Fejezetek a. csodálatos életéből

Save this PDF as:
 WORD  PNG  TXT  JPG

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Fejezetek a. csodálatos életéből"

Átírás

1 Fejezetek a prímszámok csodálatos életéből

2 Bolyai János véleménye Az egész számtan, sőt az egész tan mezején alig van szebb és érdekesebb s a legnagyobb nyitászok (matematikusok) figyelme és eleje óta elfoglalt tárgy mint a főszámok (prímszámok) oly mély homályban rejlő titka.

3 Értelmezés Az a természetes szám osztója a b természetes számnak, ha van olyan c természetes szám, hogy a és c szorzata éppen b. Minden természetes számnak osztója az 1 és maga a szám. Ezek a szám nem valódi osztói. Minden más osztó valódi osztó. Ha egy számnak valódi osztói is vannak, akkor az a szám összetett szám. Ha egy számnak csak nem valódi osztói vannak, akkor az a szám törzsszám. Egy 0-tól és 1-től különböző természetes számot prímszámnak nevezünk, ha két szám szorzatának pontosan akkor osztója, ha valamelyik tényezőnek osztója.

4 Prímtulajdonság A természetes számok körében a törzsszámok megegyeznek a prímszámokkal. Minden törzsszám prímszám és minden prímszám törzsszám. Így azok a természetes számok lesznek prímszámok, amelyeknek csak az 1 és maga a szám az osztója, azaz csak két osztójuk van. Ezek pedig: 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61,

5 A prímek számáról Végtelen sok prímszám van. (Euklidesz) Tegyük fel, hogy véges sok prímszám van. Ekkor ezek szorzata összetett szám. Ha ezt a számot 1-gyel megnöveljük, akkor annak nem lesz osztója a véges sok prímszám közül egyik sem. Az így kapott szám nem lehet összetett szám, akkor viszont prím. Konstruáltunk egy olyan prímszámot, amely a véges sok ismert prímtől különböző. Így nem lehet igaz az a feltevés, hogy véges sok prímszám van. Ez viszont azt jelenti, hogy végtelen sok prímszám van.

6 Eratoszthenészi-szita Prímszámok megtalálására szolgáló eljárás, amely során egy-egy prím többszöröseit kivesszük a lehetséges prímek közül.

7 A számelmélet alaptétele Minden összetett szám a tényezők sorrendjétől eltekintve egyértelműen írható fel prímszámok hatványainak szorzataként. Például: 18 = = 3 23 Felhasználható: Legnagyobb közös osztó: (18; 69) = 3 Legkisebb közös többszörös: [18; 69] = = 414 Osztók száma: τ(18) = 2 3 = 6 τ(69) = 2 2 = 4

8 Goldbach-sejtés (1742.) Minden 2-nél nagyobb páros természetes szám előáll két páratlan prímszám, vagy az 1 és egy páratlan prímszám összegeként. Például: 22 = = = = = = = Minden 5-nél nagyobb páratlan természetes szám előáll három páratlan prímszám összegeként. Például: 69 = = =

9 A prímszámok eloszlása A szomszédos prímszámok között akármekkora hézagok előfordulnak. (Azaz tetszőleges hosszúságú prímszámmentes intervallum van.) Tekintsük a következő számokat: n! + 2, n! + 3, n! + 4,, n! + n (Megjegyzés: n! = n (n 1) (n 2) 3 2 1) Ez n 1 egymást követő szám, amelyek egyike sem prím, hiszen rendre oszthatók 2-vel, 3-mal, 4-gyel, és végül n-nel. Például: Ha n = 6, akkor 722 és 726 között nincs prím.

10 A prímszámok eloszlása Egy pozitív egész szám és a kétszerese között mindig van prímszám. Azaz bármely n esetén található olyan p prímszám, hogy n < p 2n. (Csebisev-tétel) Például: vagy A tétel egyszerű bizonyítását 19 évesen adta meg Erdős Pál ( ). Előtte már bizonyította 1850 körül Csebisev is. A mai napig nem sikerült még rájönni arra, hogy mindig van-e prímszám két négyzetszám között.

11 A prímszámtétel A prímszámok eloszlásáról a legtöbbet a prímszámtétel mondja, amelyet Hadamard és de la Valle-Poussin egymástól függetlenül bizonyított be 1896-ban. (Erdős és Selberg meg adott egy egyszerűbb bizonyítást ben.) Legyen x pozitív valós szám. Ekkor (x) jelölje az x-nél nem nagyobb prímek számát. Pl.: (10) = 4 (ezek 2, 3, 5, 7); (100) = 25; (1000) = 168 A prímszámtétel a következőt állítja: ( ) ( ) ~ x π x π x lim 1 ln x = x x ln x Például: 10 / ln10 4, / ln100 21, / ln ,76

12 Prímszámképletek Azt tényként közölhetjük, hogy nincs olyan nem konstans, egyváltozós polinom, amelynek minden helyettesítési értéke prímszám lenne. De vannak olyan polinomok, amelyek helyettesítési értékei prímek bizonyos számú, egymás után következő értékek esetén. A legismertebb: f(x) = x 2 + x + 41, ha 0 x < 40. Leonhard Euler ( ) egyik prímeket generáló képlete. Számítógépek segítségével meggyőződtek arról, hogy ez a képlet meglepően jól működik. Ugyanis a 10 millió alatti értékeknél 47,5%- ban prímeket eredményezett.

13 Prímszámképletek Szintén Euler érdeme az f(x) = x 2 + x + 17 képletet, amely prímeket ad, ha 0 x < 16. (Az Ulam-spirál főátlójában lévő prímek.) Ugyancsak prímeket ad az f(x) = x 2 79x polinom, ha 0 x < 80. (Escott) És egy újabb: f(x) = x 4 97x x x , ha 0 x < 50.

14 Nevezetes prímszámok A számelmélet számos mély tétele, nevezetes problémája foglalkozik azzal, hogy léteznek-e bizonyos alakú prímek. Az viszonylag könnyen belátható, hogy végtelen sok 4k 1 alakú prím van. (Például: 3, 7, 11, 19, 23, ) Kicsit nehezebb annak a bizonyítása (de megcsinálható), hogy a 4k + 1 alakú prímszámokból is végtelen sok van. (Például: 5, 13, 17, 29, ) Ezek viszont mindig előállíthatók két négyzetszám összegeként. Viszont a mai napig nem sikerült még belátni azt, hogy végtelen sok k alakú prímszám van. (Például: 2, 5, 17, 37, )

15 Fermat-prímek A Fermat-számok a 2 2 n + 1 alakú számok. Az ilyen alakú prímszámok a Fermat-prímek. Például: 3, 5, 17, 257, (Csak ezek ismertek. Azt sejtik, hogy nincs is több.) Pierre de Fermat ( ) Az triviális, hogy végtelen sok Fermatszám van. De az is belátható, hogy bármely kettő ezek közül relatív prím (legnagyobb közös osztójuk az 1).

16 Szabályos sokszögek Karl Friedrich Gauss ( ) bizonyította be a szabályos sokszögek szerkeszthetőségére vonatkozó tételt. Egy szabályos n-szög akkor és csak akkor szerkeszthető körzővel és vonalzóval, ha n = 2 k p 1 p 2 p r ahol k = 0, 1, 2, és p 1, p 2,, p r mind különböző Fermat-prímek.

17 Szabályos sokszögek A jelenleg ismert öt Fermat-prím: 3, 5, 17, 257, 65537, így az ilyen oldalszámú szabályos sokszögek szerkeszthetők. Szabályos ötszög Szabályos tizenhétszög Gauss síremlékén látható szabályos tizenhétcsillag Szabályos 257-szög És szerkeszthető még a szabályos hatszög, tizenkétszög, tízszög, tizenötszög, stb.

18 Mersenne-prímek A Mersenne-számok a 2 p 1 alakú számok, ahol p prímszám. Közülük a prímek a Mersenne-prímek. Például: 3, 7, 31, 127, 8191 Marin Mersenne ( ) Az látható, hogy a Mersenne-számok is végtelen sokan vannak. De azt még nem sikerült belátni, hogy a Mersenneprímek száma is végtelen.

19 Mersenne-prímek Jelenleg 47 Mersenne-prímet ismerünk. A 45. Mersenne-prím a ma ismert legnagyobb prímszám, számjegyből áll augusztus 23-án bukkantak rá: április 12-én találták meg a 47. Mersenne-prímet, amelynek számjegye van, tehát kisebb mint a 45. Mersenne-prím:

20 GIMPS 1996-ban jött létre az Amerikai Egyesült Államokban a Great Internet Mersenne Prime Search (GIMPS) nevű szervezet. Akik csatlakoznak hozzá, jogosultak lesznek annak a programnak a használatára, amely ellenőrzi egy újabb Mersenne-számról a lehetséges prímségét. Ha a program lefut (ez napot jelent), és jelzi, hogy van remény arra, hogy a vizsgált szám Mersenne-prím legyen, akkor lefuttatnak egy prímtesztet (Lucas-Lehmer-teszt) néhány szuperszámítógépen, hogy ellenőrizhessék a prímtulajdonságot.

21 Csupa 1 prímek Ők olyan prímszámok, amelyek tízes számrendszerbeli alakja csak 1-es számjegyet tartalmaz.. Például: (19 számjegy) (23 számjegy) A következőnek 317, az azt követőnek pedig 1031 számjegye van.

22 Szuperprímek Azok a prímszámok lesznek szuperek, amelyeknek a prímszámok sorozatában vett indexe is prímszám. Például: Index Prímszám

23 Ikerprímek A p és p + 2 alakú prímeket ikerprímeknek nevezzük. (Olyan prímek, amelyek különbsége 2.) Például: 3 5, 5 7, 11 13,, , A mai napig nem sikerült még igazolni, hogy az ikerprímek száma is végtelen. A jelenleg ismert legnagyobb ikerprímek (2009-ből): és

24 Unokatestvér prímek A p és p + 4 alakú prímeket unokatestvér prímeknek nevezzük. (Olyan prímek, amelyek különbsége 4.) Például: 3 7, 7 11, 13 17,, ,

25 Szexi prímek A p és p + 6 alakú prímeket szexi prímeknek nevezzük. (Olyan prímek, amelyek különbsége 6.) Például: 5 11, 7 13, 11 17,, ,

26 Álprímek Egy páratlan összetett N számot a alapú (Fermat-féle) álprímnek nevezünk, ha az a N 1 -nek az N-nel vett osztási maradéka 1. Például: es alapú álprím Legyen N páratlan összetett szám, és N 1 = 2 s d, ahol d páratlan. Az N számot a alapú dörzsölt álprímnek nevezzük, ha az a d -nek az N- nel vett osztási maradéka 1 vagy az a 2 r d -nek az N-nel vett osztási maradéka 1, valamely r = 1, 2, 3,, r 1 számok esetén. Például: Ilyet nehéz találni. 25 milliárdig mindössze 13 olyan dörzsölt álprím van, amely a 2, 3, 5 alapokra egyaránt álprímnek bizonyul.

27 Prímsorok A prímszámok reciprokából álló sor = k = 1 pk Tétel biztosítja azt a kellemes tényt, hogy a prímszámok reciprokából álló sor divergens, azaz a végtelen sok prímszám reciprokát összeadva az eredmény végtelen.

28 Prímsorok Az ikerprímszámok reciprokából álló sor Azt nem tudjuk, hogy véges vagy végtelen sok ikerprímszám van-e, de az biztos, hogy a reciprokaikból álló sor összege egy konkrét valós szám. Viggo Brun bizonyította ezt 1919-ben. Ez a szám pedig (közelítve): B 2 = 1,

29 Ulam-spirál Stanislaw Ulam lengyel matematikus 1963-ban egy rendkívül hosszú és unalmas értekezést hallgatott, amikor is felírta egy papírra 1-től kezdődően a számokat spirál alakban, negatív irányban.

30 Ulam-spirál Ulam meglepődve látta, hogy a spirálban a prímszámok átlós vonalak mentén helyezkednek el.

31 Ulam-spirál 10 millióig le is ellenőriztette Ulam egy számítógéppel az átlós elhelyezkedést, és az igaznak bizonyult. A as Ulam-spirál:

32 Ulam-spirál Ulam egy másik ábráján a 17 áll középen, és egészen 272-ig vezette a számokat. A prímszámok itt is átlós elrendezést mutatnak. Az átlóban található prímek éppen az Euler-féle f(x) = x 2 + x + 17 prímeket adó polinom helyettesítési értékei.

33 Geometriai elrendezések Reginald Brooks két érdekes elrendezést talált a prímszámokkal (2001.) Spirál mentén helyezkednek el a prímszámok szabályos tízszögek csúcsaira illeszkedve. Egy csillag mentén helyezkednek el a prímszámok ebben a konstrukcióban.

34 Prímcsillag Allan Johnson készítette az alábbi csillagot. Érdekessége, hogy 3-tól 71-ig tartalmazza a prímszámokat úgy, hogy minden vonal mentén a számok összege állandó, ráadásul az is prím, a 167.

35 Az RSA-algoritmus Ez egy olyan kódolási (titkosítási) eljárás, amely prímszámokat használ fel ban debütált a nyilvános kulcsú titkosítás ezen formája a MIT-en, Ronald Rivest, Adi Shamir és Len Adleman közreműködésével. Az eljárás legfőbb ötlete: Nagyon könnyű két prímszámot összeszorozni, de nagyon nehéz csak a szorzat ismeretében megadni, hogy mely prímeket is szoroztuk össze.

36 Az RSA-algoritmus Az algoritmus lépései: 1. Válasszunk véletlenszerűen két nagy prímszámot: p 1 és p Kiszámítjuk az m = p 1 p 2 és ϕ(m) = (p 1-1)(p 2-1) paramétereket, és választunk véletlenszerűen egy e számot (1 és ϕ(m) között) úgy, hogy e és ϕ(m) relatív prímek legyenek. 3. Kiszámítjuk e inverzét (d), amelyre ϕ(m) osztója lesz a d e 1 különbségnek. 4. Nyilvánosságra hozzuk: m és e; titokban tartjuk: d, p 1 és p Az x nyílt üzenetet az y-ra titkosítjuk úgy, hogy m osztója legyen az x e y különbségnek. (Az y ismeretében x visszafejthető, mert azt az x-et keressük, amelyre m osztója lesz az x y d különbségnek.)

37 Az RSA-algoritmus Példa: 1. A két prím legyen 73 és Ekkor m = = 11023, ϕ(m) = (73 1)(151 1) = Legyen e = 11. (Relatív prímek zal.) 3. Ekkor a 11 inverze kiszámítható és az 5891 lesz. 4. Nyilvánosságra hozzuk: és 11; titokban tartjuk: 5891, 73 és Ha x = 17-et kell titkosítani, akkor y = 1782-t kapunk.

38 A kutya különös esete Mark Haddon: A kutya különös esete az éjszakában (2004.) A könyv egy autista fiú, Christopher kalandjait meséli el. Ő nagyon sokat tud a matematikáról és a fizikáról, de nagyon keveset az emberi érzelmekről. Alighanem ő a világirodalom egyik legkülönösebb nyomozója; egy este ugyanis a szomszéd kutyáját döglötten, vasvillával átszúrva találja a kertben, és elhatározza, hogy kinyomozza, ki ölte meg a kutyát.

39 A kutya különös esete A 47. fejezetben olvasható a nevek számosításának ötlete. A betűknek megfeleltetjük a számokat, és a betűk értékeit összeadjuk. Az nagyon jó, ha az összeg prímszám lesz. Például: James Bond (83) Scooby Doo (113) Sherlock Holmes (163) Molnár Zoltán (163)

40 Ajánlat Könyvek: Megyesi László: Bevezetés a számelméletbe Paul Hoffman: A prímember Filmek: Tükröm, tükröm A 23-as szám

41 Feladvány 1. Add meg azt a négyjegyű prímszámot, amely számjegyeinek összege és szorzata is prím. 2. Oldd meg a 2x + 3y + 6z = 78 egyenletet a prímszámok körében! 3. James Bond a futóversenyen 4. Prímcsillag 5. Prímkeresztrejtvény

42 Konklúzió Miért is szeretjük a prímszámokat? Matematikai válasz: A természetes számok építőkövei. A másik válasz:

43 Ez a 43. dia. A 43. dia

Prímszámok. A cikkben szereplő eredmények 2008 decemberéből származnak.

Prímszámok. A cikkben szereplő eredmények 2008 decemberéből származnak. A cikkben szereplő eredmények 2008 decemberéből származnak. Bevezetés on vagy felbonthatatlan számokon olyan pozitív egész számokat értünk, amelyeknek csak két pozitív osztójuk van, nevezetesen az 1 és

Részletesebben

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Számelmélet I.

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Számelmélet I. Számelmélet I. DEFINÍCIÓ: (Osztó, többszörös) Ha egy a szám felírható egy b szám és egy másik egész szám szorzataként, akkor a b számot az a osztójának, az a számot a b többszörösének nevezzük. Megjegyzés:

Részletesebben

Számelméleti alapfogalmak

Számelméleti alapfogalmak 1 Számelméleti alapfogalmak 1 Definíció Az a IN szám osztója a b IN számnak ha létezik c IN melyre a c = b Jelölése: a b 2 Példa a 0 bármely a számra teljesül, mivel c = 0 univerzálisan megfelel: a 0 =

Részletesebben

7. Számelmélet. 1. Lehet-e négyzetszám az a pozitív egész szám, amelynek tízes számrendszerbeli alakjában 510 darab 1-es és valahány 0 szerepel?

7. Számelmélet. 1. Lehet-e négyzetszám az a pozitív egész szám, amelynek tízes számrendszerbeli alakjában 510 darab 1-es és valahány 0 szerepel? 7. Számelmélet I. Nulladik ZH-ban láttuk: 1. Lehet-e négyzetszám az a pozitív egész szám, amelynek tízes számrendszerbeli alakjában 510 darab 1-es és valahány 0 szerepel? ELTE 2006. október 27. (matematika

Részletesebben

Következik, hogy B-nek minden prímosztója 4k + 1 alakú, de akkor B maga is 4k + 1 alakú, s ez ellentmondás.

Következik, hogy B-nek minden prímosztója 4k + 1 alakú, de akkor B maga is 4k + 1 alakú, s ez ellentmondás. Prímszámok A (pozitív) prímszámok sorozata a következő: 2, 3, 5, 7, 11, 13, 17, 19,... 1. Tétel. Végtelen sok prímszám van. Első bizonyítás. (Euklidész) Tegyük fel, hogy állításunk nem igaz, tehát véges

Részletesebben

RSA algoritmus. P(M) = M e mod n. S(C) = C d mod n. A helyesség igazoláshoz szükséges számelméleti háttér. a φ(n) = 1 mod n, a (a 1,a 2,...

RSA algoritmus. P(M) = M e mod n. S(C) = C d mod n. A helyesség igazoláshoz szükséges számelméleti háttér. a φ(n) = 1 mod n, a (a 1,a 2,... RSA algoritmus 1. Vegyünk véletlenszerűen két különböző nagy prímszámot, p-t és q-t. 2. Legyen n = pq. 3. Vegyünk egy olyan kis páratlan e számot, amely relatív prím φ(n) = (p 1)(q 1)-hez. 4. Keressünk

Részletesebben

Diszkrét matematika 1. estis képzés. Komputeralgebra Tanszék ősz

Diszkrét matematika 1. estis képzés. Komputeralgebra Tanszék ősz Diszkrét matematika 1. estis képzés 2015. ősz 1. Diszkrét matematika 1. estis képzés 6. előadás Mérai László diái alapján Komputeralgebra Tanszék 2015. ősz Elemi számelmélet Diszkrét matematika 1. estis

Részletesebben

Titkosírás. Biztos, hogy titkos? Szabó István előadása. Az életben sok helyen használunk titkosítást (mobil, internet, jelszavak...

Titkosírás. Biztos, hogy titkos? Szabó István előadása. Az életben sok helyen használunk titkosítást (mobil, internet, jelszavak... Biztos, hogy titkos? Szabó István előadása Az életben sok helyen használunk titkosítást (mobil, internet, jelszavak...) Története Az ókortól kezdve rengeteg feltört titkosírás létezik. Monoalfabetikus

Részletesebben

1.1. Definíció. Azt mondjuk, hogy a oszója b-nek, vagy más szóval, b osztható a-val, ha létezik olyan x Z, hogy b = ax. Ennek jelölése a b.

1.1. Definíció. Azt mondjuk, hogy a oszója b-nek, vagy más szóval, b osztható a-val, ha létezik olyan x Z, hogy b = ax. Ennek jelölése a b. 1. Oszthatóság, legnagyobb közös osztó Ebben a jegyzetben minden változó egész számot jelöl. 1.1. Definíció. Azt mondjuk, hogy a oszója b-nek, vagy más szóval, b osztható a-val, ha létezik olyan x Z, hogy

Részletesebben

Számelmélet. 4. Igazolja, hogy ha hat egész szám összege páratlan, akkor e számok szorzata páros!

Számelmélet. 4. Igazolja, hogy ha hat egész szám összege páratlan, akkor e számok szorzata páros! Számelmélet - oszthatóság definíciója - oszthatósági szabályok - maradékos osztás - prímek definíciója - összetett szám definíciója - legnagyobb közös osztó definíciója - legnagyobb közös osztó meghatározása

Részletesebben

OSZTHATÓSÁG. Osztók és többszörösök : a 3 többszörösei : a 4 többszörösei Ahol mindkét jel megtalálható a 12 többszöröseit találjuk.

OSZTHATÓSÁG. Osztók és többszörösök : a 3 többszörösei : a 4 többszörösei Ahol mindkét jel megtalálható a 12 többszöröseit találjuk. Osztók és többszörösök 1783. A megadott számok elsõ tíz többszöröse: 3: 3 6 9 12 15 18 21 24 27 30 4: 4 8 12 16 20 24 28 32 36 40 5: 5 10 15 20 25 30 35 40 45 50 6: 6 12 18 24 30 36 42 48 54 60 1784. :

Részletesebben

Számelmélet. 1. Oszthatóság Prímszámok

Számelmélet. 1. Oszthatóság Prímszámok Számelmélet Legnagyobb közös osztó, Euklideszi algoritmus. Lineáris diofantoszi egyenletek. Számelméleti kongruenciák, kongruenciarendszerek. Euler-féle ϕ-függvény. 1. Oszthatóság 1. Definíció. Legyen

Részletesebben

Oszthatóság. Oszthatóság definíciója (az egészek illetve a természetes számok halmazán):

Oszthatóság. Oszthatóság definíciója (az egészek illetve a természetes számok halmazán): Oszthatóság Oszthatóság definíciója (az egészek illetve a természetes számok halmazán): Azt mondjuk, hogy az a osztója b-nek (jel: a b), ha van olyan c egész, amelyre ac = b. A témakörben a betűk egész

Részletesebben

SzA XIII. gyakorlat, december. 3/5.

SzA XIII. gyakorlat, december. 3/5. SzA XIII. gyakorlat, 2013. december. 3/5. Drótos Márton 3 + 2 = 1 drotos@cs.bme.hu 1. Határozzuk meg az Euklidészi algoritmussal lnko(504, 372)-t! Határozzuk meg lkkt(504, 372)-t! Hány osztója van 504-nek?

Részletesebben

Diszkrét matematika I.

Diszkrét matematika I. Diszkrét matematika I. középszint 2014. ősz 1. Diszkrét matematika I. középszint 10. előadás Mérai László diái alapján Komputeralgebra Tanszék 2014. ősz Felhívás Diszkrét matematika I. középszint 2014.

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Számelmélet

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Számelmélet MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Számelmélet A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek

Részletesebben

Oszthatósági problémák

Oszthatósági problémák Oszthatósági problémák Érdekes kérdés, hogy egy adott számot el lehet-e osztani egy másik számmal (maradék nélkül). Ezek eldöntésére a matematika tanulmányok során néhány speciális esetre látunk is példát,

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Számelmélet

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Számelmélet MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Számelmélet A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek

Részletesebben

A prímszámok eloszlása, avagy az első 50 millió

A prímszámok eloszlása, avagy az első 50 millió Bevezetés Pímszámok A prímszámok eloszlása, avagy az első 50 millió prímszám. Klukovits Lajos TTIK Bolyai Intézet 2014. április 8. Néhány definíció. 1 A klasszikus számelméleti. p N prím, ha a p a = ±1,

Részletesebben

Diszkrét matematika I.

Diszkrét matematika I. Diszkrét matematika I. középszint 2014. ősz 1. Diszkrét matematika I. középszint 8. előadás Mérai László diái alapján Komputeralgebra Tanszék 2014. ősz Elemi számelmélet Diszkrét matematika I. középszint

Részletesebben

4. Számelmélet, számrendszerek

4. Számelmélet, számrendszerek I. Elméleti összefoglaló A maradékos osztás tétele: 4. Számelmélet, számrendszerek Legyen a tetszőleges, b pedig nullától különböző egész szám. Ekkor léteznek olyan, egyértelműen meghatározott q és r egész

Részletesebben

2016, Diszkrét matematika

2016, Diszkrét matematika Diszkrét matematika 8. előadás Sapientia Egyetem, Műszaki és Humántudományok Tanszék Marosvásárhely, Románia mgyongyi@ms.sapientia.ro 2016, őszi félév Miről volt szó az elmúlt előadáson? a Fibonacci számsorozat

Részletesebben

Arany Dániel Matematikai Tanulóverseny 2012/2013-as tanév 2. forduló haladók II. kategória

Arany Dániel Matematikai Tanulóverseny 2012/2013-as tanév 2. forduló haladók II. kategória Bolyai János Matematikai Társulat Arany Dániel Matematikai Tanulóverseny 2012/2013-as tanév 2. forduló haladók II. kategória Megoldások és javítási útmutató 1. Az a b pozitív egészek és tudjuk hogy a 2

Részletesebben

NULLADIK MATEMATIKA ZÁRTHELYI

NULLADIK MATEMATIKA ZÁRTHELYI A NULLADIK MATEMATIKA ZÁRTHELYI 20-09-2 Terem: Munkaidő: 0 perc. A dolgozat megírásához íróeszközön kívül semmilyen segédeszköz nem használható! Csak és kizárólag tollal tölthető ki a feladatlap, a ceruzával

Részletesebben

Prímek a középiskolai szakkörön

Prímek a középiskolai szakkörön Eötvös Loránd Tudományegyetem Természettudományi Kar Prímek a középiskolai szakkörön Szakdolgozat Készítette: Zsilinszky Dorina Matematika BSc Tanári szakirány Témavezet : Dr. Freud Róbert egyetemi docens

Részletesebben

Arany Dániel Matematikai Tanulóverseny 2010/2011-es tanév 1. forduló haladók III. kategória

Arany Dániel Matematikai Tanulóverseny 2010/2011-es tanév 1. forduló haladók III. kategória Bolyai János Matematikai Társulat Oktatásért Közalapítvány támogatásával Arany Dániel Matematikai Tanulóverseny 2010/2011-es tanév 1. forduló haladók III. kategória Megoldások és javítási útmutató 1. Határozzuk

Részletesebben

A lehetetlenségre visszavezetés módszere (A reductio ad absurdum módszer)

A lehetetlenségre visszavezetés módszere (A reductio ad absurdum módszer) A lehetetlenségre visszavezetés módszere (A reductio ad absurdum módszer) Ezt a módszert akkor alkalmazzuk, amikor könnyebb bizonyítani egy állítás ellentettjét, mintsem az állítást direktben. Ez a módszer

Részletesebben

Arany Dániel Matematikai Tanulóverseny 2012/2013-as tanév 1. forduló haladók III. kategória

Arany Dániel Matematikai Tanulóverseny 2012/2013-as tanév 1. forduló haladók III. kategória Bolyai János Matematikai Társulat Arany Dániel Matematikai Tanulóverseny 0/03-as tanév. forduló haladók III. kategória Megoldások és javítási útmutató. Egy kör kerületére felírjuk -től 3-ig az egészeket

Részletesebben

A Riemann-Siegel zeta függvény kiugró értékeinek keresése. A matematikai egyik legnehezebb problémája, avagy a prímszámok misztériuma

A Riemann-Siegel zeta függvény kiugró értékeinek keresése. A matematikai egyik legnehezebb problémája, avagy a prímszámok misztériuma A Riemann-Siegel zeta függvény kiugró értékeinek keresése A matematikai egyik legnehezebb problémája, avagy a prímszámok misztériuma 2013 A probléma fontossága és hatása a hétköznapi életre A prímszámok

Részletesebben

Elemi algebrai eszközökkel megoldható versenyfeladatok Ábrahám Gábor, Szeged

Elemi algebrai eszközökkel megoldható versenyfeladatok Ábrahám Gábor, Szeged Magas szintű matematikai tehetséggondozás Elemi algebrai eszközökkel megoldható versenyfeladatok Ábrahám Gábor, Szeged Ahhoz, hogy egy diák kimagasló eredményeket érhessen el matematika versenyeken, elengedhetetlenül

Részletesebben

Függvény fogalma, jelölések 15

Függvény fogalma, jelölések 15 DOLGO[Z]ZATOK 9.. 1. Függvény fogalma, jelölések 1 1. Az alábbi hozzárendelések közül melyek függvények? a) A magyarországi megyékhez hozzárendeljük a székhelyüket. b) Az egész számokhoz hozzárendeljük

Részletesebben

GAUSS-EGÉSZEK ÉS DIRICHLET TÉTELE

GAUSS-EGÉSZEK ÉS DIRICHLET TÉTELE GAUSS-EGÉSZEK ÉS DIRICHLET TÉTELE KEITH KEARNES, KISS EMIL, SZENDREI ÁGNES Első rész 1. Bevezetés Tekintsük az ak + b számtani sorozatot, ahol a > 0. Ha a és b nem relatív prímek, akkor (a,b) > 1 osztója

Részletesebben

Arany Dániel Matematikai Tanulóverseny 2008/2009-es tanév első (iskolai) forduló haladók II. kategória

Arany Dániel Matematikai Tanulóverseny 2008/2009-es tanév első (iskolai) forduló haladók II. kategória Bolyai János Matematikai Társulat Oktatási és Kulturális Minisztérium Támogatáskezelő Igazgatósága támogatásával Arany Dániel Matematikai Tanulóverseny 00/009-es tanév első (iskolai) forduló haladók II.

Részletesebben

Az Országos Középiskolai Tanulmányi Verseny tanévi első fordulójának feladatmegoldásai

Az Országos Középiskolai Tanulmányi Verseny tanévi első fordulójának feladatmegoldásai Az Országos Középiskolai Tanulmányi Verseny 008-009. tanévi első fordulójának feladatmegoldásai matematikából, a II. kategória számára. Határozzuk meg az alábbi egyenletrendszer valós megoldásait. ( x

Részletesebben

MATEMATIKAI KOMPETENCIATERÜLET A

MATEMATIKAI KOMPETENCIATERÜLET A MATEMATIKAI KOMPETENCIATERÜLET A Matematika 9. évfolyam 1. félév ESZKÖZÖK Matematika A 9. évfolyam 1. modul 1.1 dominó { 5-re végződő páros számok } { az x < 0 egyenlet megoldásai } { a Föld holdjai }

Részletesebben

V. Békés Megyei Középiskolai Matematikaverseny 2012/2013 Megoldások 12. évfolyam

V. Békés Megyei Középiskolai Matematikaverseny 2012/2013 Megoldások 12. évfolyam 01/01 1. évfolyam 1. Egy röplabda bajnokságban minden csapat pontosan egyszer játszik a többi csapat mindegyikével. A bajnokságból még két forduló van hátra és eddig 104 mérkőzést játszottak le. Hány csapat

Részletesebben

MBL013E Számelmélet és Alkalmazásai

MBL013E Számelmélet és Alkalmazásai MBL013E Számelmélet és Alkalmazásai előadás vázlat 2013 0. Korábbi kurzusok alapján ismertnek föltételezett anyag. 1. Az MBL112E kódú, Bevezetés a száelméletbe c. kurzus anyaga, különösen a következők:

Részletesebben

Érdekességek az elemi matematika köréből

Érdekességek az elemi matematika köréből Érdekességek az elemi matematika köréből Csizmadia László Bolyai Intézet, Szegedi Tudományegyetem Kutatók éjszakája Szeged, SZTE L. Csizmadia (Szeged) Kutatók éjszakája 2011. 2011.09.23. 1 / 17 Társasház

Részletesebben

RSA algoritmus. Smidla József. Rendszer- és Számítástudományi Tanszék Pannon Egyetem

RSA algoritmus. Smidla József. Rendszer- és Számítástudományi Tanszék Pannon Egyetem RSA algoritmus Smidla József Rendszer- és Számítástudományi Tanszék Pannon Egyetem 2012. 3. 27. Smidla József (RSZT) RSA algoritmus 2012. 3. 27. 1 / 29 Tartalom 1 Aszimmetrikus kódolók 2 Matematikai alapok

Részletesebben

GAUSS-EGÉSZEK ÉS DIRICHLET TÉTELE

GAUSS-EGÉSZEK ÉS DIRICHLET TÉTELE GAUSS-EGÉSZEK ÉS DIRICHLET TÉTELE KEITH KEARNES, KISS EMIL, SZENDREI ÁGNES Második rész Cikkünk első részében az elemrend és a körosztási polinomok fogalmára alapozva beláttuk, hogy ha n pozitív egész,

Részletesebben

A 2013/2014. tanévi Országos Középiskolai Tanulmányi Verseny MATEMATIKA II. KATEGÓRIA (GIMNÁZIUM)

A 2013/2014. tanévi Országos Középiskolai Tanulmányi Verseny MATEMATIKA II. KATEGÓRIA (GIMNÁZIUM) A 2013/2014. tanévi Országos Középiskolai Tanulmányi Verseny első forduló MATEMATIKA II. KATEGÓRIA (GIMNÁZIUM) Javítási értékelési útmutató 1. Melyek azok a pozitív p és q prímek, amelyekre a számok mindegyike

Részletesebben

Prímszámok statisztikai analízise

Prímszámok statisztikai analízise Prímszámok statisztikai analízise Puszta Adrián 28. április 18. Kivonat Munkám során a prímszámok és a páros prímek eloszlását, illetve különbségét vizsgáltam, majd ebből következtettem a véletlenszerű

Részletesebben

Az egyenlőtlenség mindkét oldalát szorozzuk meg 4 16-al:

Az egyenlőtlenség mindkét oldalát szorozzuk meg 4 16-al: Bevezető matematika kémikusoknak., 04. ősz. feladatlap. Ábrázoljuk számegyenesen a következő egyenlőtlenségek megoldáshalmazát! (a) x 5 < 3 5 x < 3 x 5 < (d) 5 x

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA MATEmATIkA I 6 VI KOmPLEX SZÁmOk 1 A komplex SZÁmOk HALmAZA A komplex számok olyan halmazt alkotnak amelyekben elvégezhető az összeadás és a szorzás azaz két komplex szám összege és szorzata

Részletesebben

Információs társadalom alapismeretek

Információs társadalom alapismeretek Információs társadalom alapismeretek Szabó Péter Gábor Titkosítás és számítástechnika Titkosítás alapfogalmai A Colossus Kriptográfia A rejtjelezés két fı lépésbıl áll: 1) az üzenet titkosítása (kódolás)

Részletesebben

Matematika pótvizsga témakörök 9. V

Matematika pótvizsga témakörök 9. V Matematika pótvizsga témakörök 9. V 1. Halmazok, műveletek halmazokkal halmaz, halmaz eleme halmazok egyenlősége véges, végtelen halmaz halmazok jelölése, megadása természetes számok egész számok racionális

Részletesebben

300 válogatott matematikafeladat 7 8. osztályosoknak

300 válogatott matematikafeladat 7 8. osztályosoknak VILLÁMKÉRDÉSEK 300 válogatott matematikafeladat 7 8. osztályosoknak 1. Adottak az 1 x, 2 x, 3 x,..., 100 x számok. Számold ki a szorzatukat, ha x = 18. 2. Adottak az 1 x, 2 x, 3 x,..., 100 x számok. Számold

Részletesebben

A folyammenti kultúrák. (a, b, c) N 3 Pithagoraszi számhármas, ha. Pithagoraszi számhármasok, a Fermat problémakör. a 2 + b 2 = c 2.

A folyammenti kultúrák. (a, b, c) N 3 Pithagoraszi számhármas, ha. Pithagoraszi számhármasok, a Fermat problémakör. a 2 + b 2 = c 2. Pithagoraszi számhármasok, Klukovits Lajos TTIK Bolyai Intézet 014. április 1. Definíciók. (a, b, c) N 3 Pithagoraszi számhármas, ha a + b = c. Az x + y = z egyenletet szokás Pithagoraszi egyenletnek nevezni.

Részletesebben

Megoldások 9. osztály

Megoldások 9. osztály XXV. Nemzetközi Magyar Matematikaverseny Budapest, 2016. március 1115. Megoldások 9. osztály 1. feladat Nevezzünk egy számot prímösszeg nek, ha a tízes számrendszerben felírt szám számjegyeinek összege

Részletesebben

Diszkrét matematika II. feladatok

Diszkrét matematika II. feladatok Diszkrét matematika II. feladatok 1. Gráfelmélet 1.1. Könnyebb 1. Rajzold le az összes, páronként nem izomorf 3, 4, illetve 5 csúcsú egyszerű gráfot! 2. Van-e olyan (legalább kétpontú) gráf, melyben minden

Részletesebben

PRÍMSZÁMOK ÉS A TITKOSÍRÁS

PRÍMSZÁMOK ÉS A TITKOSÍRÁS PRÍMSZÁMOK ÉS A TITKOSÍRÁS Meszéna Tamás Ciszterci Rend Nagy Lajos Gimnáziuma és Kollégiuma, Pécs, meszena.tamas@gmail.com, az ELTE Fizika Tanítása doktori program hallgatója ÖSSZEFOGLALÁS Úgy tapasztaltam,

Részletesebben

Egyenletek, egyenlőtlenségek VII.

Egyenletek, egyenlőtlenségek VII. Egyenletek, egyenlőtlenségek VII. Magasabbfokú egyenletek: A 3, vagy annál nagyobb fokú egyenleteket magasabb fokú egyenleteknek nevezzük. Megjegyzés: Egy n - ed fokú egyenletnek legfeljebb n darab valós

Részletesebben

Sorozatok I. Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma)

Sorozatok I. Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Sorozatok I. DEFINÍCIÓ: (Számsorozat) A számsorozat olyan függvény, amelynek értelmezési tartománya a pozitív egész számok halmaza, értékkészlete a valós számok egy részhalmaza. Jelölés: (a n ), {a n }.

Részletesebben

Miért érdekes a görög matematika?

Miért érdekes a görög matematika? 2016. március Tartalom 1 Bevezetés 2 Geometria 3 Számelmélet 4 Analízis 5 Matematikai csillagászat 6 Következtetések Bevezetés Miért éppen a görög matematika? A középiskolások sok olyan matematikai témát

Részletesebben

konvergensek-e. Amennyiben igen, számítsa ki határértéküket!

konvergensek-e. Amennyiben igen, számítsa ki határértéküket! 1. Határértékek 1. Állapítsa meg az alábbi sorozatokról, hogy van-e határértékük, konvergensek-e. Amennyiben igen, számítsa ki határértéküket! 2 2...2 2 (n db gyökjel), lim a) lim n b) lim n (sin(1)) n,

Részletesebben

Gyakorló feladatok javítóvizsgára szakközépiskola matematika 9. évfolyam

Gyakorló feladatok javítóvizsgára szakközépiskola matematika 9. évfolyam Gyakorló feladatok javítóvizsgára szakközépiskola matematika 9. évfolyam Halmazok:. Adott két halmaz: A = kétjegyű pozitív, 4-gyel osztható számok B = 0-nél nagyobb, de 0-nál nem nagyobb pozitív egész

Részletesebben

ALGEBRA. egyenlet megoldásait, ha tudjuk, hogy egész számok, továbbá p + q = 198.

ALGEBRA. egyenlet megoldásait, ha tudjuk, hogy egész számok, továbbá p + q = 198. ALGEBRA MÁSODFOKÚ POLINOMOK. Határozzuk meg az + p + q = 0 egyelet megoldásait, ha tudjuk, hogy egész számok, továbbá p + q = 98.. Határozzuk meg az összes olya pozitív egész p és q számot, amelyre az

Részletesebben

Matematika szóbeli érettségi témakörök 2016/2017-es tanév őszi vizsgaidőszak

Matematika szóbeli érettségi témakörök 2016/2017-es tanév őszi vizsgaidőszak Matematika szóbeli érettségi témakörök 2016/2017-es tanév őszi vizsgaidőszak Halmazok Halmazok egyenlősége Részhalmaz, valódi részhalmaz Üres halmaz Véges és végtelen halmaz Halmazműveletek (unió, metszet,

Részletesebben

SZÁMKERESZTREJTVÉNYEK

SZÁMKERESZTREJTVÉNYEK Róka Sándor SZÁMKERESZTREJTVÉNYEK Bővített és átdolgozott kiadás TARTALOM Bevezetés 7 Keresztező feladatok (1 26 számkeresztrejtvény) 11 Egyszerűbb számkeresztrejtvények (27 33. számkeresztrejtvény) 83

Részletesebben

Tartalomjegyzék. Tartalomjegyzék Valós változós valós értékű függvények... 2

Tartalomjegyzék. Tartalomjegyzék Valós változós valós értékű függvények... 2 Tartalomjegyzék Tartalomjegyzék... Valós változós valós értékű függvények... Hatványfüggvények:... Páratlan gyökfüggvények:... Páros gyökfüggvények... Törtkitevős függvények (gyökfüggvények hatványai)...

Részletesebben

Fermat kongruencia-tétele, pszeudoprímszámok

Fermat kongruencia-tétele, pszeudoprímszámok Fermat kongruencia-tétele, pszeudoprímszámok Dr. Tóth László Pécsi Tudományegyetem 2005. december 15. Bolyai János születésének napja 1. Fermat kongruencia-tétele A kínai matematikusok már K. e. 500 körül

Részletesebben

Osztályozóvizsga követelményei

Osztályozóvizsga követelményei Osztályozóvizsga követelményei Képzés típusa: Tantárgy: Nyolcosztályos gimnázium Matematika Évfolyam: 9 Emelt óraszámú csoport Emelt szintű csoport Vizsga típusa: Írásbeli Követelmények, témakörök: Gondolkodási

Részletesebben

1. Legyen egy háromszög három oldalának a hossza a, b, c. Bizonyítsuk be, hogy Mikor állhat fenn egyenlőség? Kántor Sándorné, Debrecen

1. Legyen egy háromszög három oldalának a hossza a, b, c. Bizonyítsuk be, hogy Mikor állhat fenn egyenlőség? Kántor Sándorné, Debrecen 10. osztály 1. Legyen egy háromszög három oldalának a hossza a, b, c. Bizonyítsuk be, hogy ( a + b + c) 3 4 ab + bc + ca Mikor állhat fenn egyenlőség? Kántor Sándorné, Debrecen A feladatban szereplő kettős

Részletesebben

8. Egyenletek, egyenlőtlenségek, egyenletrendszerek II.

8. Egyenletek, egyenlőtlenségek, egyenletrendszerek II. 8 Egyenletek, egyenlőtlenségek, egyenletrendszerek II Elméleti összefoglaló Az a + b+ c, a egyenletet másodfokú egyenletnek nevezzük A D b ac kifejezést az egyenlet diszkriminánsának nevezzük Ha D >, az

Részletesebben

Magasabbfokú egyenletek

Magasabbfokú egyenletek 86 Magasabbfokú egyenletek Magasabbfokú egyenletek 5 90 a) =! ; b) =! ; c) = 5, 9 a) Legyen = y Új egyenletünk: y - 5y+ = 0 Ennek gyökei: y=, y= Tehát egyenletünk gyökei:, =!,, =! b) Új egyenletünk: y

Részletesebben

Az egyszerűsítés utáni alak:

Az egyszerűsítés utáni alak: 1. gyszerűsítse a következő törtet, ahol b 6. 2 b 36 b 6 Az egyszerűsítés utáni alak: 2. A 2, 4 és 5 számjegyek mindegyikének felhasználásával elkészítjük az összes, különböző számjegyekből álló háromjegyű

Részletesebben

Algoritmuselmélet 18. előadás

Algoritmuselmélet 18. előadás Algoritmuselmélet 18. előadás Katona Gyula Y. Budapesti Műszaki és Gazdaságtudományi Egyetem Számítástudományi Tsz. I. B. 137/b kiskat@cs.bme.hu 2002 Május 7. ALGORITMUSELMÉLET 18. ELŐADÁS 1 Közelítő algoritmusok

Részletesebben

Megoldott feladatok november 30. n+3 szigorúan monoton csökken, 5. n+3. lim a n = lim. n+3 = 2n+3 n+4 2n+1

Megoldott feladatok november 30. n+3 szigorúan monoton csökken, 5. n+3. lim a n = lim. n+3 = 2n+3 n+4 2n+1 Megoldott feladatok 00. november 0.. Feladat: Vizsgáljuk az a n = n+ n+ sorozat monotonitását, korlátosságát és konvergenciáját. Konvergencia esetén számítsuk ki a határértéket! : a n = n+ n+ = n+ n+ =

Részletesebben

karakterisztikus egyenlet Ortogonális mátrixok. Kvadratikus alakok főtengelytranszformációja

karakterisztikus egyenlet Ortogonális mátrixok. Kvadratikus alakok főtengelytranszformációja Mátrixok hasonlósága, karakterisztikus mátrix, karakterisztikus egyenlet Ortogonális mátrixok. Kvadratikus alakok főtengelytranszformációja 1.Mátrixok hasonlósága, karakterisztikus mátrix, karakterisztikus

Részletesebben

Acta Acad. Paed. Agriensis, Sectio Mathematicae 29 (2002) PARTÍCIÓK PÁRATLAN SZÁMOKKAL. Orosz Gyuláné (Eger, Hungary)

Acta Acad. Paed. Agriensis, Sectio Mathematicae 29 (2002) PARTÍCIÓK PÁRATLAN SZÁMOKKAL. Orosz Gyuláné (Eger, Hungary) Acta Acad. Paed. Agriensis, Sectio Mathematicae 9 (00) 07 4 PARTÍCIÓK PÁRATLAN SZÁMOKKAL Orosz Gyuláné (Eger, Hungary) Kiss Péter professzor emlékére Abstract. In this article, we characterize the odd-summing

Részletesebben

SZTE TTIK Bolyai Intézet

SZTE TTIK Bolyai Intézet Néhány érdekes végtelen összegről Dr. Németh József SZTE TTIK Bolyai Intézet Analízis Tanszék http://www.math.u-szeged.hu/ nemethj Háttéranyag: Németh József: Előadások a végtelen sorokról (Polygon, Szeged,

Részletesebben

Megoldás: Mindkét állítás hamis! Indoklás: a) Azonos alapú hatványokat úgy szorzunk, hogy a kitevőket összeadjuk. Tehát: a 3 * a 4 = a 3+4 = a 7

Megoldás: Mindkét állítás hamis! Indoklás: a) Azonos alapú hatványokat úgy szorzunk, hogy a kitevőket összeadjuk. Tehát: a 3 * a 4 = a 3+4 = a 7 A = {1; 3; 5; 7; 9} A B = {3; 5; 7} A/B = {1; 9} Mindkét állítás hamis! Indoklás: a) Azonos alapú hatványokat úgy szorzunk, hogy a kitevőket összeadjuk. Tehát: a 3 * a 4 = a 3+4 = a 7 Azonos alapú hatványokat

Részletesebben

DIFFERENCIÁLEGYENLETEK. BSc. Matematika II. BGRMA2HNND, BGRMA2HNNC

DIFFERENCIÁLEGYENLETEK. BSc. Matematika II. BGRMA2HNND, BGRMA2HNNC BSC MATEMATIKA II. MÁSODRENDŰ LINEÁRIS DIFFERENCIÁLEGYENLETEK BSc. Matematika II. BGRMAHNND, BGRMAHNNC MÁSODRENDŰ DIFFERENCIÁLEGYENLETEK Egy explicit közönséges másodrendű differenciálegyenlet általános

Részletesebben

Sorozatok határértéke VÉGTELEN SOROK

Sorozatok határértéke VÉGTELEN SOROK Sorozatok határértéke VÉGTELEN SOROK Végtelen valós számsor: Definíció: Az a n sorozat tagjaiból képzett a 1 + a 2 + + a n + végtelen összeget végtelen valós számsornak, röviden sornak nevezzük. Sor részletösszegei:

Részletesebben

148 feladat 20 ) + ( 1 21 + 2 21 + + 20 200 > 1 2. 1022 + 1. 5. Igazoljuk minél rövidebben, hogy a következő egyenlőség helyes: 51 + 1 52 + + 1

148 feladat 20 ) + ( 1 21 + 2 21 + + 20 200 > 1 2. 1022 + 1. 5. Igazoljuk minél rövidebben, hogy a következő egyenlőség helyes: 51 + 1 52 + + 1 148 feladat a Kalmár László Matematikaversenyről 1. ( 1 19 + 2 19 + + 18 19 ) + ( 1 20 + 2 20 + + 19 20 ) + ( 1 21 + 2 21 + + 20 21 ) + ( 1 22 + 2 22 + + 21 22 ) =? Kalmár László Matematikaverseny megyei

Részletesebben

Arany Dániel Matematikai Tanulóverseny 2009/2010-es tanév első (iskolai) forduló haladók II. kategória

Arany Dániel Matematikai Tanulóverseny 2009/2010-es tanév első (iskolai) forduló haladók II. kategória Bolyai János Matematikai Társulat Oktatási és Kulturális Minisztérium Támogatáskezelő Igazgatósága támogatásával Arany Dániel Matematikai Tanulóverseny 009/00-es tanév első (iskolai) forduló haladók II.

Részletesebben

2. Feladatsor. N k = {(a 1,...,a k ) : a 1,...,a k N}

2. Feladatsor. N k = {(a 1,...,a k ) : a 1,...,a k N} 2. Feladatsor Oszthatóság, legnagyobb közös osztó, prímfaktorizáció az egész számok körében 1 Kötelező házi feladat(ok) 2., Határozzuk meg a ϕ:z Z, z [ z 5] leképezés magját. Adjuk meg a ker(ϕ)-hez tartozó

Részletesebben

Az Országos Középiskolai Tanulmányi Verseny 2006-2007. tanévi első fordulójának feladatmegoldásai

Az Országos Középiskolai Tanulmányi Verseny 2006-2007. tanévi első fordulójának feladatmegoldásai Az Országos Középiskolai Tanulmányi Verseny 006-007. tanévi első fordulójának feladatmegoldásai matematikából, a II. kategória számára 1. Melyek azok a pozitív egészek, amelyeknek pontosan négy pozitív

Részletesebben

Arany Dániel Matematikai Tanulóverseny 2016/2017-es tanév első (iskolai) forduló Haladók II. kategória

Arany Dániel Matematikai Tanulóverseny 2016/2017-es tanév első (iskolai) forduló Haladók II. kategória Bolyai János Matematikai Társulat Arany Dániel Matematikai Tanulóverseny 016/017-es tanév első iskolai) forduló Haladók II. kategória Megoldások és javítási útmutató 1. A k valós paraméter értékétől függően

Részletesebben

24. szakkör (Csoportelméleti alapfogalmak 3.)

24. szakkör (Csoportelméleti alapfogalmak 3.) 24. szakkör (Csoportelméleti alapfogalmak 3.) D) PERMUTÁCIÓK RENDJE Fontos kérdés a csoportelméletben, hogy egy adott elem hanyadik hatványa lesz az egység. DEFINÍCIÓ: A legkisebb olyan pozitív k számot,

Részletesebben

megtalálásának hihetetlen nehéz voltán alapszik. Az eljárás matematikai alapja a kis FERMAT-tétel egy következménye:

megtalálásának hihetetlen nehéz voltán alapszik. Az eljárás matematikai alapja a kis FERMAT-tétel egy következménye: Az RSA módszer Az RSA módszer titkossága a prímtényezős felbontás nehézségén, a prímtényezők megtalálásának hihetetlen nehéz voltán alapszik. Az eljárás matematikai alapja a kis FERMAT-tétel egy következménye:

Részletesebben

Diszkrét matematika 2.C szakirány

Diszkrét matematika 2.C szakirány Diszkrét matematika 2.C szakirány 2015. ősz 1. Diszkrét matematika 2.C szakirány 7. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék 2015.

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Számelmélet

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Számelmélet MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Számelmélet A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek

Részletesebben

Arany Dániel Matematikai Tanulóverseny 2012/2013-as tanév első (iskolai) forduló haladók II. kategória

Arany Dániel Matematikai Tanulóverseny 2012/2013-as tanév első (iskolai) forduló haladók II. kategória Bolyai János Matematikai Társulat Arany Dániel Matematikai Tanulóverseny 2012/2013-as tanév első (iskolai) forduló haladók II. kategória Megoldások és javítási útmutató 1. A 23-as szám című misztikus filmben

Részletesebben

XX. Nemzetközi Magyar Matematika Verseny

XX. Nemzetközi Magyar Matematika Verseny XX. Nemzetközi Magyar Matematika Verseny Bonyhád, 011. március 11 15. 10. osztály 1. feladat: Legyen egy háromszög három oldalának a hossza a, b és c. Bizonyítsuk be, hogy 3 (a+b+c) ab+bc+ca 4 Mikor állhat

Részletesebben

XVIII. Nemzetközi Magyar Matematika Verseny

XVIII. Nemzetközi Magyar Matematika Verseny 9. osztály 1. feladat: Oldjuk meg a természetes számok halmazán az 1 1 1 egyenletet? x y 009 Kántor Sándor (Debrecen). feladat: B Az ABCD deltoidban az A és C csúcsnál derékszög van, és a BD átló 1 cm.

Részletesebben

Komplex számok. Wettl Ferenc Wettl Ferenc () Komplex számok / 9

Komplex számok. Wettl Ferenc Wettl Ferenc () Komplex számok / 9 Komplex számok Wettl Ferenc 2010-09-10 Wettl Ferenc () Komplex számok 2010-09-10 1 / 9 Tartalom 1 Számok Egy kis történelem A megoldóképlet egy speciális esetre Lehet számolni negatív szám gyökével Műveletek

Részletesebben

I. Gondolkodási módszerek: (6 óra) 1. Gondolkodási módszerek, a halmazelmélet elemei, a logika elemei. 1. Számfogalom, műveletek (4 óra)

I. Gondolkodási módszerek: (6 óra) 1. Gondolkodási módszerek, a halmazelmélet elemei, a logika elemei. 1. Számfogalom, műveletek (4 óra) MATEMATIKA NYEK-humán tanterv Matematika előkészítő év Óraszám: 36 óra Tanítási ciklus 1 óra / 1 hét Részletes felsorolás A tananyag felosztása: I. Gondolkodási módszerek: (6 óra) 1. Gondolkodási módszerek,

Részletesebben

PYTAGORIÁDA. 1. Két szám összege 156. Az első összeadandó a 86 és a 34 különbsége. Mekkora a másik összeadandó?

PYTAGORIÁDA. 1. Két szám összege 156. Az első összeadandó a 86 és a 34 különbsége. Mekkora a másik összeadandó? Az iskolai forduló feladatai 2006/2007-es tanév Kategória P 3 1. Két szám összege 156. Az első összeadandó a 86 és a 34 különbsége. Mekkora a másik összeadandó? 2. Számítsd ki: 19 18 + 17 16 + 15 14 =

Részletesebben

3. Előadás. Megyesi László: Lineáris algebra, oldal. 3. előadás Lineáris egyenletrendszerek

3. Előadás. Megyesi László: Lineáris algebra, oldal. 3. előadás Lineáris egyenletrendszerek 3. Előadás Megyesi László: Lineáris algebra, 47. 50. oldal. Gondolkodnivalók Determinánsok 1. Gondolkodnivaló Determinánselméleti tételek segítségével határozzuk meg a következő n n-es determinánst: 1

Részletesebben

Miller-Rabin prímteszt

Miller-Rabin prímteszt Az RSA titkosítás Nyílt kulcsú titkosításnak nevezünk egy E : A B és D : B A leképezés-párt, ha bármely a A-ra D(E(a)) = a (ekkor E szükségképpen injektív leképezés), E ismeretében E(a) könnyen számítható,

Részletesebben

1. Mit nevezünk egész számok-nak? Válaszd ki a következő számok közül az egész számokat: 3 ; 3,1 ; 1,2 ; -2 ; -0,7 ; 0 ; 1500

1. Mit nevezünk egész számok-nak? Válaszd ki a következő számok közül az egész számokat: 3 ; 3,1 ; 1,2 ; -2 ; -0,7 ; 0 ; 1500 1. Mit nevezünk egész számok-nak? Válaszd ki a következő számok közül az egész számokat: 3 ; 3,1 ; 1,2 ; -2 ; -0,7 ; 0 ; 1500 2. Mit nevezünk ellentett számok-nak? Ábrázold számegyenesen a következő számokat

Részletesebben

Számológép nélkül! százasokra:,,zsinór ; ezresekre:,,lótuszvirág ; tízezresekre:,,ujj ; százezresekre:

Számológép nélkül! százasokra:,,zsinór ; ezresekre:,,lótuszvirág ; tízezresekre:,,ujj ; százezresekre: Számológép nélkül! Manapság az iskolában a matematika órán szinte mindenhez megengedett a számológép használata. Persze mindezen a mai világban már meg se lepődünk, hiszen a mindennapi tevékenységeink

Részletesebben

Információk. Ismétlés II. Ismétlés. Ismétlés III. A PROGRAMOZÁS ALAPJAI 2. Készítette: Vénné Meskó Katalin. Algoritmus. Algoritmus ábrázolása

Információk. Ismétlés II. Ismétlés. Ismétlés III. A PROGRAMOZÁS ALAPJAI 2. Készítette: Vénné Meskó Katalin. Algoritmus. Algoritmus ábrázolása 1 Információk 2 A PROGRAMOZÁS ALAPJAI 2. Készítette: Vénné Meskó Katalin Elérhetőség mesko.katalin@tfk.kefo.hu Fogadóóra: szerda 9:50-10:35 Számonkérés időpontok Április 25. 9 00 Május 17. 9 00 Június

Részletesebben

Egy általános iskolai feladat egyetemi megvilágításban

Egy általános iskolai feladat egyetemi megvilágításban Egy általános iskolai feladat egyetemi megvilágításban avagy mit kell(ene) tudnia egy 8.-osnak a matematika versenyeken Kunos Ádám Középiskolás pályázat díjkiosztó SZTE Bolyai Intézet 2011. november 12.

Részletesebben

1. Az ábrán látható táblázat minden kis négyzete 1 cm oldalhosszúságú. A kis négyzetek határvonalait akarjuk lefedni. Meg lehet-e ezt tenni

1. Az ábrán látható táblázat minden kis négyzete 1 cm oldalhosszúságú. A kis négyzetek határvonalait akarjuk lefedni. Meg lehet-e ezt tenni 1. Az ábrán látható táblázat minden kis négyzete 1 cm oldalhosszúságú. A kis négyzetek határvonalait akarjuk lefedni. Meg lehet-e ezt tenni a) 5 db 8 cm hosszú, b) 8 db 5 cm hosszú cérnával? Megoldás:

Részletesebben

2016/2017. Matematika 9.Kny

2016/2017. Matematika 9.Kny 2016/2017. Matematika 9.Kny Gondolkodási módszerek 1. Számhalmazok: N, Z, Q, Q*, R a számhalmazok kapcsolata, halmazábra 2. Ponthalmazok: o 4. oldal K I. fejezet: 172-178., 180-185., 191. feladat távolsággal

Részletesebben

Zárthelyi feladatok megoldásai tanulságokkal Csikvári Péter 1. a) Számítsuk ki a 2i + 3j + 6k kvaternió inverzét.

Zárthelyi feladatok megoldásai tanulságokkal Csikvári Péter 1. a) Számítsuk ki a 2i + 3j + 6k kvaternió inverzét. Zárthelyi feladatok megoldásai tanulságokkal Csikvári Péter 1. a Számítsuk ki a 2i + 3j + 6k kvaternió inverzét. b Köbgyöktelenítsük a nevezőt az alábbi törtben: 1 3 3. Megoldás: a Egy q = a + bi + cj

Részletesebben

6. Függvények. 1. Az alábbi függvények közül melyik szigorúan monoton növekvő a 0;1 intervallumban?

6. Függvények. 1. Az alábbi függvények közül melyik szigorúan monoton növekvő a 0;1 intervallumban? 6. Függvények I. Nulladik ZH-ban láttuk: 1. Az alábbi függvények közül melyik szigorúan monoton növekvő a 0;1 intervallumban? f x g x cos x h x x ( ) sin x (A) Az f és a h. (B) Mindhárom. (C) Csak az f.

Részletesebben

Szabolcs-Szatmár-Bereg megyei Ambrózy Géza Matematikaverseny 2012/2013 II. forduló 5. osztály

Szabolcs-Szatmár-Bereg megyei Ambrózy Géza Matematikaverseny 2012/2013 II. forduló 5. osztály 5. osztály 1. Hány olyan téglalap van, amelynek minden oldala centiméterben kifejezve egész szám, és a területe 60 cm 2? 2. Adott a síkon egy ABC szabályos háromszög. Keresd meg a síkon az összes olyan

Részletesebben