dr. Rácz Ervin egyetemi docens Fontos tudnivalók e-mail: racz.ervin@kvk.uni-obuda.hu web: http://uni-obuda.hu/users/racz.ervin/index.htm Iroda: Bécsi út, C. épület, 124. szoba Fizika II. - ismertetés

Részletesebben

Kettős integrál Hármas integrál. Többes integrálok. Sáfár Orsolya május 13.

Kettős integrál Hármas integrál. Többes integrálok. Sáfár Orsolya május 13. 2015 május 13. Kétváltozós függvény kettősintegráljának definíciója Legyen f (x, y), R 2 R korlátos függvény egy T korlátos és mérhető területű tartományon. Vegyük a T tartomány egy felosztását T 1, T

Részletesebben

Csillapított rezgés. a fékező erő miatt a mozgás energiája (mechanikai energia) disszipálódik. kváziperiódikus mozgás

Csillapított rezgés. a fékező erő miatt a mozgás energiája (mechanikai energia) disszipálódik. kváziperiódikus mozgás Csillapított rezgés Csillapított rezgés: A valóságban a rezgések lassan vagy gyorsan, de csillapodnak. A rugalmas erőn kívül, még egy sebességgel arányos fékező erőt figyelembe véve: a fékező erő miatt

Részletesebben

PÉLDÁK ERŐTÖRVÉNYEKRE

PÉLDÁK ERŐTÖRVÉNYEKRE PÉLÁ ERŐTÖRVÉNYERE Szabad erők: erőtörvénnyel megadhatók, általában nem függenek a test mozgásállapotától (sebességtől, gyorsulástól) Példák: nehézségi erő, súrlódási erők, rugalmas erők, felhajtóerők,

Részletesebben

A +Q töltés egy L hosszúságú egyenes szakasz mentén oszlik el egyenletesen (ld ábra ábra

A +Q töltés egy L hosszúságú egyenes szakasz mentén oszlik el egyenletesen (ld ábra ábra . Gyakorlat 4B-9 A +Q töltés egy L hosszúságú egyenes szakasz mentén oszlik el egyenletesen (ld. 4-6 ábra.). Számítsuk ki az E elektromos térerősséget a vonal irányában lévő, annak.. ábra. 4-6 ábra végpontjától

Részletesebben

3. Lineáris differenciálegyenletek

3. Lineáris differenciálegyenletek 3. Lineáris differenciálegyenletek A közönséges differenciálegyenletek két nagy csoportba oszthatók lineáris és nemlineáris egyenletek csoportjába. Ez a felbontás kicsit önkényesnek tűnhet, a megoldásra

Részletesebben

Bevezetés a görbe vonalú geometriába

Bevezetés a görbe vonalú geometriába Bevezetés a görbe vonalú geometriába Metrikus tenzor, Christoffel-szimbólum, kovariáns derivált, párhuzamos eltolás, geodetikus Pr hle Zsóa A klasszikus térelmélet elemei (szeminárium) 2012. október 1.

Részletesebben

Szilárdtestek el e ek e tr t o r n o s n zer e k r ez e et e e t

Szilárdtestek el e ek e tr t o r n o s n zer e k r ez e et e e t Szilárdtestek elektronszerkezete Kvantummechanikai leírás Ismétlés: Schrödinger egyenlet, hullámfüggvény, hidrogén-atom, spin, Pauli-elv, periódusos rendszer 2 Szilárdtestek egyelektron-modellje a magok

Részletesebben

Van-e a vákuumnak energiája? A Casimir effektus és azon túl

Van-e a vákuumnak energiája? A Casimir effektus és azon túl Van-e a vákuumnak energiája? és azon túl MTA-ELTE Elméleti Fizikai Kutatócsoport Bolyai Kollégium, 2007. október 3. Van-e a vákuumnak energiája? és azon túl Vázlat 1 2 3 4 5 Van-e a vákuumnak energiája?

Részletesebben

Lagrange és Hamilton mechanika

Lagrange és Hamilton mechanika Lagrange és 2010. október 17. Lagrange és Tartalom 1 Variáció Lagrange egyenlet Legendre transzformáció Hamilton egyenletek 2 3 Szimplektikus sokaság Hamilton mez Hamilton és Lagrange egyenletek ekvivalenciája

Részletesebben

2014. szeptember 24. és 26. Dr. Vincze Szilvia

2014. szeptember 24. és 26. Dr. Vincze Szilvia 2014. szeptember 24. és 26. Dr. Vincze Szilvia Mind a hétköznapi, mind a tudományos életben gyakran előfordul, hogy bizonyos halmazok elemei között kapcsolat figyelhető meg. A kapcsolat fogalmának matematikai

Részletesebben

Végeselem modellezés alapjai 1. óra

Végeselem modellezés alapjai 1. óra Végeselem modellezés alapjai. óra Gyenge alak, Tesztfüggvény, Lagrange-féle alakfüggvény, Stiness mátrix Kivonat Az óra célja, hogy megismertesse a végeselem módszer (FEM) alkalmazását egy egyszer probléma,

Részletesebben

A kanonikus sokaság. :a hőtartály energiája

A kanonikus sokaság. :a hőtartály energiája A kanonikus sokaság A mikrokanonikus sokaság esetén megtanultuk, hogy a megengedett mikroállapotok egyenértéküek, és a mikróállapotok száma minimális. A mikrókanónikus sokaság azonban nem a leghasznosabb

Részletesebben

-2σ. 1. A végtelen kiterjedésű +σ és 2σ felületi töltéssűrűségű síklapok terében az ábrának megfelelően egy dipól helyezkedik el.

-2σ. 1. A végtelen kiterjedésű +σ és 2σ felületi töltéssűrűségű síklapok terében az ábrának megfelelően egy dipól helyezkedik el. 1. 2. 3. Mondat E1 E2 Össz Energetikai mérnöki alapszak Mérnöki fizika 2. ZH NÉV:.. 2018. május 15. Neptun kód:... g=10 m/s 2 ; ε 0 = 8.85 10 12 F/m; μ 0 = 4π 10 7 Vs/Am; c = 3 10 8 m/s Előadó: Márkus

Részletesebben

Tömegpontok mozgása egyenes mentén, hajítások

Tömegpontok mozgása egyenes mentén, hajítások 2. gyakorlat 1. Feladatok a kinematika tárgyköréből Tömegpontok mozgása egyenes mentén, hajítások 1.1. Feladat: Mekkora az átlagsebessége annak pontnak, amely mozgásának első szakaszában v 1 sebességgel

Részletesebben

Komplex számok. (a, b) + (c, d) := (a + c, b + d)

Komplex számok. (a, b) + (c, d) := (a + c, b + d) Komplex számok Definíció. Komplex számoknak nevezzük a valós számokból képzett rendezett (a, b) számpárok halmazát, ha közöttük az összeadást és a szorzást következőképpen értelmezzük: (a, b) + (c, d)

Részletesebben

A kémiai kötés eredete; viriál tétel 1

A kémiai kötés eredete; viriál tétel 1 A kémiai kötés ereete; viriál tétel 1 Probléma felvetés Ha egy molekula atommagjai közötti távolság csökken, akkor a közöttük fellép elektrosztatikus taszításhoz tartozó energia n. Ugyanez igaz az elektronokra

Részletesebben

17. előadás: Vektorok a térben

17. előadás: Vektorok a térben 17. előadás: Vektorok a térben Szabó Szilárd A vektor fogalma A mai előadásban n 1 tetszőleges egész szám lehet, de az egyszerűség kedvéért a képletek az n = 2 esetben szerepelnek. Vektorok: rendezett

Részletesebben

A brachistochron probléma megoldása

A brachistochron probléma megoldása A brachistochron probléma megoldása Adott a függőleges síkban két nem egy függőleges egyenesen fekvő P 0 és P 1 pont, amelyek közül a P 1 fekszik alacsonyabban. Azt a kérdést fogjuk vizsgálni. hogy van-e

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Számelmélet

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Számelmélet MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Számelmélet A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek

Részletesebben

BIOMATEMATIKA ELŐADÁS

BIOMATEMATIKA ELŐADÁS BIOMATEMATIKA ELŐADÁS 6. Differenciálegyenletekről röviden Debreceni Egyetem, 2015 Dr. Bérczes Attila, Bertók Csanád A diasor tartalma 1 Bevezetés 2 Elsőrendű differenciálegyenletek Definíciók Kezdetiérték-probléma

Részletesebben

Kvantumos jelenségek lézertérben

Kvantumos jelenségek lézertérben Kvantumos jelenségek lézertérben Atomfizika Benedict Mihály SZTE Elméleti Fizikai Tanszék Az előadást támogatta a TÁMOP-4.2.1/B-09/1/KONV-2010-0005 sz. Kutatóegyetemi Kiválósági Központ létrehozása a Szegedi

Részletesebben

1.9. B - SPLINEOK B - SPLINEOK EGZISZTENCIÁJA. numerikus analízis ii. 34. [ a, b] - n legfeljebb n darab gyöke lehet. = r (m 1) n = r m + n 1

1.9. B - SPLINEOK B - SPLINEOK EGZISZTENCIÁJA. numerikus analízis ii. 34. [ a, b] - n legfeljebb n darab gyöke lehet. = r (m 1) n = r m + n 1 numerikus analízis ii 34 Ezért [ a, b] - n legfeljebb n darab gyöke lehet = r (m 1) n = r m + n 1 19 B - SPLINEOK VOLT: Ω n véges felosztás S n (Ω n ) véges dimenziós altér A bázis az úgynevezett egyoldalú

Részletesebben

Analitikus térgeometria

Analitikus térgeometria Analitikus térgeometria Wettl Ferenc el adása alapján 2015.09.21. Wettl Ferenc el adása alapján Analitikus térgeometria 2015.09.21. 1 / 23 Tartalom 1 Egyenes és sík egyenlete Egyenes Sík 2 Alakzatok közös

Részletesebben

Modern fizika laboratórium

Modern fizika laboratórium Modern fizika laboratórium 11. Az I 2 molekula disszociációs energiája Készítette: Hagymási Imre A mérés dátuma: 2007. október 3. A beadás dátuma: 2007. október xx. 1. Bevezetés Ebben a mérésben egy kétatomos

Részletesebben