folyamatrendszerek modellezése

Save this PDF as:
 WORD  PNG  TXT  JPG

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "folyamatrendszerek modellezése"

Átírás

1 Diszkrét eseményű folyamatrendszerek modellezése Hangos Katalin Számítástudomány Alkalmazása Tanszék Veszprémi Egyetem Haladó Folyamatmodellezés és modell analízis PhD kurzus p. 1/36

2 Tartalom Diszkrét eseményű rendszerek jellemzése Véges automata modellek Petri háló modellek közönséges, időzített, színes, hierarchikus Diszkrét eseményű modellek megoldása Diszkrét eseményű modellek dinamikus analízise elérhetőség, végesség, holtpontok, ciklikus viselkedés Haladó Folyamatmodellezés és modell analízis PhD kurzus p. 2/36

3 Diszkrét eseményű rendszerek jellemzése Haladó Folyamatmodellezés és modell analízis PhD kurzus p. 3/36

4 Diszkrét eseményű rendszerek Jellemző tulajdonságok: a jelek (bemenet, kimenet, állapot) érték-készlete diszkrét: x(t) X = {x 0,x 1,...,x n } esemény: egy diszkrét jelérték-változás bekövetkezése az idő diszkrét: T = {x 0,x 1,...,x n } = {0, 1,...,n} Csak az események sorrendje számít soros és párhuzamos események leírása alkalmazási területek: ütemezés, operátori eljárások, erőforrás-kezelés Haladó Folyamatmodellezés és modell analízis PhD kurzus p. 4/36

5 Egyszerű példa: reaktor-szűrő rendszer Fresh solvent Raw material Reactor Product Filters Product Recycle pump Haladó Folyamatmodellezés és modell analízis PhD kurzus p. 5/36

6 Véges automata modellek Haladó Folyamatmodellezés és modell analízis PhD kurzus p. 6/36

7 Véges automata modell Absztrakt leírás: A = (Q, Σ, δ) Állapotok halmaza: Q a bemeneti szalag véges ABC (alphabet)-je: Σ = {#;a,b,...} Állapot-átmeneti függvény: δ : Q Σ Q Kezdeti és végállapotok halmaza: Q I, Q F Grafikus ábrázolás: súlyozott irányított gráffal Csúcsok: állapotok (Q) élek: állapot-átmenetek (δ) élsúlyok: bemenő szimbólum (Σ) Haladó Folyamatmodellezés és modell analízis PhD kurzus p. 7/36

8 Reaktor-szűrő rendszer Véges automata modell 1 Fresh solvent Raw material S eeem Reactor "r" "r" "nil" S reen Product Filters Product "r" "nil" S eern S eren Recycle pump Haladó Folyamatmodellezés és modell analízis PhD kurzus p. 8/36

9 Reaktor-szűrő rendszer Véges automata modell 2 Absztrakt leírás A = (Q, Σ,δ) Állapotok halmaza: Q = {S eeen,s reen,s eern,s eren } a bemeneti szalag véges ABC-je: Σ = {#; r, nil } Állapot-átmeneti függvény: δ : Q Σ Q Kezdeti és végállapotok halmaza: Q I = {S eeen }, Q F = {S eern,s eren } Haladó Folyamatmodellezés és modell analízis PhD kurzus p. 9/36

10 Petri háló modellek Haladó Folyamatmodellezés és modell analízis PhD kurzus p. 10/36

11 Petri háló modellek Diszkrét eljárások soros és párhuzamos lépésekkel Események előfeltételekkel és következményekkel Alapeset és kiterjesztései időzített, színes, hierarchikus Hatékony megoldó és analízis módszerek Haladó Folyamatmodellezés és modell analízis PhD kurzus p. 11/36

12 Petri háló modell absztrakt leírás: C = (P, T, I, O) Statikus leírás (szerkezet) Helyek (feltételek) halmaza: P Átmenetek (események) halmaza: T Bemeneti (előfeltétel) függvény: I : T P Kimeneti (következmény) függvény: O : T P Grafikus ábrázolás: páros irányított gráffal Csúcsok: helyek (P ) és átmenetek (T ) (partíciók) élek: bemeneti és kimeneti függvény (I, O) Haladó Folyamatmodellezés és modell analízis PhD kurzus p. 12/36

13 Reaktor-szűrő rendszer Reaktor működés 1 Grafikus leírás Prr Psr Prr Psr t r t r PRr t r "fires" PRr t R t R Ppr Ppr Haladó Folyamatmodellezés és modell analízis PhD kurzus p. 13/36

14 Reaktor-szűrő rendszer Reaktor működés 2 Formális leírás: szerkezet C S = (P S,T S,I S,O S ) ahol P S = {p rr,p sr,p Rr,p pr } T S = {t r,t R } I S (t r ) = {p rr,p sr } I S (t R ) = {p Rr,p Rr } O S (t r ) = {p Rr,p Rr } O S (t R ) = {p pr,p sr } Haladó Folyamatmodellezés és modell analízis PhD kurzus p. 14/36

15 Petri hálók dinamikája Jelölőfüggvény: jelölőpontok (token-ek) µ : P N, µ(p i ) = µ i 0 µ T = [µ 1,µ 2,...,µ n ], n = P Átmenet tüzel (működik): ha az előfeltételek "igaz"-ak (van token a bemeneti helyeken) µ (i) [t j > µ (i+1) tüzelés után a következmény-ek lesznek "igaz"-ak Tüzelési (működési) sorozat µ (0) [t j0 > µ (1) [t j1 >...[t jk > µ (k+1) Haladó Folyamatmodellezés és modell analízis PhD kurzus p. 15/36

16 Reaktor-szűrő rendszer Reaktor működés 3 Tüzelés leírása: µ (0)T S µ T S = [µ rr,µ sr,µ Rr,µ pr ] = [1, 1, 0, 0], µ (1)T = [0, 0, 2, 0] S µ (0) [t S r > µ (1) S Prr Psr Prr Psr t r t r PRr t r "fires" PRr t R t R Ppr Ppr Haladó Folyamatmodellezés és modell analízis PhD kurzus p. 16/36

17 Párhuzamos események Egynél több engedélyezett átmenet: konkurencia (független feltételek), konfliktus, konfúzió p 1... p 4 p 5 t 1 t 2... p 2... p 3 t 3 t 2 p 2... p 3... t 1 t 3 p 1 p 4 a, b, Haladó Folyamatmodellezés és modell analízis PhD kurzus p. 17/36

18 Konfliktus feloldás Inhibitor nyilakkal: felhasználó által beállított prioritás Teszt nyilak: nem veszi el a jelzőpontot p ready p ready t drain p tank t drain p tank p pump p pump a, b, Haladó Folyamatmodellezés és modell analízis PhD kurzus p. 18/36

19 Reaktor-szűrő rendszer Konfliktus helyzet p Rempt p raw p solv Fresh solvent t GR Raw material Reactor p f1empt p semi p f2empt t Gf1 t Gf2 Product Filters Product p product Recycle pump Haladó Folyamatmodellezés és modell analízis PhD kurzus p. 19/36

20 Hierarchikus Petri hálók Főháló (super net) - alhálók (subnets): beépítés: bármelyik hely vagy átmenet helyére ismétlődő hasonló hálórészek p fill_up t reaction p ready p ra t adda p A t heat p react t cool t fill p filled p rb t addb p B Haladó Folyamatmodellezés és modell analízis PhD kurzus p. 20/36

21 Kiterjesztett Petri háló modellek Időzített Petri hálók: feliratokkal óra (megvalósítható spec. "forrás" hellyel) átmenetekhez tüzelési idő helyekhez várakozási idő Színezett Petri hálók: feliratokkal jelzőpontok (token-ek) diszkrét értékkészletűek ("szín") helyekhez megengedett színhalmaz átmenetekhez és élekhez (diszkrét) függvények Haladó Folyamatmodellezés és modell analízis PhD kurzus p. 21/36

22 Vészleállító operátori eljárás Időzített Peri háló modell p neutr_ready p vess_poiss p start p T_normal pp_normal (30 sec) t fill_neutr (10 sec)t cooling p vess_neutr p vess_cool t electr_off p ready Haladó Folyamatmodellezés és modell analízis PhD kurzus p. 22/36

23 Reaktor-szűrő rendszer Reaktorműködés 4 Színezett Peri háló modell: "feliratok" a 1 : if val(p raw ) { 1b, 2b, 3b } then true p Rempt y p raw 1b 2b p solv a 3 a 1 a 2 a 4 t GR p semi Haladó Folyamatmodellezés és modell analízis PhD kurzus p. 23/36

24 Diszkrét eseményű rendszermodellek megoldása Haladó Folyamatmodellezés és modell analízis PhD kurzus p. 24/36

25 DES modellek megoldása Elvi problémakitűzés Adott: a diszkrét eseményű rendszer modelljének formális leírása kezdeti állapot(ok) külső események: rendszer inputok Kiszámítandó: a belső (állapot és kimenet) események szekvenciája A megoldás algoritmikus! A feladat NP-nehéz! Haladó Folyamatmodellezés és modell analízis PhD kurzus p. 25/36

26 Haladó Folyamatmodellezés és modell analízis PhD kurzus p. 26/36 Lehet NP-nehéz (sztochasztikus és/vagy nem egyértelmű δ állapot-átmeneti Automata modellek megoldása Állapot-átmeneti gráf Megoldás: rendszerállapot szekvenciák állapot-átmeneti gráf (súlyozott irányított gráf) csúcsok: rendszerállapotok élek: állapot-átmenetek (modell végrehajtása) élsúlyok: külső események (rendszer inputok) Előállítás: 1. start: az adott kezdeti állapotból 2. új csúcs hozzávétele: a modell végrehajtásával (input hatása is!)

27 Haladó Folyamatmodellezés és modell analízis PhD kurzus p. 27/36 Lehet NP-nehéz (konfliktushelyzet vagy nem véges működés esetén) Petri háló modellek megoldása Elérhetőségi gráf Megoldás: jelölés (rendszerállapot) szekvenciák elérhetőségi gráf (fa) (súlyozott irányított gráf) csúcsok: jelölések élek: ha van átmenet, aminek tüzelése összeköti őket élsúlyok: az átmenet és a külső események Előállítás: 1. start: az adott kezdeti jelölés 2. új csúcs hozzávétele: az egyik engedélyezett átmenet tüzelésével (input hatása is!)

28 Petri háló modellek megoldása Elérhetőségi gráfok Véges eset (1, 0) t 1 p 1 t 1 p 2 (0, 1) a, b, Nem véges eset t 1 p 3 p 1 p 2 t Haladó Folyamatmodellezés és modell analízis PhD kurzus p. 28/36

29 Petri háló modellek megoldása Nem véges elérhetőségi gráf Redukció: az ω szimbólummal t 1 (1, 0, 0) p 3 t 1 (0, 1, 1) p 1 p 2 t 2 (1, 0, ω) t 2 Haladó Folyamatmodellezés és modell analízis PhD kurzus p. 29/36

30 Állapot-átmeneti gráf és elérhetőségi gráf A Petri háló modell elérhetőségi gráfja megegyezik az automata modell állapot-átmeneti gráfjával p Rempt p raw p solv t GR p f1empt p semi p f2empt S eeem "r" "r" "nil" t Gf1 t Gf2 S reen "r" "nil" p product S eern S eren Haladó Folyamatmodellezés és modell analízis PhD kurzus p. 30/36

31 Diszkrét eseményű rendszermodellek analízise Haladó Folyamatmodellezés és modell analízis PhD kurzus p. 31/36

32 Petri háló modellek dinamikus analízise Dinamikus tulajdonságok viselkedési (kezdeti állapot független) szerkezeti (struktúrális) (csak a szerkezeti gráftól függ) Viselkedési tulajdonságok elérhetőség (lefedhetőség, irányíthatóság) hotpontok, élőség, végesség Szerkezeti tulajdonságok hely és átmenet invariánsok: ciklikus viselkedés Haladó Folyamatmodellezés és modell analízis PhD kurzus p. 32/36

33 Petri háló modellek viselkedési tulajdonságai Elérhetőség vizsgálata: elérhetőségi gráf vizsgálatával adott [kezdeti állapot (µ (I) ), végállapot (µ (F) )] párhoz létezik-e egy tüzelési sorozat, úgy, hogy µ (I) [t j0 > µ (1) [t j1 >...[t jk > µ (F) Egyéb viselkedési tulajdonságok végesség (korlátosság): minden kezdőállapotra korlátos-e a jelzőpontok száma? holtpontok (élőség): nem szándékolt jelölés, amelyben nincs engedélyezett átmenet Haladó Folyamatmodellezés és modell analízis PhD kurzus p. 33/36

34 Petri háló modellek Példák Holtpont: a (0, 1) jelölés (1, 0) t 1 p 1 t 1 p 2 (0, 1) a, b, Nem korlátos hely: p 3 t 1 (1, 0, 0) p 3 t 1 (0, 1, 1) p 1 p 2 t 2 (1, 0, ω) t 2 Haladó Folyamatmodellezés és modell analízis PhD kurzus p. 34/36

35 Petri háló modellek dinamikus analízisének módszerei Viselkedési tulajdonságok megkonstruáljuk az elérhetőségi gráfot a definíciónak megfelelően keresünk a gráf csúcsain lehet NP-nehéz Szerkezeti tulajdonságok megkonstruáljuk a Petri háló gráfjának előfordulási mártixát lineáris egyenletrendszer megoldását igénylik polinomiális idejű, gyakorlatban korlátozott fontosságú Haladó Folyamatmodellezés és modell analízis PhD kurzus p. 35/36

36 Köszönöm a figyelmet! Haladó Folyamatmodellezés és modell analízis PhD kurzus p. 36/36

Elérhetőségi analízis Petri hálók dinamikus tulajdonságai

Elérhetőségi analízis Petri hálók dinamikus tulajdonságai Elérhetőségi analízis Petri hálók dinamikus tulajdonságai dr. Bartha Tamás Dr. Pataricza András BME Méréstechnika és Információs Rendszerek Tanszék Petri hálók vizsgálata Az elemzés mélysége szerint: Vizsgálati

Részletesebben

Diagnosztika Petri háló modellek felhasználásával

Diagnosztika Petri háló modellek felhasználásával Diagnosztika - Ea9. p. 1/2 Modell Alapú Diagnosztika Diszkrét Módszerekkel Diagnosztika Petri háló modellek felhasználásával Hangos Katalin PE Villamosmérnöki és Információs Rendszerek Tanszék Diagnosztika

Részletesebben

Diszkrét Eseményű Rendszerek Diagnosztikája és Irányítása

Diszkrét Eseményű Rendszerek Diagnosztikája és Irányítása Diszkrét és hibrid diagnosztikai és irányítórendszerek Diszkrét Eseményű Rendszerek Diagnosztikája és Irányítása Hangos Katalin Közlekedésautomatika Tanszék Rendszer- és Irányításelméleti Kutató Laboratórium

Részletesebben

Modellezési esettanulmányok. elosztott paraméterű és hibrid példa

Modellezési esettanulmányok. elosztott paraméterű és hibrid példa Modellezési esettanulmányok elosztott paraméterű és hibrid példa Hangos Katalin Számítástudomány Alkalmazása Tanszék Veszprémi Egyetem Haladó Folyamatmodellezés és modell analízis PhD kurzus p. 1/38 Tartalom

Részletesebben

Elérhetőségi probléma egyszerűsítése: Állapottér és struktúra redukció Petri-háló alosztályok

Elérhetőségi probléma egyszerűsítése: Állapottér és struktúra redukció Petri-háló alosztályok Elérhetőségi probléma egyszerűsítése: Állapottér és struktúra redukció Petri-háló alosztályok dr. Bartha Tamás Dr. Pataricza András BME Méréstechnika és Információs Rendszerek Tanszék Elérhetőségi probléma

Részletesebben

Integrált gyártórendszerek

Integrált gyártórendszerek IGYR-7 p. 1/4 Integrált gyártórendszerek Gyártásütemezés: az ütemezések analízise Gantt-chart módszerrel, az optimalizálási feladat kitűzése és változatai, megoldás a kritikus út módszerrel, dinamikus

Részletesebben

Gyártórendszerek dinamikája

Gyártórendszerek dinamikája GYRD-7 p. 1/17 Gyártórendszerek dinamikája Gyártásütemezés: az ütemezések analízise Gantt-chart módszerrel, az optimalizálási feladat kitűzése és változatai, megoldás a kritikus út módszerrel Werner Ágnes

Részletesebben

Jelek és rendszerek 1. 10/9/2011 Dr. Buchman Attila Informatikai Rendszerek és Hálózatok Tanszék

Jelek és rendszerek 1. 10/9/2011 Dr. Buchman Attila Informatikai Rendszerek és Hálózatok Tanszék Jelek és rendszerek 1 10/9/2011 Dr. Buchman Attila Informatikai Rendszerek és Hálózatok Tanszék 1 Ajánlott irodalom: FODOR GYÖRGY : JELEK ÉS RENDSZEREK EGYETEMI TANKÖNYV Műegyetemi Kiadó, Budapest, 2006

Részletesebben

Dinamikus modellek szerkezete, SDG modellek

Dinamikus modellek szerkezete, SDG modellek Diagnosztika - 3. p. 1/2 Modell Alapú Diagnosztika Diszkrét Módszerekkel Dinamikus modellek szerkezete, SDG modellek Hangos Katalin PE Villamosmérnöki és Információs Rendszerek Tanszék Diagnosztika - 3.

Részletesebben

Színezett Petri-hálók

Színezett Petri-hálók Színezett Petri-hálók dr. Bartha Tamás BME Méréstechnika és Információs Rendszerek Tanszék Bevezetés Mik a színezett Petri-hálók? A színezett Petri-hálók olyan modellek, amik a grafikus reprezentációt

Részletesebben

Alapszintű formalizmusok

Alapszintű formalizmusok Alapszintű formalizmusok dr. Majzik István BME Méréstechnika és Információs Rendszerek Tanszék 1 Mit szeretnénk elérni? Informális tervek Informális követelmények Formális modell Formalizált követelmények

Részletesebben

Kiterjesztések sek szemantikája

Kiterjesztések sek szemantikája Kiterjesztések sek szemantikája Példa D Integer = {..., -1,0,1,... }; D Boolean = { true, false } D T1... T n T = D T 1... D Tn D T Az összes függvf ggvény halmaza, amelyek a D T1,..., D Tn halmazokból

Részletesebben

Petri hálók: alapfogalmak, kiterjesztések

Petri hálók: alapfogalmak, kiterjesztések Petri hálók: alapfogalmak, kiterjesztések dr. Bartha Tamás Dr. Pataricza András BME Méréstechnika és Információs Rendszerek Tanszék Petri hálók felépítése, működése A Petri hálók eredete Petri háló: Mi

Részletesebben

Algoritmuselmélet. Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem. 12.

Algoritmuselmélet. Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem. 12. Algoritmuselmélet NP-teljes problémák Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem 12. előadás Katona Gyula Y. (BME SZIT) Algoritmuselmélet

Részletesebben

Petri hálók: Alapelemek és kiterjesztések

Petri hálók: Alapelemek és kiterjesztések Petri hálók: Alapelemek és kiterjesztések dr. Bartha Tamás dr. Pataricza András dr. Majzik István BME Méréstechnika és Információs Rendszerek Tanszék Modellek a formális ellenőrzéshez Mivel nyújt többet

Részletesebben

Petri hálók: alapfogalmak, kiterjesztések

Petri hálók: alapfogalmak, kiterjesztések Petri hálók: alapfogalmak, kiterjesztések dr. Bartha Tamás Dr. Pataricza András BME Méréstechnika és Információs Rendszerek Tanszék A Petri hálók eredete Petri háló: Mi az? Carl Adam Petri: német matematikus,

Részletesebben

Temporális logikák és modell ellenırzés

Temporális logikák és modell ellenırzés Temporális logikák és modell ellenırzés Temporális logikák Modális logika: kijelentések különböző módjainak tanulmányozására vezették be (eredetileg filozófusok). Ilyen módok: esetleg, mindig, szükségszerűen,

Részletesebben

Gyártórendszerek irányítási struktúrái

Gyártórendszerek irányítási struktúrái GyRDin-10 p. 1/2 Gyártórendszerek Dinamikája Gyártórendszerek irányítási struktúrái Hangos Katalin Villamosmérnöki és Információs Rendszerek Tanszék e-mail: hangos@scl.sztaki.hu GyRDin-10 p. 2/2 Tartalom

Részletesebben

Gyártórendszerek Dinamikája. Irányítástechnikai alapfogalmak

Gyártórendszerek Dinamikája. Irányítástechnikai alapfogalmak GyRDin-11 p. 1/19 Gyártórendszerek Dinamikája Irányítástechnikai alapfogalmak Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu GyRDin-11 p. 2/19 Tartalom

Részletesebben

Algoritmusok Tervezése. 6. Előadás Algoritmusok 101 Dr. Bécsi Tamás

Algoritmusok Tervezése. 6. Előadás Algoritmusok 101 Dr. Bécsi Tamás Algoritmusok Tervezése 6. Előadás Algoritmusok 101 Dr. Bécsi Tamás Mi az algoritmus? Lépések sorozata egy feladat elvégzéséhez (legáltalánosabban) Informálisan algoritmusnak nevezünk bármilyen jól definiált

Részletesebben

Turing-gépek. Számításelmélet (7. gyakorlat) Turing-gépek 2009/10 II. félév 1 / 1

Turing-gépek. Számításelmélet (7. gyakorlat) Turing-gépek 2009/10 II. félév 1 / 1 Turing-gépek Logika és számításelmélet, 7. gyakorlat 2009/10 II. félév Számításelmélet (7. gyakorlat) Turing-gépek 2009/10 II. félév 1 / 1 A Turing-gép Az algoritmus fogalmának egy intuitív definíciója:

Részletesebben

A Formális nyelvek vizsga teljesítése. a) Normál A vizsgán 60 pont szerezhet, amely két 30 pontos részb l áll össze az alábbi módon:

A Formális nyelvek vizsga teljesítése. a) Normál A vizsgán 60 pont szerezhet, amely két 30 pontos részb l áll össze az alábbi módon: A Formális nyelvek vizsga teljesítése a) Normál A vizsgán 60 pont szerezhet, amely két 30 pontos részb l áll össze az alábbi módon: 1. Öt kis kérdés megválaszolása egyenként 6 pontért, melyet minimum 12

Részletesebben

Automaták mint elfogadók (akceptorok)

Automaták mint elfogadók (akceptorok) Automaták mint elfogadók (akceptorok) Ha egy iniciális Moore-automatában a kimenőjelek halmaza csupán kételemű: {elfogadom, nem fogadom el}, és az utolsó kimenőjel dönti el azt a kérdést, hogy elfogadható-e

Részletesebben

Algoritmusok bonyolultsága

Algoritmusok bonyolultsága Algoritmusok bonyolultsága 11. előadás http://www.ms.sapientia.ro/~kasa/komplex.htm () 1 / 1 NP-telesség Egy L nyelv NP-teles, ha L NP és minden L NP-re L L. Egy Π döntési feladat NP-teles, ha Π NP és

Részletesebben

Algoritmuselmélet. Függvények nagyságrendje, elágazás és korlátozás, dinamikus programozás. Katona Gyula Y.

Algoritmuselmélet. Függvények nagyságrendje, elágazás és korlátozás, dinamikus programozás. Katona Gyula Y. Algoritmuselmélet Függvények nagyságrendje, elágazás és korlátozás, dinamikus programozás Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem

Részletesebben

Logisztikai szimulációs módszerek

Logisztikai szimulációs módszerek Üzemszervezés Logisztikai szimulációs módszerek Dr. Juhász János Integrált, rugalmas gyártórendszerek tervezésénél használatos szimulációs módszerek A sztochasztikus külső-belső tényezőknek kitett folyamatok

Részletesebben

Sztochasztikus temporális logikák

Sztochasztikus temporális logikák Sztochasztikus temporális logikák Teljesítmény és szolgáltatásbiztonság jellemzők formalizálása és ellenőrzése Majzik István Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs

Részletesebben

D I G I T Á L I S T E C H N I K A Gyakorló feladatok 3.

D I G I T Á L I S T E C H N I K A Gyakorló feladatok 3. Szinkron hálózatok D I G I T Á L I S T E C H N I K A Gyakorló feladatok 3. Irodalom: Arató Péter: Logikai rendszerek. Tankönyvkiadó, Bp. 1985. J.F.Wakerley: Digital Design. Principles and Practices; Prentice

Részletesebben

Modell alapú tesztelés mobil környezetben

Modell alapú tesztelés mobil környezetben Modell alapú tesztelés mobil környezetben Micskei Zoltán Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs Rendszerek Tanszék A terület behatárolása Testing is an activity performed

Részletesebben

Programozási Módszertan definíciók, stb.

Programozási Módszertan definíciók, stb. Programozási Módszertan definíciók, stb. 1. Bevezetés Egy adat típusát az adat által felvehető lehetséges értékek halmaza (típusérték halmaz, TÉH), és az ezen értelmezett műveletek (típusműveletek) együttesen

Részletesebben

Időzített átmeneti rendszerek

Időzített átmeneti rendszerek Időzített átmeneti rendszerek Legyen A egy ábécé, A = A { (d) d R 0 }. A feletti (valós idejű) időzített átmeneti rendszer olyan A = (S, T,,, ) címkézett átmeneti rendszert ( : T A ), melyre teljesülnek

Részletesebben

Véges állapotú gépek (FSM) tervezése

Véges állapotú gépek (FSM) tervezése Véges állapotú gépek (FSM) tervezése F1. A 2. gyakorlaton foglalkoztunk a 3-mal vagy 5-tel osztható 4 bites számok felismerésével. Abban a feladatban a bemenet bitpárhuzamosan, azaz egy időben minden adatbit

Részletesebben

Dr. Kulcsár Gyula. Virtuális vállalat félév. Projektütemezés. Virtuális vállalat félév 5. gyakorlat Dr.

Dr. Kulcsár Gyula. Virtuális vállalat félév. Projektütemezés. Virtuális vállalat félév 5. gyakorlat Dr. Projektütemezés Virtuális vállalat 06-07. félév 5. gyakorlat Dr. Kulcsár Gyula Projektütemezési feladat megoldása Projekt: Projektütemezés Egy nagy, összetett, általában egyedi igény alapján előállítandó

Részletesebben

Számítógéppel segített folyamatmodellezés p. 1/20

Számítógéppel segített folyamatmodellezés p. 1/20 Számítógéppel segített folyamatmodellezés Piglerné Lakner Rozália Számítástudomány Alkalmazása Tanszék Pannon Egyetem Számítógéppel segített folyamatmodellezés p. 1/20 Tartalom Modellező rendszerektől

Részletesebben

Mérés és modellezés Méréstechnika VM, GM, MM 1

Mérés és modellezés Méréstechnika VM, GM, MM 1 Mérés és modellezés 2008.02.04. 1 Mérés és modellezés A mérnöki tevékenység alapeleme a mérés. A mérés célja valamely jelenség megismerése, vizsgálata. A mérés tervszerűen végzett tevékenység: azaz rögzíteni

Részletesebben

Operációs rendszerek

Operációs rendszerek Operációs rendszerek 10. előadás - Holtpont kezelés, szignálok 2006/2007. II. félév Dr. Török Levente Links A. Tanenbaum: Op. rendszerek http://www.iit.uni-miskolc.hu/%7evadasz/geial201/jegyzet/3rd.pdf

Részletesebben

Shor kvantum-algoritmusa diszkrét logaritmusra

Shor kvantum-algoritmusa diszkrét logaritmusra Ivanyos Gábor MTA SZTAKI Debrecen, 20 január 2. Tartalom és kvantum-áramkörök 2 A diszkrét log probléma Kvantum bit Állapot: a B = C 2 komplex euklideszi tér egy egységvektora: az a 0 + b szuperpozíció

Részletesebben

Idő-ütemterv hálók - I. t 5 4

Idő-ütemterv hálók - I. t 5 4 Építésikivitelezés-Vállalkozás / : Hálós ütemtervek - I lőadás:folia.doc Idő-ütemterv hálók - I. t s v u PRT time/cost : ( Program valuation & Review Technique ) ( Program Értékelő és Áttekintő Technika

Részletesebben

Algoritmuselmélet. Függvények nagyságrendje, elágazás és korlátozás, dinamikus programozás. Katona Gyula Y.

Algoritmuselmélet. Függvények nagyságrendje, elágazás és korlátozás, dinamikus programozás. Katona Gyula Y. Algoritmuselmélet Függvények nagyságrendje, elágazás és korlátozás, dinamikus programozás Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem

Részletesebben

LOGISZTIKA. A mozgatandó anyag jellemzői: - ömlesztett anyagok - darabáruk

LOGISZTIKA. A mozgatandó anyag jellemzői: - ömlesztett anyagok - darabáruk LOGISZTIKA 1. Anyagmozgatás, logisztika definíciója Az anyagmozgatás fogalma: Anyagok, segédanyagok, késztermékek stb. nem nagy távolságú helyváltoztatását célzó olyan tevékenység, mely nem jár együtt

Részletesebben

Rendszertan. Visszacsatolás és típusai, PID

Rendszertan. Visszacsatolás és típusai, PID Rendszertan Visszacsatolás és típusai, PID Hangos Katalin Számítástudomány Alkalmazása Tanszék Rendszer- és Irányításelméleti Kutató Laboratórium MTA Számítástechnikai és Automatizálási Kutató Intézete

Részletesebben

Automatikus tesztgenerálás modell ellenőrző segítségével

Automatikus tesztgenerálás modell ellenőrző segítségével Méréstechnika és Információs Rendszerek Tanszék Automatikus tesztgenerálás modell ellenőrző segítségével Micskei Zoltán műszaki informatika, V. Konzulens: Dr. Majzik István Tesztelés Célja: a rendszerben

Részletesebben

Részletes szoftver tervek ellenőrzése

Részletes szoftver tervek ellenőrzése Részletes szoftver tervek ellenőrzése Majzik István Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs Rendszerek Tanszék http://www.mit.bme.hu/~majzik/ Tartalomjegyzék A részletes

Részletesebben

Sorozatok. 5. előadás. Farkas István. DE ATC Gazdaságelemzési és Statisztikai Tanszék. Sorozatok p. 1/2

Sorozatok. 5. előadás. Farkas István. DE ATC Gazdaságelemzési és Statisztikai Tanszék. Sorozatok p. 1/2 Sorozatok 5. előadás Farkas István DE ATC Gazdaságelemzési és Statisztikai Tanszék Sorozatok p. 1/2 A sorozat definíciója Definíció. A természetes számok halmazán értelmezett valós értékű a: N R függvényt

Részletesebben

Termelő-fogyaszt. fogyasztó modell

Termelő-fogyaszt. fogyasztó modell Termelő-fogyaszt fogyasztó modell A probléma absztrakt megfogalmazása Adott egy N 1 kapacitású közös tároló. Adott a folyamatok két csoportja, amelyek a tárolót használják. n 1 termelő folyamat, m 1 fogyasztó

Részletesebben

Irányításelmélet és technika II.

Irányításelmélet és technika II. Irányításelmélet és technika II. Legkisebb négyzetek módszere Magyar Attila Pannon Egyetem Műszaki Informatikai Kar Villamosmérnöki és Információs Rendszerek Tanszék amagyar@almos.vein.hu 200 november

Részletesebben

1 Rendszer alapok. 1.1 Alapfogalmak

1 Rendszer alapok. 1.1 Alapfogalmak ÉRTÉKTEREMTŐ FOLYAM ATOK MENEDZSMENTJE II. RENDSZEREK ÉS FOLYAMATOK TARTALOMJEGYZÉK 1 Rendszer alapok 1.1 Alapfogalmak 1.2 A rendszerek csoportosítása 1.3 Rendszerek működése 1.4 Rendszerek leírása, modellezése,

Részletesebben

5. előadás. Programozás-elmélet. Programozás-elmélet 5. előadás

5. előadás. Programozás-elmélet. Programozás-elmélet 5. előadás Elemi programok Definíció Az S A A program elemi, ha a A : S(a) { a, a, a, a,..., a, b b a}. A definíció alapján könnyen látható, hogy egy elemi program tényleg program. Speciális elemi programok a kövekezők:

Részletesebben

Mindent olyan egyszerűvé kell tenni, amennyire csak lehet, de nem egyszerűbbé. (Albert Einstein) Halmazok 1

Mindent olyan egyszerűvé kell tenni, amennyire csak lehet, de nem egyszerűbbé. (Albert Einstein) Halmazok 1 Halmazok 1 Mindent olyan egyszerűvé kell tenni, amennyire csak lehet, de nem egyszerűbbé. (Albert Einstein) Halmazok 2 A fejezet legfontosabb elemei Halmaz megadási módjai Halmazok közti műveletek (metszet,

Részletesebben

Híradástechikai jelfeldolgozás

Híradástechikai jelfeldolgozás Híradástechikai jelfeldolgozás 13. Előadás 015. 04. 4. Jeldigitalizálás és rekonstrukció 015. április 7. Budapest Dr. Gaál József docens BME Hálózati Rendszerek és SzolgáltatásokTanszék gaal@hit.bme.hu

Részletesebben

Kalman-féle rendszermodell Méréselmélet PE MIK MI, VI BSc 1

Kalman-féle rendszermodell Méréselmélet PE MIK MI, VI BSc 1 alman-féle rendszermodell.4.. Méréselmélet PE MI MI, VI BSc álmán Rudolf Rudolf Emil alman was born in Budapest, Hungar, on Ma 9, 93. He received the bachelor's degree (S.B.) and the master's degree (S.M.)

Részletesebben

Feladatok, amelyek gráfokkal oldhatók meg 1) A königsbergi hidak problémája (Euler-féle probléma) a

Feladatok, amelyek gráfokkal oldhatók meg 1) A königsbergi hidak problémája (Euler-féle probléma) a Feladatok, amelyek gráfokkal oldhatók meg ) A königsbergi hidak problémája (Euler-féle probléma) a b d c A megfelelő gráf: d a b c ) Egy szórakoztató feladat (Hamilton-féle probléma) Helyezzük el az,,,...,

Részletesebben

Méréselmélet MI BSc 1

Méréselmélet MI BSc 1 Mérés és s modellezés 2008.02.15. 1 Méréselmélet - bevezetés a mérnöki problémamegoldás menete 1. A probléma kitűzése 2. A hipotézis felállítása 3. Kísérlettervezés 4. Megfigyelések elvégzése 5. Adatok

Részletesebben

Matematika (mesterképzés)

Matematika (mesterképzés) Matematika (mesterképzés) Környezet- és Településmérnököknek Debreceni Egyetem Műszaki Kar, Műszaki Alaptárgyi Tanszék Vinczéné Varga A. Környezet- és Településmérnököknek 2016/2017/I 1 / 29 Lineáris tér,

Részletesebben

Függvények határértéke és folytonossága

Függvények határértéke és folytonossága Függvények határértéke és folytonossága 7. előadás Farkas István DE ATC Gazdaságelemzési és Statisztikai Tanszék Függvények határértéke p. / Függvény határértéke az x 0 helyen Definíció. Legyen D R, f

Részletesebben

Mindent olyan egyszerűvé kell tenni, amennyire csak lehet, de nem egyszerűbbé.

Mindent olyan egyszerűvé kell tenni, amennyire csak lehet, de nem egyszerűbbé. HA 1 Mindent olyan egyszerűvé kell tenni, amennyire csak lehet, de nem egyszerűbbé. (Albert Einstein) HA 2 Halmazok HA 3 Megjegyzések A halmaz, az elem és az eleme fogalmakat nem definiáljuk, hanem alapfogalmaknak

Részletesebben

Információk. Ismétlés II. Ismétlés. Ismétlés III. A PROGRAMOZÁS ALAPJAI 2. Készítette: Vénné Meskó Katalin. Algoritmus. Algoritmus ábrázolása

Információk. Ismétlés II. Ismétlés. Ismétlés III. A PROGRAMOZÁS ALAPJAI 2. Készítette: Vénné Meskó Katalin. Algoritmus. Algoritmus ábrázolása 1 Információk 2 A PROGRAMOZÁS ALAPJAI 2. Készítette: Vénné Meskó Katalin Elérhetőség mesko.katalin@tfk.kefo.hu Fogadóóra: szerda 9:50-10:35 Számonkérés időpontok Április 25. 9 00 Május 17. 9 00 Június

Részletesebben

Algoritmuselmélet 1. előadás

Algoritmuselmélet 1. előadás Algoritmuselmélet 1. előadás Katona Gyula Y. Budapesti Műszaki és Gazdaságtudományi Egyetem Számítástudományi Tsz. I. B. 137/b kiskat@cs.bme.hu 2002 Február 11. ALGORITMUSELMÉLET 1. ELŐADÁS 1 Források

Részletesebben

Valós függvények tulajdonságai és határérték-számítása

Valós függvények tulajdonságai és határérték-számítása EL 1 Valós függvények tulajdonságai és határérték-számítása Az ebben a részben szereplő függvények értelmezési tartománya legyen R egy részhalmaza. EL 2 Definíció: zérushely Az f:d R függvénynek zérushelye

Részletesebben

Jelfeldolgozás - ANTAL Margit. impulzusválasz. tulajdonságai. Rendszerek. ANTAL Margit. Sapientia - Erdélyi Magyar Tudományegyetem

Jelfeldolgozás - ANTAL Margit. impulzusválasz. tulajdonságai. Rendszerek. ANTAL Margit. Sapientia - Erdélyi Magyar Tudományegyetem Sapientia - Erdélyi Magyar Tudományegyetem 2007 Megnevezések Diszkrét Dirac jel Delta függvény Egységimpluzus függvény A diszkrét Dirac jel δ[n] = { 1, n = 0 0, n 0 d[n] { 1, n = n0 δ[n n 0 ] = 0, n n

Részletesebben

8. Komponens elvű programfejlesztés. Ágens, akció, cél, kontraktus.

8. Komponens elvű programfejlesztés. Ágens, akció, cél, kontraktus. 8. Komponens elvű programfejlesztés. Ágens, akció, cél, kontraktus. Ágens rendszer definíciója. Példák. Fairness. (Fair tulajdonság). Gyenge fair követelmény. A fair nem determinisztikus szemantika definíciója

Részletesebben

Diszkrét dinamikus rendszerek viselkedésének felderítése ellenpélda-alapú absztrakció finomítás (CEGAR) segítségével

Diszkrét dinamikus rendszerek viselkedésének felderítése ellenpélda-alapú absztrakció finomítás (CEGAR) segítségével Budapesti Műszaki és Gazdaságtudományi Egyetem Villamosmérnöki és Informatikai Kar Méréstechnika és Információs Rendszerek Tanszék Diszkrét dinamikus rendszerek viselkedésének felderítése ellenpélda-alapú

Részletesebben

SZÉCHENYI ISTVÁN EGYETEM MŰSZAKI TUDOMÁNYI KAR RENDSZERELEMZÉS I.

SZÉCHENYI ISTVÁN EGYETEM MŰSZAKI TUDOMÁNYI KAR RENDSZERELEMZÉS I. SZÉCHENYI ISTVÁN EGYETEM MŰSZAKI TUDOMÁNYI KAR RENDSZERELEMZÉS I. Minden jog fenntartva, beleértve a sokszorosítás és a mű bővített, vagy rövidített változatának kiadási jogát is. A Szerző előzetes írásbeli

Részletesebben

Fizikai alapú közelítő dinamikus modellek

Fizikai alapú közelítő dinamikus modellek P C R G Fizikai alapú közelítő dinamikus modellek a Paksi Atomerőmű primerkörével kapcsolatos feladatokra Hangos Katalin Folyamatirányítási Kutató Csoport MTA SzTAKI Publikációs Díjazottak Előadása 2006

Részletesebben

12. előadás - Markov-láncok I.

12. előadás - Markov-láncok I. 12. előadás - Markov-láncok I. 2016. november 21. 12. előadás 1 / 15 Markov-lánc - definíció Az X n, n N valószínűségi változók sorozatát diszkrét idejű sztochasztikus folyamatnak nevezzük. Legyen S R

Részletesebben

Statisztika - bevezetés Méréselmélet PE MIK MI_BSc VI_BSc 1

Statisztika - bevezetés Méréselmélet PE MIK MI_BSc VI_BSc 1 Statisztika - bevezetés 00.04.05. Méréselmélet PE MIK MI_BSc VI_BSc Bevezetés Véletlen jelenség fogalma jelenséget okok bizonyos rendszere hozza létre ha mindegyik figyelembe vehető egyértelmű leírás általában

Részletesebben

... S n. A párhuzamos programszerkezet két vagy több folyamatot tartalmaz, melyek egymással közös változó segítségével kommunikálnak.

... S n. A párhuzamos programszerkezet két vagy több folyamatot tartalmaz, melyek egymással közös változó segítségével kommunikálnak. Párhuzamos programok Legyen S parbegin S 1... S n parend; program. A párhuzamos programszerkezet két vagy több folyamatot tartalmaz, melyek egymással közös változó segítségével kommunikálnak. Folyamat

Részletesebben

Halmazelmélet. 1. előadás. Farkas István. DE ATC Gazdaságelemzési és Statisztikai Tanszék. Halmazelmélet p. 1/1

Halmazelmélet. 1. előadás. Farkas István. DE ATC Gazdaságelemzési és Statisztikai Tanszék. Halmazelmélet p. 1/1 Halmazelmélet 1. előadás Farkas István DE ATC Gazdaságelemzési és Statisztikai Tanszék Halmazelmélet p. 1/1 A halmaz fogalma, jelölések A halmaz fogalmát a matematikában nem definiáljuk, tulajdonságaival

Részletesebben

A genetikus algoritmus, mint a részletes modell többszempontú és többérdekű "optimálásának" általános és robosztus módszere

A genetikus algoritmus, mint a részletes modell többszempontú és többérdekű optimálásának általános és robosztus módszere A genetikus algoritmus, mint a részletes modell többszempontú és többérdekű "optimálásának" általános és robosztus módszere Kaposvári Egyetem, Informatika Tanszék I. Kaposvári Gazdaságtudományi Konferencia

Részletesebben

Néhány fontosabb folytonosidejű jel

Néhány fontosabb folytonosidejű jel Jelek és rendszerek MEMO_2 Néhány fontosabb folytonosidejű jel Ugrásfüggvény Bármely választással: Egységugrás vagy Heaviside-féle függvény Ideális kapcsoló. Signum függvény, előjel függvény. MEMO_2 1

Részletesebben

Programok értelmezése

Programok értelmezése Programok értelmezése Kód visszafejtés. Izsó Tamás 2016. szeptember 22. Izsó Tamás Programok értelmezése/ 1 Section 1 Programok értelmezése Izsó Tamás Programok értelmezése/ 2 programok szemantika értelmezése

Részletesebben

Algoritmusok helyességének bizonyítása. A Floyd-módszer

Algoritmusok helyességének bizonyítása. A Floyd-módszer Algoritmusok helyességének bizonyítása A Floyd-módszer Algoritmusok végrehajtása Egy A algoritmus esetében a változókat három változótípusról beszélhetünk, melyeket az X, Y és Z vektorokba csoportosítjuk

Részletesebben

A modellellenőrzés érdekes alkalmazása: Tesztgenerálás modellellenőrzővel

A modellellenőrzés érdekes alkalmazása: Tesztgenerálás modellellenőrzővel A modellellenőrzés érdekes alkalmazása: Tesztgenerálás modellellenőrzővel Majzik István Micskei Zoltán BME Méréstechnika és Információs Rendszerek Tanszék 1 Modell alapú fejlesztési folyamat (részlet)

Részletesebben

Specifikáció alapú teszttervezési módszerek

Specifikáció alapú teszttervezési módszerek Szoftverellenőrzési technikák Specifikáció alapú teszttervezési módszerek Majzik István, Micskei Zoltán http://www.inf.mit.bme.hu/ 1 Klasszikus tesztelési feladat A tesztelendő program beolvas 3 egész

Részletesebben

Specifikáció alapú teszttervezési módszerek

Specifikáció alapú teszttervezési módszerek Szoftverellenőrzési technikák Specifikáció alapú teszttervezési módszerek Majzik István, Micskei Zoltán http://www.inf.mit.bme.hu/ 1 Klasszikus tesztelési feladat A tesztelendő program beolvas 3 egész

Részletesebben

Új típusú döntési fa építés és annak alkalmazása többtényezős döntés területén

Új típusú döntési fa építés és annak alkalmazása többtényezős döntés területén Új típusú döntési fa építés és annak alkalmazása többtényezős döntés területén Dombi József Szegedi Tudományegyetem Bevezetés - ID3 (Iterative Dichotomiser 3) Az ID algoritmusok egy elemhalmaz felhasználásával

Részletesebben

Kereső algoritmusok a diszkrét optimalizálás problémájához

Kereső algoritmusok a diszkrét optimalizálás problémájához Kereső algoritmusok a diszkrét optimalizálás problémájához A. Grama, A. Gupta, G. Karypis és V. Kumar: Introduction to Parallel Computing, Addison Wesley, 2003. könyv anyaga alapján A kereső eljárások

Részletesebben

Formális nyelvek és gépek (definíciós és tétel lista - 09/10/2)

Formális nyelvek és gépek (definíciós és tétel lista - 09/10/2) Formális nyelvek és gépek (definíciós és tétel lista - 09/10/2) ábécé: Ábécének nevezünk egy tetszőleges véges szimbólumhalmazt. Jelölése: X, Y betű: Az ábécé elemeit betűknek hívjuk. szó: Az X ábécé elemeinek

Részletesebben

Minimális feszítőfák Legyen G = (V,E,c), c : E R + egy súlyozott irányítatlan gráf. Terjesszük ki a súlyfüggvényt a T E élhalmazokra:

Minimális feszítőfák Legyen G = (V,E,c), c : E R + egy súlyozott irányítatlan gráf. Terjesszük ki a súlyfüggvényt a T E élhalmazokra: Minimális feszítőfák Legyen G = (V,E,c), c : E R + egy súlyozott irányítatlan gráf. Terjesszük ki a súlyfüggvényt a T E élhalmazokra: C(T ) = (u,v) T c(u,v) Az F = (V,T) gráf minimális feszitőfája G-nek,

Részletesebben

Programfejlesztési Modellek

Programfejlesztési Modellek Programfejlesztési Modellek Programfejlesztési fázisok: Követelmények leírása (megvalósíthatósági tanulmány, funkcionális specifikáció) Specifikáció elkészítése Tervezés (vázlatos és finom) Implementáció

Részletesebben

Forgalmi modellezés BMEKOKUM209

Forgalmi modellezés BMEKOKUM209 BME Közlekedésüzemi és Közlekedésgazdasági Tanszék Forgalmi modellezés BMEKOKUM209 Szimulációs modellezés Dr. Juhász János A forgalmi modellezés célja A közlekedési igények bővülése és a motorizáció növekedése

Részletesebben

Osztott rendszer. Osztott rendszer informális definíciója

Osztott rendszer. Osztott rendszer informális definíciója Osztott rendszer Osztott rendszer informális definíciója Egymástól elkülönülten létező program-komponensek egy halmaza. A komponensek egymástól függetlenül dolgoznak saját erőforrásukkal. A komponensek

Részletesebben

Kereskedési rendszerek kétoldalú szerződésekkel

Kereskedési rendszerek kétoldalú szerződésekkel Kereskedési rendszerek kétoldalú szerződésekkel Fleiner Tamás, Jankó Zsuzsanna, Akihisa Tamura, Alexander Teytelboym 2017. június 16. MOK Fleiner Tamás, Jankó Zsuzsanna, Akihisa Tamura, Kereskedési Alexander

Részletesebben

Algoritmuselmélet. Mélységi keresés és alkalmazásai. Katona Gyula Y.

Algoritmuselmélet. Mélységi keresés és alkalmazásai. Katona Gyula Y. Algoritmuselmélet Mélységi keresés és alkalmazásai Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem 9. előadás Katona Gyula Y. (BME SZIT) Algoritmuselmélet

Részletesebben

Mérés és modellezés 1

Mérés és modellezés 1 Mérés és modellezés 1 Mérés és modellezés A mérnöki tevékenység alapeleme a mérés. A mérés célja valamely jelenség megismerése, vizsgálata. A mérés tervszerűen végzett tevékenység: azaz rögzíteni kell

Részletesebben

Algoritmusok bonyolultsága

Algoritmusok bonyolultsága Algoritmusok bonyolultsága 9. előadás http://www.ms.sapientia.ro/~kasa/komplex.htm 1 / 18 Közelítő algoritmusok ládapakolás (bin packing) Adott n tárgy (s i tömeggel) és végtelen sok 1 kapacitású láda

Részletesebben

Fordítás Kódoptimalizálás

Fordítás Kódoptimalizálás Fordítás Kódoptimalizálás Kód visszafejtés. Izsó Tamás 2016. október 20. Izsó Tamás Fordítás Kódoptimalizálás / 1 Aktív változók Angol irodalomban a Live Variables kifejezést használják, míg az azt felhasználó

Részletesebben

Algoritmizálás, adatmodellezés tanítása 6. előadás

Algoritmizálás, adatmodellezés tanítása 6. előadás Algoritmizálás, adatmodellezés tanítása 6. előadás Tesztelési módszerek statikus tesztelés kódellenőrzés szintaktikus ellenőrzés szemantikus ellenőrzés dinamikus tesztelés fekete doboz módszerek fehér

Részletesebben

SÚLYOS BALESETEK ELEMZÉSE. 3. téma: Kvalitatív módszerek - Hibafa

SÚLYOS BALESETEK ELEMZÉSE. 3. téma: Kvalitatív módszerek - Hibafa Az oktatási anyag a szerzők szellemi terméke. Az anyag kizárólag a 2014.01.22-23 23-i OKF Továbbképzés céljaira használható. Sokszorosítás, utánközlés és mindennemű egyéb felhasználás a szerzők engedélyéhez

Részletesebben

NP-teljesség röviden

NP-teljesség röviden NP-teljesség röviden Bucsay Balázs earthquake[at]rycon[dot]hu http://rycon.hu 1 Turing gépek 1/3 Mi a turing gép? 1. Definíció. [Turing gép] Egy Turing-gép formálisan egy M = (K, Σ, δ, s) rendezett négyessel

Részletesebben

OOP. Alapelvek Elek Tibor

OOP. Alapelvek Elek Tibor OOP Alapelvek Elek Tibor OOP szemlélet Az OOP szemlélete szerint: a valóságot objektumok halmazaként tekintjük. Ezen objektumok egymással kapcsolatban vannak és együttműködnek. Program készítés: Absztrakciós

Részletesebben

A modellellenőrzés érdekes alkalmazása: Tesztgenerálás modellellenőrzővel

A modellellenőrzés érdekes alkalmazása: Tesztgenerálás modellellenőrzővel A modellellenőrzés érdekes alkalmazása: Tesztgenerálás modellellenőrzővel Majzik István Micskei Zoltán BME Méréstechnika és Információs Rendszerek Tanszék 1 Modell alapú fejlesztési folyamat (részlet)

Részletesebben

Algoritmuselmélet. Gráfok megadása, szélességi bejárás, összefüggőség, párosítás. Katona Gyula Y.

Algoritmuselmélet. Gráfok megadása, szélességi bejárás, összefüggőség, párosítás. Katona Gyula Y. Algoritmuselmélet Gráfok megadása, szélességi bejárás, összefüggőség, párosítás Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem 2. előadás

Részletesebben

Rekurzió. Dr. Iványi Péter

Rekurzió. Dr. Iványi Péter Rekurzió Dr. Iványi Péter 1 Függvényhívás void f3(int a3) { printf( %d,a3); } void f2(int a2) { f3(a2); a2 = (a2+1); } void f1() { int a1 = 1; int b1; b1 = f2(a1); } 2 Függvényhívás void f3(int a3) { printf(

Részletesebben

0,424 0,576. f) P (X 2 = 3) g) P (X 3 = 1) h) P (X 4 = 1 vagy 2 X 2 = 2) i) P (X 7 = 3, X 4 = 1, X 2 = 2 X 0 = 2) j) P (X 7 = 3, X 4 = 1, X 2 = 2)

0,424 0,576. f) P (X 2 = 3) g) P (X 3 = 1) h) P (X 4 = 1 vagy 2 X 2 = 2) i) P (X 7 = 3, X 4 = 1, X 2 = 2 X 0 = 2) j) P (X 7 = 3, X 4 = 1, X 2 = 2) Legyen adott a P átmenetvalószín ség mátrix és a ϕ 0 kezdeti eloszlás Kérdés, hogy miként lehetne meghatározni az egyes állapotokban való tartózkodás valószín ségét az n-edik lépés múlva Deniáljuk az n-lépéses

Részletesebben

Gyártórendszerek Dinamikája. Gyártórendszerek jellemzése és szerkezete Gyártórendszerekkel kapcsolatos mérnöki feladatok

Gyártórendszerek Dinamikája. Gyártórendszerek jellemzése és szerkezete Gyártórendszerekkel kapcsolatos mérnöki feladatok GyRDin-02 p. 1/20 Gyártórendszerek Dinamikája Gyártórendszerek jellemzése és szerkezete Gyártórendszerekkel kapcsolatos mérnöki feladatok Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék

Részletesebben

előadás Diszkrét idejű tömegkiszolgálási modellek Poisson-folyamat Folytonos idejű Markov-láncok Folytonos idejű sorbanállás

előadás Diszkrét idejű tömegkiszolgálási modellek Poisson-folyamat Folytonos idejű Markov-láncok Folytonos idejű sorbanállás 13-14. előadás Diszkrét idejű tömegkiszolgálási modellek Poisson-folyamat Folytonos idejű Markov-láncok Folytonos idejű sorbanállás 2016. november 28. és december 5. 13-14. előadás 1 / 35 Bevezetés A diszkrét

Részletesebben

Sorozatok I. Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma)

Sorozatok I. Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Sorozatok I. DEFINÍCIÓ: (Számsorozat) A számsorozat olyan függvény, amelynek értelmezési tartománya a pozitív egész számok halmaza, értékkészlete a valós számok egy részhalmaza. Jelölés: (a n ), {a n }.

Részletesebben

19. AZ ÖSSZEHASONLÍTÁSOS RENDEZÉSEK MŰVELETIGÉNYÉNEK ALSÓ KORLÁTJAI

19. AZ ÖSSZEHASONLÍTÁSOS RENDEZÉSEK MŰVELETIGÉNYÉNEK ALSÓ KORLÁTJAI 19. AZ ÖSSZEHASONLÍTÁSOS RENDEZÉSEK MŰVELETIGÉNYÉNEK ALSÓ KORLÁTJAI Ebben a fejezetben aszimptotikus (nagyságrendi) alsó korlátot adunk az összehasonlításokat használó rendező eljárások lépésszámára. Pontosabban,

Részletesebben

Tartalom. 1. Állapotegyenletek megoldása 2. Állapot visszacsatolás (pólusallokáció)

Tartalom. 1. Állapotegyenletek megoldása 2. Állapot visszacsatolás (pólusallokáció) Tartalom 1. Állapotegyenletek megoldása 2. Állapot visszacsatolás (pólusallokáció) 2015 1 Állapotgyenletek megoldása Tekintsük az ẋ(t) = ax(t), x(0) = 1 differenciálegyenletet. Ismert, hogy a megoldás

Részletesebben