Automaták mint elfogadók (akceptorok)

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Automaták mint elfogadók (akceptorok)"

Átírás

1 Automaták mint elfogadók (akceptorok) Ha egy iniciális Moore-automatában a kimenőjelek halmaza csupán kételemű: {elfogadom, nem fogadom el}, és az utolsó kimenőjel dönti el azt a kérdést, hogy elfogadható-e az input szó, akkor ez az automata nyelvek definiálására válik alkalmassá. A µ függvényt ebben az esetben az elfogadom elem ősképe is definiálhatja. Ez jelenik meg a következő definícióban: 1

2 Definíció Rabin Scott-automata Az A = A, a 0, X, δ, A F rendezett ötöst Rabin Scott-automatának nevezzük, ahol A az állapotok nem üres halmaza, a 0 A a kezdő állapot, X a bemenőjelek nem üres halmaza (ábécéje), δ : A X A az átmeneti függvény, A F A a végállapotok halmaza. Végállapot: egy elfogadható szó hatására az automata egy ilyen állapotba kerül. 2

3 Definíció Azt mondjuk, hogy az A = A, a 0, X, δ, A F Rabin Scott-automata elfogadja a P X szót, ha az automata a P bemenő szó hatására a kezdő állapotból egy végállapotba jut, azaz ha δ(a 0, P ) A F. Egy A automata által elfogadott szavak nyelvét az automata által felismert nyelvnek nevezzük, és L A -val jelöljük, azaz L A {P P X és δ(a 0, P ) A F }. 3

4 Definíció Nemdeterminisztikus Rabin Scott-automata Az A = A, A 0, X, δ, A F rendezett ötöst nemdeterminisztikus Rabin Scott-automatának nevezzük, ahol A az állapotok nem üres halmaza, A 0 A a kezdő állapotok halmaza, X a bemenőjelek nem üres halmaza (ábécéje), δ : A X 2 A a nemdeterminisztikus átmeneti függvény, A F A a végállapotok halmaza. Végállapot: egy elfogadható szó hatására az automata tud úgy működni, hogy egy ilyen állapotba kerül. Ha A 0 = 1 és δ(a, x) = 1 minden a A és x X esetén, akkor az automata megfeleltethető egy determinisztikus automatának. 4

5 Az automata az a állapotból az x jel hatására a δ(a, x) állapothalmaz állapotaiba mehet át. A δ függvény kiterjesztése A X-ről 2 A X-re: δ(b, x) = δ(a, x) B A, x X. a B Az automata a B állapothalmaz állapotaiból az x jel hatására a δ(a, x) állapothalmaz állapotaiba mehet át. A δ függvény kiterjesztése 2 A X-ről 2 A X -ra: ˆδ(B, e) = B, ˆδ(B, P x) = δ(ˆδ(b, P ), x), B A, x X, P X. Az automata a B állapothalmaz állapotaiból a P ˆδ(B, P ) állapothalmaz állapotaiba mehet át. szó hatására a 5

6 Definíció Azt mondjuk, hogy az A = A, A 0, X, δ, A F nemdeterminisztikus Rabin Scott-automata elfogadja a P X szót, ha az automata tud úgy működni, hogy a P bemenő szó hatására a kezdő állapotok valamelyikéből egy végállapotba jut, azaz ha ˆδ(A 0, P ) A F. Egy A automata által elfogadott szavak nyelvét az automata által felismert nyelvnek nevezzük, és L A -val jelöljük, azaz L A {P P X és ˆδ(A 0, P ) A F }. 6

7 Definíció Két Rabin Scott-autmatát ekvivalensnek nevezzük, ha az általuk elfogadott nyelvek megegyeznek. Tétel Tetszőleges nemdeterminisztikus Rabin Scott-automatához van vele ekvivalens determinisztikus Rabin Scott-automata Bizonyítás Ha a nemdeterminisztikus automata A = A, A 0, X, δ, A F, akkor az A = 2 A, A 0, X, δ, {B B A, B A F } automata egy determinisztikus Rabin Scott-automata, továbbá L A = L A. 7

8 Definíció A G = V N, V T, S, H nyelvtant jobbregulárisnak nevezzük, ha szabályai A λ, A a, A ab alakúak, ahol a V T, A, B V N. A jobbreguláris nyelvtan a jobblineáris nyelvtan normálalakjának tekinthető. Tétel Tetszőleges jobblineáris nyelvtanhoz van vele ekvivalens jobbreguláris nyelvtan. Példa Legyen H = {S a, S aa, A bb, A as, B bb, B ba, B b}. Ekkor S aa abb abbb abbba abbbas abbbaa. 8

9 Analógiát keresve a jobbreguláris nyelvtanok és a Rabin Scott-automaták között a példából leolvasható, hogy a nemterminálisok játsszák az állapotok szerepét. Tétel Tetszőleges G reguláris nyelvtanhoz megadható olyan A nemdeterminisztikus, véges állapotú Rabin Scott-automata, amely a nyelvtan által generált nyelvet fogadja el. Bizonyítás Legyen G = V N, V T, S, H egy jobbreguláris nyelvtan. Legyen A = V N { }, A 0 = {S}, X = V T, A F = { } {B B λ} és δ(b, x) = {C C V N és B xc, vagy C = és B x}. Bizonyítható, hogy S P B (P VT, B V N) pontosan akkor teljesül, ha B ˆδ(S, P ), továbbá S P (P VT ) pontosan akkor teljesül, ha ˆδ(S, P ), vagy van olyan B V N, hogy B ˆδ(S, P ) és B λ. 9

10 Tétel Tetszőleges véges állapotú Rabin Scott-automatához van olyan G reguláris nyelvtan, amelyek által elfogadott, illetve generált nyelvek megegyeznek. Bizonyítás Legyen A = A, a 0, X, δ, A F egy tetszőleges, véges állapotú, Rabin Scott-automata. Legyen V N = A, V T = X, S = a 0 H = {a xb δ(a, x) = b} {a λ a A F }. Bizonyítható, hogy δ(a, P ) = b (a, b A, P X ) pontosan akkor teljesül, ha a P b, továbbá δ(a, P ) = b A F pontosan akkor, ha a P. Ezeket a = a 0 - ra alkalmazva: P L A δ(a 0, P ) A F S = a 0 P P L(G). 10

11 Környezetfüggetlen Nyelvtanok és (nemdeterminisztikus) veremautomaták A (nemdeterminisztikus) véges Rabin Scott-automaták kibővíthetők egy veremmel, ezáltal az állapotok halmaza végtelenné tehető. A veremautomata működése: Az automata egy-egy lépése során beolvas egy jelet, és a verem teteje, a belső állapot és a beolvasott jel függvényében állapotot vált és a verem teteje helyébe egy új szót tesz. Az input jel beolvasása esetleg elmaradhat, ekkor az állapotváltás és a veremtartalom-csere csak a verem tetejének és az állapotnak a függvénye. A veremautomata lépésekre bontott működésének fázisait konfigurációnak nevezzük. A konfiguráció a verem tartalmából, a belső állapotból és az input szó még be nem olvasott részéből álló szó. 11

12 Kezdetben a verem csak a verem alja jelet tartalmazza, beolvasásra kész a teljes input szó, s a veremautomatához tartozó véges automata a kezdő állapotában van. A lépést meghatározó átmeneti függvény nemdeterminisztikus, azaz a következő lépés nem feltétlenül egyértelmű. Az input szót az automata most is akkor fogadja el, ha tud úgy működni, hogy a szó beolvasásának hatására végállapotba kerül, a verem tartalma közömbös. A kezdő konfiguráció a verem alja jelből mint egybetűs szóból, a kezdeti állapotok egyikéből és a teljes input szóból áll. Innen kell tudni eljutni egy végkonfigurációba, amely egy veremszóból, egy végállapotból és az üres szóból áll. 12

13 Definíció Veremautomata a következő hetes: A = (Z, A, X, δ, z 0, A 0, A F ), ahol Z veremábécé, A a belső állapotok nem üres és véges halmaza, X a bemenő jelek ábécéje, δ : Z A (X {λ}) 2 Z A a (nemdeterminisztikus) átmeneti függvény, z 0 Z a verem alja jel, A 0 A a veremautomata kezdő állapotai, A F A a veremautomata vég- (vagy elfogadó) állapotai. A δ függvény értékei véges halmazok. Konfigurációk halmaza: Z AX (feltételezés: A (Z X) = ) 13

14 Definíció Az A veremautomata egy P Z AX konfigurációt egy lépésben átalakít a Q Z AX konfigurációba (jelekben: P Q), ha van olyan x X, z Z, a, b A, valamint W 1, W 2 Z, R X, hogy a következő összefüggések valamelyike fennáll: (a) P = W 2 zaxr, Q = W 2 W 1 br és (W 1, b) δ(z, a, x) (b) P = W 2 zar, Q = W 2 W 1 br és (W 1, b) δ(z, a, λ). A W 2 szó a z betűvel alkotja a verem tartalmát (z a verem teteje), a a pillanatnyi állapot, x az input szó soron következő és beolvasásra kerülő betűje, R (az esetleges x betűvel) az input szó még be nem olvasott része, W 1 a verem teteje helyébe kerülő szó. 14

15 Definíció A veremautomata által elfogadott nyelv: L A = {R X z 0 a 0 R W a valamely W Z, a 0 A 0 és a A F esetén.} Tétel A környezetfüggetlen nyelvek osztálya egybeesik a veremautomaták által elfogadott nyelvek osztályával. Definíció Amennyiben az átmeneti függvény determinisztikus, azaz δ : Z A X Z A, akkor a veremautomatát determinisztikusnak nevezzük. Tétel A determinisztikus veremautomaták által elfogadott nyelvek osztálya valódi részosztálya a nemdeterminisztikus veremautomaták által elfogadott nyelvek osztályának. 15

16 Mondatszerkezetű Nyelvek és a Turing-gépek A Turing-gép egy potenciálisan végtelen szalagmemóriával és egy íróolvasó fejjel ellátott véges automata. A szalagmemória pozíciókra van osztva, s minden egyes pozíció mint memória-egység az úgynevezett szalagábécé pontosan egy betűjének tárolására képes. Kezdetben a Turing-gép egy specifikált kezdőállapotában van, a szalagon egy véges hosszúságú startszó helyezkedik el, s az író-olvasó fej a startszó első betűjén áll. A startszó előtti és utáni (végtelen sok) szalagpozíció egy speciális betűvel, a szóközzel van feltöltve. A Turing-gép egy elemi operációja az író-olvasó fej alatti betű olvasásából, ezen betű felüĺırásából, a belső állapot változtatásából, s az íróolvasó fej egy pozícióval való balra vagy jobbra mozgatásából, vagy éppen a fej helybenhagyásából áll. Amennyiben a Turing-gép eljut egy végállapotba, megáll. 16

17 Definíció A Turing-gép egy rendezett hatos: M = (A, a 0, X,, A F, µ), ahol A a gép belső állapotainak (véges) halmaza, a 0 ( A) a kezdő állapot, X a szalagábécé, ( X) a szóköz betű, A F ( A) a végállapotok halmaza, µ : (A \ A F ) X A X {Bal, Jobb, Helyben} a gép nem feltétlenül mindenütt értelmezett mozgásfüggvénye. 17

18 µ: aktuális állapot, író-olvasó fej alatti jel új állapot, a szalagjelet felüĺıró szimbólum (mely nem feltétlen különböző a felüĺırt szimbólumtól), az elmozdulás iránya. Konfigurációk halmaza: X AX \ ( { }X AX X AX { } ) Feltételezés: A X =. Definíció Az M Turing-gép egy P konfigurációt egy lépésben átalakít a Q konfigurációba (jelekben: P Q), ha van olyan a, b A, x, y, z X, R, S X, valamint j, k N 0, hogy a következő összefüggések valamelyike fennáll: a) P = RxayS, µ(a, y) = b, z, Jobb, j Q k = RxzbS b) P = RxayS, µ(a, y) = b, z, Helyben, j Q k = RxbzS c) P = RxayS, µ(a, y) = b, z, Bal, j Q k = RbxzS 18

19 Definíció Az M Turing-gép által elfogadott nyelv: L M = {P X a 0 P QaR, ahol a A F } Tétel A Turing-gépek által elfogadott nyelvek osztálya megegyezik a mondatszerkezetű nyelvek osztályával. A korábbi automatákhoz hasonlóan definiálható a nemdeterminisztikus Turing-gép, és az általa elfogadott nyelv. Téetel A nemdeterminisztikus Turing-gépek által elfogadott nyelvek osztálya megegyezik a mondatszerkezetű nyelvek osztályával. 19

20 Környezetfüggő Nyelvek és a Lineárisan Korlátolt Automaták Ha kikötjük, hogy a nemdeterminisztikus Turing-gép működése során legfeljebb egy konstansszor annyi szalagpozíciót használjon, mint a startszó hossza, a lineárisan korlátolt automata fogalmához jutunk. Tétel A környezetfüggő nyelvek osztálya egybeesik a lineárisan korlátolt automaták által elfogadott nyelvek osztályával. Megjegyzés Mindezideig nevezetes megoldatlan probléma, hogy a determinisztikus lineárisan korlátolt automaták által felismert nyelvek osztálya valódi részosztálya-e a nemdeterminisztikus lineárisan korlátolt automaták által felismert nyelvek osztályának. 20

21 Megjegyzés Igazolható az is, hogy a lineárisan korlátolt automata alkalmas átdefiniálásával elérhető, hogy működése során legfeljebb annyi szalagpozíciót vegyen igénybe, mint a startszó hossza, s ugyanakkor az általa elfogadott nyelv egybeessék az eredeti lineárisan korlátolt automata által elfogadott nyelvvel. 21

22 Turing-gép mint jelátalakító Azt mondjuk, hogy az M = (A, a 0, X,, A F, µ) Turing-gép megáll a P X kezdő szóra, ha vannak olyan Q, R V szavak és a A F végállapot, hogy a 0 P QaR. Ekkor azt is mondhatjuk, hogy a Turing-gép a P szóhoz előálĺıtja a QR X szót. Így egy Turing-gép egy parciális, alfabetikus leképezést definiál, más szavakkal a Turinggép kiszámít egy parciális, alfabetikus függvényt. Az embereknek van valamilyen elképzelésük (intuíciójuk) a tényleges (effektív) kiszámíthatóságról. A következő tézis egy intuitív álĺıtást kapcsol össze egy egzakt álĺıtással: Church-tézis Minden olyan parciális függvény, amely effektíve kiszámítható, Turing-géppel is kiszámítható. 22

23 Probléma osztályok és megoldhatóságuk A Turing-gép egy input szóhoz igen-nem választ is rendelhet (pl. a QR kimenet tartalmaz-e szóközt vagy nem). Ilyen módon is definiálható nyelv. Definíció Egy V ábécé feletti nyelvet (V egy részhalmazát) rekurzívnek nevezünk, ha van olyan igen-nem válaszokat adó Turing-gép, amely a V minden elemére megáll, és a válasz pontosan akkor igen, ha a szó eleme a nyelvnek. rekurzíve felsorolhatónak nevezünk, ha van olyan igen-nem válaszokat adó Turing-gép, amely a nyelv minden elemére megáll igen válasszal, és ha egy nyelven kívüli elemre megáll, akkor a válasz nem. 23

24 Tétel A környezetfüggő (és így a környezetfüggetlen és a reguláris) nyelvek rekurzív nyelvek. A mondatszerkezetű nyelvek rekurzíve felsorolhatók. Probléma osztály nak nevezünk egy olyan halmazt, amelyhez van olyan V ábécé, amely segítségével az osztály minden eleme (nem feltétlenül egyértelműen) megfogalmazható, azaz létezik V -nak a problémaosztályra való leképezése, továbbá az osztály minden eleméhez tartozik egy-egy logikai érték. Az igaz értékű problémák halmazának ősképe egy részhalmaza V -nak, azaz egy nyelv. A probléma osztályt megoldhatónak nevezzük, ha ez a nyelv rekurzív, illetve parciálisan megoldhatónak, ha ez a nyelv rekurzíve felsorolható. 24

25 Egy probléma osztály pl. a Turing-gépek megállása: Adott egy Turing-gép és egy input szó. Vajon megáll-e a Turing-gép erre a szóra. Ez a probléma osztály nem megoldható, de parciálisan megoldható. A parciális megoldhatóság igazolása: Vajon létezik-e univerzális Turing-gép, olyan Turing-gép, amely tetszőleges Turing-gépet önmagát is beleértve képes szimulálni. Erre a válasz: igen. Az univerzális Turing-gép kimenete legyen mindig igen. Ez a Turing-gép egy rekurzíve-felsorolható nyelvet definiál, éppen a szükséges ősképet. Köszönöm a figyelmet 25

A Formális nyelvek vizsga teljesítése. a) Normál A vizsgán 60 pont szerezhet, amely két 30 pontos részb l áll össze az alábbi módon:

A Formális nyelvek vizsga teljesítése. a) Normál A vizsgán 60 pont szerezhet, amely két 30 pontos részb l áll össze az alábbi módon: A Formális nyelvek vizsga teljesítése a) Normál A vizsgán 60 pont szerezhet, amely két 30 pontos részb l áll össze az alábbi módon: 1. Öt kis kérdés megválaszolása egyenként 6 pontért, melyet minimum 12

Részletesebben

A számítógépes nyelvészet elmélete és gyakorlata. Automaták

A számítógépes nyelvészet elmélete és gyakorlata. Automaták A számítógépes nyelvészet elmélete és gyakorlata Automaták Nyelvek és automaták A nyelvek automatákkal is jellemezhetőek Automaták hierarchiája Chomsky-féle hierarchia Automata: új eszköz a nyelvek komplexitásának

Részletesebben

A Formális nyelvek vizsga teljesítése. a) Normál A vizsgán 60 pont szerezhet, amely két 30 pontos részb l áll össze az alábbi módon:

A Formális nyelvek vizsga teljesítése. a) Normál A vizsgán 60 pont szerezhet, amely két 30 pontos részb l áll össze az alábbi módon: A Formális nyelvek vizsga teljesítése a) Normál A vizsgán 60 pont szerezhet, amely két 30 pontos részb l áll össze az alábbi módon: 1. Öt rövid kérdés megválaszolása egyenként 6 pontért, melyet minimum

Részletesebben

Algoritmuselmélet 12. előadás

Algoritmuselmélet 12. előadás Algoritmuselmélet 12. előadás Katona Gyula Y. Budapesti Műszaki és Gazdaságtudományi Egyetem Számítástudományi Tsz. I. B. 137/b kiskat@cs.bme.hu 2002 Április 9. ALGORITMUSELMÉLET 12. ELŐADÁS 1 Turing-gépek

Részletesebben

definiálunk. Legyen egy konfiguráció, ahol és. A következő három esetet különböztetjük meg. 1. Ha, akkor 2. Ha, akkor, ahol, ha, és egyébként.

definiálunk. Legyen egy konfiguráció, ahol és. A következő három esetet különböztetjük meg. 1. Ha, akkor 2. Ha, akkor, ahol, ha, és egyébként. Számításelmélet Kiszámítási problémának nevezünk egy olyan, a matematika nyelvén megfogalmazott kérdést, amire számítógéppel szeretnénk megadni a választ. (A matematika nyelvén precízen megfogalmazott

Részletesebben

Turing-gép május 31. Turing-gép 1. 1

Turing-gép május 31. Turing-gép 1. 1 Turing-gép 2007. május 31. Turing-gép 1. 1 Témavázlat Turing-gép Determinisztikus, 1-szalagos Turing-gép A gép leírása, példák k-szalagos Turing-gép Univerzális Turing-gép Egyéb Turing-gépek Nemdeterminisztikus

Részletesebben

A digitális számítás elmélete

A digitális számítás elmélete A digitális számítás elmélete 8. előadás ápr. 16. Turing gépek és nyelvtanok A nyelvosztályok áttekintése Turing gépek és a természetes számokon értelmezett függvények Áttekintés Dominó Bizonyítások: L

Részletesebben

Számításelmélet. Második előadás

Számításelmélet. Második előadás Számításelmélet Második előadás Többszalagos Turing-gép Turing-gép k (konstans) számú szalaggal A szalagok mindegyike rendelkezik egy független író / olvasó fejjel A bemenet az első szalagra kerül, a többi

Részletesebben

Formális nyelvek és automaták vizsgához statisztikailag igazolt várható vizsgakérdések

Formális nyelvek és automaták vizsgához statisztikailag igazolt várható vizsgakérdések 1. Feladat Az első feladatban szereplő - kérdések 1 Minden környezet független nyelv felismerhető veremautomatával. Minden környezet független nyelv felismerhető 1 veremmel. Minden 3. típusú nyelv felismerhető

Részletesebben

Formális nyelvek - 9.

Formális nyelvek - 9. Formális nyelvek - 9. Csuhaj Varjú Erzsébet Algoritmusok és Alkalmazásaik Tanszék Informatikai Kar Eötvös Loránd Tudományegyetem H-1117 Budapest Pázmány Péter sétány 1/c E-mail: csuhaj@inf.elte.hu 1 Véges

Részletesebben

Atomataelmélet: A Rabin Scott-automata

Atomataelmélet: A Rabin Scott-automata A 19. óra vázlata: Atomataelmélet: A Rabin Scott-automata Az eddigieken a formális nyelveket generatív szempontból vizsgáltuk, vagyis a nyelvtan (generatív grammatika) szemszögéből. A generatív grammatika

Részletesebben

A Turing-gép. Formális nyelvek III.

A Turing-gép. Formális nyelvek III. Formális nyelvek III. Általános és környezetfüggő nyelvek Fülöp Zoltán SZTE TTIK Informatikai Intézet Számítástudomány Alapjai Tanszék 6720 Szeged, Árpád tér 2. Definíció. Egy Turing-gép egy M = (Q,Σ,Γ,

Részletesebben

9. előadás Veremautomaták 1.

9. előadás Veremautomaták 1. 9. előadás 1. Dr. Kallós Gábor 2014 2015 1 Tartalom Motiváció Verem és végtelen automata Felépítés, konfigurációk és átmenetek Szavak felismerése, felismert nyelv Az elfogadó állapottal és az üres veremmel

Részletesebben

Turing-gépek. Számításelmélet (7. gyakorlat) Turing-gépek 2009/10 II. félév 1 / 1

Turing-gépek. Számításelmélet (7. gyakorlat) Turing-gépek 2009/10 II. félév 1 / 1 Turing-gépek Logika és számításelmélet, 7. gyakorlat 2009/10 II. félév Számításelmélet (7. gyakorlat) Turing-gépek 2009/10 II. félév 1 / 1 A Turing-gép Az algoritmus fogalmának egy intuitív definíciója:

Részletesebben

6. előadás A reguláris nyelvek jellemzése 2.

6. előadás A reguláris nyelvek jellemzése 2. 6. előadás A reguláris nyelvek jellemzése 2. Dr. Kallós Gábor 2014 2015 1 Tartalom A reguláris nyelvek osztályának jellemzése a körbebizonyítás Láncszabályok A 2. állítás és igazolása Ekvivalens 3-típusú

Részletesebben

Chomsky-féle hierarchia

Chomsky-féle hierarchia http://www.ms.sapientia.ro/ kasa/formalis.htm Chomsky-féle hierarchia G = (N, T, P, S) nyelvtan: 0-s típusú (általános vagy mondatszerkezetű), ha semmilyen megkötést nem teszünk a helyettesítési szabályaira.

Részletesebben

Automaták és formális nyelvek

Automaták és formális nyelvek Automaták és formális nyelvek Bevezetés a számítástudomány alapjaiba 1. Formális nyelvek 2006.11.13. 1 Automaták és formális nyelvek - bevezetés Automaták elmélete: információs gépek általános absztrakt

Részletesebben

6. előadás A reguláris nyelvek jellemzése 2.

6. előadás A reguláris nyelvek jellemzése 2. 6. előadás A reguláris nyelvek jellemzése 2. Dr. Kallós Gábor 2015 2016 1 Tartalom A reguláris nyelvek osztályának jellemzése a körbebizonyítás Láncszabályok A 2. állítás és igazolása Ekvivalens 3-típusú

Részletesebben

A Számítástudomány alapjai

A Számítástudomány alapjai Mechatronika, Optika és Gépészeti Informatika Tanszék A Számítástudomány alapjai Szemelvények az Elméleti Számítástudomány területéről Fogalmak: Számítástechnika Realizáció, technológia Elméleti számítástudomány

Részletesebben

Logika és számításelmélet. 10. előadás

Logika és számításelmélet. 10. előadás Logika és számításelmélet 10. előadás Rice tétel Rekurzíve felsorolható nyelvek tulajdonságai Tetszőleges P RE halmazt a rekurzívan felsorolható nyelvek egy tulajdonságának nevezzük. P triviális, ha P

Részletesebben

Véges automaták, reguláris nyelvek

Véges automaták, reguláris nyelvek Véges automaták, reguláris nyelvek Kiegészítő anyag az lgoritmuselmélet tárgyhoz (a Rónyai Ivanyos Szabó: lgoritmusok könyv mellé) Friedl Katalin BME SZIT friedl@cs.bme.hu 27. augusztus 3. véges automata

Részletesebben

Formális nyelvek és gépek (definíciós és tétel lista - 09/10/2)

Formális nyelvek és gépek (definíciós és tétel lista - 09/10/2) Formális nyelvek és gépek (definíciós és tétel lista - 09/10/2) ábécé: Ábécének nevezünk egy tetszőleges véges szimbólumhalmazt. Jelölése: X, Y betű: Az ábécé elemeit betűknek hívjuk. szó: Az X ábécé elemeinek

Részletesebben

Deníciók és tételek a beugró vizsgára

Deníciók és tételek a beugró vizsgára Deníciók és tételek a beugró vizsgára (a szóbeli viszgázás jogáért) Utolsó módosítás: 2008. december 2. 2 Bevezetés Számítási problémának nevezünk egy olyan, a matematika nyelvén megfogalmazott kérdést,

Részletesebben

ZH feladatok megoldásai

ZH feladatok megoldásai ZH feladatok megoldásai A CSOPORT 5. Írja le, hogy milyen szabályokat tartalmazhatnak az egyes Chomskynyelvosztályok (03 típusú nyelvek)! (4 pont) 3. típusú, vagy reguláris nyelvek szabályai A ab, A a

Részletesebben

Feladatok. 6. A CYK algoritmus segítségével döntsük el, hogy aabbcc eleme-e a G = {a, b, c}, {S, A, B, C}, P, S nyelvtan által generált nyelvnek!

Feladatok. 6. A CYK algoritmus segítségével döntsük el, hogy aabbcc eleme-e a G = {a, b, c}, {S, A, B, C}, P, S nyelvtan által generált nyelvnek! Feladatok 1. A CYK algoritmus segítségével döntsük el, hogy cabcab eleme-e a G = {a, b, c}, {S, A, B, C, D, E}, P, S nyelvtan által generált nyelvnek! P: S AD EB SS A AB a B DD b C CB c D EC a E AD b 2.

Részletesebben

Formális nyelvek és automaták előadások

Formális nyelvek és automaták előadások VÁRTERÉSZ MAGDA Formális nyelvek és automaták előadások 2005/06-os tanév 1. félév Tartalomjegyzék 1. Előzetes tudnivalók 4 2. Bevezetés 15 3. Ábécé, szó, formális nyelv 17 4. Műveletek nyelvekkel 24 4.1.

Részletesebben

ALAPFOGALMAK 1. A reláció az program programfüggvénye, ha. Azt mondjuk, hogy az feladat szigorúbb, mint az feladat, ha

ALAPFOGALMAK 1. A reláció az program programfüggvénye, ha. Azt mondjuk, hogy az feladat szigorúbb, mint az feladat, ha ALAPFOGALMAK 1 Á l l a p o t t é r Legyen I egy véges halmaz és legyenek A i, i I tetszőleges véges vagy megszámlálható, nem üres halmazok Ekkor az A= A i halmazt állapottérnek, az A i halmazokat pedig

Részletesebben

Chomsky-féle hierarchia

Chomsky-féle hierarchia http://www.cs.ubbcluj.ro/~kasa/formalis.html Chomsky-féle hierarchia G = (N, T, P, S) nyelvtan: 0-s típusú (általános vagy mondatszerkezet ), ha semmilyen megkötést nem teszünk a helyettesítési szabályaira.

Részletesebben

Emlékeztető: LR(0) elemzés. LR elemzések (SLR(1) és LR(1) elemzések)

Emlékeztető: LR(0) elemzés. LR elemzések (SLR(1) és LR(1) elemzések) Emlékeztető Emlékeztető: LR(0) elemzés A lexikális által előállított szimbólumsorozatot balról jobbra olvassuk, a szimbólumokat az vermébe tesszük. LR elemzések (SLR() és LR() elemzések) Fordítóprogramok

Részletesebben

6. előadás Környezetfüggetlen nyelvtanok/1.

6. előadás Környezetfüggetlen nyelvtanok/1. 6. előadás Környezetfüggetlen nyelvtanok/1. Dr. Kallós Gábor 2013 2014 1 Tartalom Bevezetés CF nyelv példák Nyelvek és nyelvtanok egy- és többértelműsége Bal- és jobboldali levezetések Levezetési fák A

Részletesebben

ALGEBRAI NYELV- ÉS KÓDELMÉLET. Babcsányi István

ALGEBRAI NYELV- ÉS KÓDELMÉLET. Babcsányi István ALGEBRAI NYELV- ÉS KÓDELMÉLET Babcsányi István 2013 Tartalomjegyzék ELŐSZÓ................................. 5 I. NYELVEK 7 1. Nyelvek algebrája 9 1.1. Műveletek nyelvekkel........................ 9 1.2.

Részletesebben

NP-teljesség röviden

NP-teljesség röviden NP-teljesség röviden Bucsay Balázs earthquake[at]rycon[dot]hu http://rycon.hu 1 Turing gépek 1/3 Mi a turing gép? 1. Definíció. [Turing gép] Egy Turing-gép formálisan egy M = (K, Σ, δ, s) rendezett négyessel

Részletesebben

Formális nyelvek - 5.

Formális nyelvek - 5. Formális nyelvek - 5. Csuhaj Varjú Erzsébet Algoritmusok és Alkalmazásaik Tanszék Informatikai Kar Eötvös Loránd Tudományegyetem H-1117 Budapest Pázmány Péter sétány 1/c E-mail: csuhaj@inf.elte.hu 1 Lineáris

Részletesebben

Mindent olyan egyszerűvé kell tenni, amennyire csak lehet, de nem egyszerűbbé. (Albert Einstein) Halmazok 1

Mindent olyan egyszerűvé kell tenni, amennyire csak lehet, de nem egyszerűbbé. (Albert Einstein) Halmazok 1 Halmazok 1 Mindent olyan egyszerűvé kell tenni, amennyire csak lehet, de nem egyszerűbbé. (Albert Einstein) Halmazok 2 A fejezet legfontosabb elemei Halmaz megadási módjai Halmazok közti műveletek (metszet,

Részletesebben

Mindent olyan egyszerűvé kell tenni, amennyire csak lehet, de nem egyszerűbbé.

Mindent olyan egyszerűvé kell tenni, amennyire csak lehet, de nem egyszerűbbé. HA 1 Mindent olyan egyszerűvé kell tenni, amennyire csak lehet, de nem egyszerűbbé. (Albert Einstein) HA 2 Halmazok HA 3 Megjegyzések A halmaz, az elem és az eleme fogalmakat nem definiáljuk, hanem alapfogalmaknak

Részletesebben

5. előadás Reguláris kifejezések, a reguláris nyelvek jellemzése 1.

5. előadás Reguláris kifejezések, a reguláris nyelvek jellemzése 1. 5. előadás Reguláris kifejezések, a reguláris nyelvek jellemzése 1. Dr. Kallós Gábor 2014 2015 1 Tartalom Reguláris kifejezések Meghatározás, tulajdonságok Kapcsolat a reguláris nyelvekkel A reguláris

Részletesebben

A számítógépes nyelvészet elmélete és gyakorlata. Formális nyelvek elmélete

A számítógépes nyelvészet elmélete és gyakorlata. Formális nyelvek elmélete A számítógépes nyelvészet elmélete és gyakorlata Formális nyelvek elmélete Nyelv Nyelvnek tekintem a mondatok valamely (véges vagy végtelen) halmazát; minden egyes mondat véges hosszúságú, és elemek véges

Részletesebben

5. A kiterjesztési elv, nyelvi változók

5. A kiterjesztési elv, nyelvi változók 5. A kiterjesztési elv, nyelvi változók Gépi intelligencia I. Fodor János BMF NIK IMRI NIMGI1MIEM Tartalomjegyzék I 1 A kiterjesztési elv 2 Nyelvi változók A kiterjesztési elv 237 A KITERJESZTÉSI ELV A

Részletesebben

Nyelv hatványa: Legyen L egy nyelv, nemnegatív egész hatványai,,. (rek. definició) Nyelv lezártja (iteráltja): Legyen L egy nyelv. L nyelv lezártja.

Nyelv hatványa: Legyen L egy nyelv, nemnegatív egész hatványai,,. (rek. definició) Nyelv lezártja (iteráltja): Legyen L egy nyelv. L nyelv lezártja. Univerzális ábécé: Szimbólumok egy megszámlálhatóan végtelen halmazát univerzális ábécének nevezzük Ábécé: Ábécének nevezzük az univerzális ábécé egy tetszőleges véges részhalmazát Betű: Az ábécé elemeit

Részletesebben

Formális Nyelvek és Automaták v1.9

Formális Nyelvek és Automaták v1.9 Formális Nyelvek és Automaták v1.9 Hernyák Zoltán E másolat nem használható fel szabadon, a készülő jegyzet egy munkapéldánya. A teljes jegyzetről, vagy annak bármely részéről bármely másolat készítéséhez

Részletesebben

Formális Nyelvek - 1. Előadás

Formális Nyelvek - 1. Előadás Formális Nyelvek - 1. Előadás Csuhaj Varjú Erzsébet Algoritmusok és Alkalmazásaik Tanszék Informatikai Kar Eötvös Loránd Tudományegyetem H-1117 Budapest Pázmány Péter sétány 1/c E-mail: csuhaj@inf.elte.hu

Részletesebben

Nyelvek és automaták augusztus

Nyelvek és automaták augusztus Nyelvek és automaták Csima Judit Friedl Katalin 2013. augusztus Ez a jegyzet a Budapesti Műszaki és Gazdaságtudományi Egyetem mérnökinformatikus hallgatói számára tartott Nyelvek és Automaták tantárgy

Részletesebben

Csempe átíró nyelvtanok

Csempe átíró nyelvtanok Csempe átíró nyelvtanok Tile rewriting grammars Németh L. Zoltán Számítástudomány Alapjai Tanszék SZTE, Informatikai Tanszékcsoport 1. előadás - 2006. április 10. Képek (pictures) I. Alapdefiníciók ábécé:

Részletesebben

Fogalomtár a Formális nyelvek és

Fogalomtár a Formális nyelvek és Fogalomtár a Formális nyelvek és automaták tárgyhoz (A törzsanyaghoz tartozó definíciókat és tételeket jelöli.) Definíciók Univerzális ábécé: Szimbólumok egy megszámlálhatóan végtelen halmazát univerzális

Részletesebben

Hadamard-mátrixok Előadó: Hajnal Péter február 23.

Hadamard-mátrixok Előadó: Hajnal Péter február 23. Szimmetrikus kombinatorikus struktúrák MSc hallgatók számára Hadamard-mátrixok Előadó: Hajnal Péter 2012. február 23. 1. Hadamard-mátrixok Ezen az előadáson látásra a blokkrendszerektől független kombinatorikus

Részletesebben

Feladatok: 1. Add meg a következ balreguláris nyelvtannak megfelel jobbreguláris nyelvtant!

Feladatok: 1. Add meg a következ balreguláris nyelvtannak megfelel jobbreguláris nyelvtant! Feladatok: 1. Add meg a következ balreguláris nyelvtannak megfelel jobbreguláris nyelvtant! Megoldás: S b A a Ezzel a feladattal az volt a gondom, hogy a könyvben tanultak alapján elkezdtem levezetni,

Részletesebben

Diszkrét matematika 2. estis képzés

Diszkrét matematika 2. estis képzés Diszkrét matematika 2. estis képzés 2018. tavasz 1. Diszkrét matematika 2. estis képzés 4-6. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék

Részletesebben

Kiterjesztések sek szemantikája

Kiterjesztések sek szemantikája Kiterjesztések sek szemantikája Példa D Integer = {..., -1,0,1,... }; D Boolean = { true, false } D T1... T n T = D T 1... D Tn D T Az összes függvf ggvény halmaza, amelyek a D T1,..., D Tn halmazokból

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA, MATEmATIkA I. 4 IV. FÜGGVÉNYEk 1. LEkÉPEZÉSEk, függvények Definíció Legyen és két halmaz. Egy függvény -ből -ba egy olyan szabály, amely minden elemhez pontosan egy elemet rendel hozzá. Az

Részletesebben

Házi feladatok megoldása. Nyelvtani transzformációk. Házi feladatok megoldása. Házi feladatok megoldása. Formális nyelvek, 6. gyakorlat.

Házi feladatok megoldása. Nyelvtani transzformációk. Házi feladatok megoldása. Házi feladatok megoldása. Formális nyelvek, 6. gyakorlat. Nyelvtani transzformációk Formális nyelvek, 6. gyakorlat a. S (S) SS ε b. S XS ε és X (S) c. S (SS ) Megoldás: Célja: A nyelvtani transzformációk bemutatása Fogalmak: Megszorított típusok, normálformák,

Részletesebben

Az informatika elméleti alapjai 2 elővizsga december 19.

Az informatika elméleti alapjai 2 elővizsga december 19. Név (aláírás): Az informatika elméleti alapjai 2 elővizsga 2017. december 19. A vizsgadolgozat 1. feladatára helyes válaszonként 1-1 pont kapható, a 2-3. feladatok megoldásáért 6-6 pont, a 4. feladatra

Részletesebben

Felismerhető nyelvek zártsági tulajdonságai II... slide #30. Véges nemdeterminisztikus automata... slide #21

Felismerhető nyelvek zártsági tulajdonságai II... slide #30. Véges nemdeterminisztikus automata... slide #21 A számítástudomány alapjai Ésik Zoltán SZTE, Számítástudomány Alapjai Tanszék Bevezetes Bevezetés.................................................... slide #2 Automaták és formális nyelvek Szavak és nyelvek...............................................

Részletesebben

Formális nyelvek és automaták

Formális nyelvek és automaták Formális nyelvek és automaták Nagy Sára gyakorlatai alapján Készítette: Nagy Krisztián Utolsó óra MINTA ZH Eötvös Loránd Tudományegyetem Informatikai Kar 2012.05.18 1. feladat: KMP (Knuth-Morris-Prett)

Részletesebben

A SZÁMÍTÁSTUDOMÁNY ALAPJAI

A SZÁMÍTÁSTUDOMÁNY ALAPJAI Írta: ÉSIK ZOLTÁN A SZÁMÍTÁSTUDOMÁNY ALAPJAI Egyetemi tananyag 2011 COPYRIGHT: 2011 2016, Dr. Ésik Zoltán, Szegedi Tudományegyetem Természettudományi és Informatikai Kar Számítástudomány Alapjai Tanszék

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA, MATEmATIkA I. 3 III. MEGFELELTETÉSEk, RELÁCIÓk 1. BEVEZETÉS Emlékeztetünk arra, hogy az rendezett párok halmazát az és halmazok Descartes-féle szorzatának nevezzük. Más szóval az és halmazok

Részletesebben

(2004) by Data parancsnok Based on (not so much auditted) lectures of Dr. Radelecki Sándor

(2004) by Data parancsnok Based on (not so much auditted) lectures of Dr. Radelecki Sándor Automaták és Formális nyelvek (2004) by Data parancsnok Based on (not so much auditted) lectures of Dr. Radelecki Sándor Determinisztikus véges automata (DFA Deterministic Final Automata) Elmélet: A DFA

Részletesebben

Gy ur uk aprilis 11.

Gy ur uk aprilis 11. Gyűrűk 2014. április 11. 1. Hányadostest 2. Karakterisztika, prímtest 3. Egyszerű gyűrűk [F] III/8 Tétel Minden integritástartomány beágyazható testbe. Legyen R integritástartomány, és értelmezzünk az

Részletesebben

Diszkrét matematika 2.C szakirány

Diszkrét matematika 2.C szakirány Diszkrét matematika 2.C szakirány 2017. ősz 1. Diszkrét matematika 2.C szakirány 2. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék 2017.

Részletesebben

Halmazelmélet. 1. előadás. Farkas István. DE ATC Gazdaságelemzési és Statisztikai Tanszék. Halmazelmélet p. 1/1

Halmazelmélet. 1. előadás. Farkas István. DE ATC Gazdaságelemzési és Statisztikai Tanszék. Halmazelmélet p. 1/1 Halmazelmélet 1. előadás Farkas István DE ATC Gazdaságelemzési és Statisztikai Tanszék Halmazelmélet p. 1/1 A halmaz fogalma, jelölések A halmaz fogalmát a matematikában nem definiáljuk, tulajdonságaival

Részletesebben

Számításelmélet. Will június 13. A kiszámíthatóság fogalma és a Church-Turing tézis

Számításelmélet. Will június 13. A kiszámíthatóság fogalma és a Church-Turing tézis Számításelmélet Will 2010. június 13. A kiszámíthatóság fogalma és a Church-Turing tézis. A Turing gép, mint algoritmus modell. A rekurzív és a rekurzívan felsorolható nyelvek. Algoritmikusan eldönthet

Részletesebben

Turing-gépek. Kiegészítő anyag az Algoritmuselmélet tárgyhoz VIII. Friedl Katalin BME SZIT március 18.

Turing-gépek. Kiegészítő anyag az Algoritmuselmélet tárgyhoz VIII. Friedl Katalin BME SZIT március 18. Turing-gépek Kiegészítő anyag az Algoritmuselmélet tárgyhoz VIII. (a Rónyai Ivanyos Szabó: Algoritmusok könyv mellé) Friedl Katalin BME SZIT friedl@cs.bme.hu 2016. március 18. A veremautomatáknál az hogy

Részletesebben

Budapesti M szaki és Gazdaságtudományi Egyetem Automatizálási és Alkalmazott Informatikai Tanszék INFORMATIKA 2 AUTOMATÁK ÉS NYELVEK.

Budapesti M szaki és Gazdaságtudományi Egyetem Automatizálási és Alkalmazott Informatikai Tanszék INFORMATIKA 2 AUTOMATÁK ÉS NYELVEK. Budapesti M szaki és Gazdaságtudományi Egyetem Automatizálási és Alkalmazott Informatikai Tanszék INFORMATIKA 2 AUTOMATÁK ÉS NYELVEK Vajk István 2010. március Tartalomjegyzék 1. Fejezet Automaták és nyelvek

Részletesebben

Elsőrendű logika szintaktikája és szemantikája. Logika (3. gyakorlat) 0-adrendű szemantika 2009/10 II. félév 1 / 1

Elsőrendű logika szintaktikája és szemantikája. Logika (3. gyakorlat) 0-adrendű szemantika 2009/10 II. félév 1 / 1 Elsőrendű logika szintaktikája és szemantikája Logika és számításelmélet, 3. gyakorlat 2009/10 II. félév Logika (3. gyakorlat) 0-adrendű szemantika 2009/10 II. félév 1 / 1 Az elsőrendű logika Elemek egy

Részletesebben

FORMÁLIS NYELVEK ÉS FORDÍTÓPROGRAMOK. LABORGYAKORLATOK

FORMÁLIS NYELVEK ÉS FORDÍTÓPROGRAMOK. LABORGYAKORLATOK FORMÁLIS NYELVEK ÉS FORDÍTÓPROGRAMOK LABORGYAKORLATOK http://www.ms.sapientia.ro/~kasa/formalis.htm 0 Formális nyelvek és fordítóprogramok http://www.ms.sapientia.ro/~kasa/formalis.htm Jelenlét kötelezõ!

Részletesebben

Algoritmusok bonyolultsága

Algoritmusok bonyolultsága Algoritmusok bonyolultsága 11. előadás http://www.ms.sapientia.ro/~kasa/komplex.htm () 1 / 1 NP-telesség Egy L nyelv NP-teles, ha L NP és minden L NP-re L L. Egy Π döntési feladat NP-teles, ha Π NP és

Részletesebben

Turing-gépek. Kiegészítő anyag az Algoritmuselmélet tárgyhoz. Friedl Katalin BME SZIT augusztus 16.

Turing-gépek. Kiegészítő anyag az Algoritmuselmélet tárgyhoz. Friedl Katalin BME SZIT augusztus 16. Turing-gépek Kiegészítő anyag az Algoritmuselmélet tárgyhoz (a Rónyai Ivanyos Szabó: Algoritmusok könyv mellé) Friedl Katalin BME SZIT friedl@cs.bme.hu 2017. augusztus 16. A veremautomatáknál az, hogy

Részletesebben

Formális Nyelvek és Automaták Dömösi, Pál Falucskai, János Horváth, Géza Mecsei, Zoltán Nagy, Benedek

Formális Nyelvek és Automaták Dömösi, Pál Falucskai, János Horváth, Géza Mecsei, Zoltán Nagy, Benedek Formális Nyelvek és Automaták Dömösi, Pál Falucskai, János Horváth, Géza Mecsei, Zoltán Nagy, Benedek Formális Nyelvek és Automaták Dömösi, Pál Falucskai, János Horváth, Géza Mecsei, Zoltán Nagy, Benedek

Részletesebben

minden x D esetén, akkor x 0 -at a függvény maximumhelyének mondjuk, f(x 0 )-at pedig az (abszolút) maximumértékének.

minden x D esetén, akkor x 0 -at a függvény maximumhelyének mondjuk, f(x 0 )-at pedig az (abszolút) maximumértékének. Függvények határértéke és folytonossága Egy f: D R R függvényt korlátosnak nevezünk, ha a függvényértékek halmaza korlátos. Ha f(x) f(x 0 ) teljesül minden x D esetén, akkor x 0 -at a függvény maximumhelyének

Részletesebben

Határérték. prezentációjából valók ((C)Pearson Education, Inc.) Összeállította: Wettl Ferenc október 11.

Határérték. prezentációjából valók ((C)Pearson Education, Inc.) Összeállította: Wettl Ferenc október 11. Határérték Thomas féle Kalkulus 1 című könyv alapján készült a könyvet használó hallgatóknak. A képek az eredeti könyv szabadon letölthető prezentációjából valók ((C)Pearson Education, Inc.) Összeállította:

Részletesebben

Leképezések. Leképezések tulajdonságai. Számosságok.

Leképezések. Leképezések tulajdonságai. Számosságok. Leképezések Leképezések tulajdonságai. Számosságok. 1. Leképezések tulajdonságai A továbbiakban legyen A és B két tetszőleges halmaz. Idézzünk fel néhány definíciót. 1. Definíció (Emlékeztető). Relációknak

Részletesebben

Diszkrét matematika 2. estis képzés

Diszkrét matematika 2. estis képzés Diszkrét matematika 2. estis képzés 2016. tavasz 1. Diszkrét matematika 2. estis képzés 9. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék

Részletesebben

Számításelmélet Tamás Herendi

Számításelmélet Tamás Herendi Számításelmélet Tamás Herendi Számításelmélet Tamás Herendi Publication date 2014. Table of Contents 1. Előszó... 1 2. Formális nyelvek... 2 3. Függvények növekedési rendje... 8 4. A Turing-gép... 14 1.

Részletesebben

Matematikai logika és halmazelmélet

Matematikai logika és halmazelmélet Matematikai logika és halmazelmélet Wettl Ferenc előadása alapján 2015-09-07 Wettl Ferenc előadása alapján Matematikai logika és halmazelmélet 2015-09-07 1 / 21 Tartalom 1 Matematikai kijelentések szerkezete

Részletesebben

MintaFeladatok 2.ZH Megoldások

MintaFeladatok 2.ZH Megoldások 1. feladat Kérem e-mail-ben jelezze, ha hibát talál: (veanna@inf.elte.hu, vagy veanna@elte.hu ) P={ } S A B C AB SC AC a c BC b CS SS c S a kezdőjel Mivel a piramis tetején lévő kocka a mondatkezdő szimbólumot

Részletesebben

Sorozatok, sorok, függvények határértéke és folytonossága Leindler Schipp - Analízis I. könyve + jegyzetek, kidolgozások alapján

Sorozatok, sorok, függvények határértéke és folytonossága Leindler Schipp - Analízis I. könyve + jegyzetek, kidolgozások alapján Sorozatok, sorok, függvények határértéke és folytonossága Leindler Schipp - Analízis I. könyve + jegyzetek, kidolgozások alapján Számsorozatok, vektorsorozatok konvergenciája Def.: Számsorozatok értelmezése:

Részletesebben

Számítógép és programozás 2

Számítógép és programozás 2 Számítógép és programozás 2 6. Előadás Problémaosztályok http://digitus.itk.ppke.hu/~flugi/ Emlékeztető A specifikáció egy előfeltételből és utófeltételből álló leírása a feladatnak Léteznek olyan feladatok,

Részletesebben

Formális módszerek GM_IN003_1 Program verifikálás, formalizmusok

Formális módszerek GM_IN003_1 Program verifikálás, formalizmusok Formális módszerek GM_IN003_1 Program verifikálás, formalizmusok Program verifikálás Konkurens programozási megoldások terjedése -> verifikálás szükséges, (nehéz) logika Legszélesebb körben alkalmazott

Részletesebben

Átlátható veremautomaták és nyelvek

Átlátható veremautomaták és nyelvek Átlátható veremautomaták és nyelvek Visibly pushdown automata and languages Németh L. Zoltán Számítástudomány Alapjai Tanszék SZTE, Informatikai Tanszékcsoport 2007. április 23. Tartalom 1 Motiváció: modellellenőrzés

Részletesebben

Rekurzió. Dr. Iványi Péter

Rekurzió. Dr. Iványi Péter Rekurzió Dr. Iványi Péter 1 Függvényhívás void f3(int a3) { printf( %d,a3); } void f2(int a2) { f3(a2); a2 = (a2+1); } void f1() { int a1 = 1; int b1; b1 = f2(a1); } 2 Függvényhívás void f3(int a3) { printf(

Részletesebben

Algoritmusok helyességének bizonyítása. A Floyd-módszer

Algoritmusok helyességének bizonyítása. A Floyd-módszer Algoritmusok helyességének bizonyítása A Floyd-módszer Algoritmusok végrehajtása Egy A algoritmus esetében a változókat három változótípusról beszélhetünk, melyeket az X, Y és Z vektorokba csoportosítjuk

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA, MATEmATIkA I. 1 I. HALmAZOk 1. JELÖLÉSEk A halmaz fogalmát tulajdonságait gyakran használjuk a matematikában. A halmazt nem definiáljuk, ezt alapfogalomnak tekintjük. Ez nem szokatlan, hiszen

Részletesebben

Számítógép és programozás 2

Számítógép és programozás 2 Számítógép és programozás 2 8. Előadás Megoldhatóság, hatékonyság http://digitus.itk.ppke.hu/~flugi/ Elméleti áttekintés a SzámProg 1 tárgyból Algoritmikus eldönthetőség kérdése Bizonyíthatóság kérdése,

Részletesebben

2014. szeptember 24. és 26. Dr. Vincze Szilvia

2014. szeptember 24. és 26. Dr. Vincze Szilvia 2014. szeptember 24. és 26. Dr. Vincze Szilvia Mind a hétköznapi, mind a tudományos életben gyakran előfordul, hogy bizonyos halmazok elemei között kapcsolat figyelhető meg. A kapcsolat fogalmának matematikai

Részletesebben

Példák. Ismert a római számok halmaza, amely intuitív szintaxissal rendelkezik, hiszen pl.

Példák. Ismert a római számok halmaza, amely intuitív szintaxissal rendelkezik, hiszen pl. A 10. óra vázlata: Példák Ismert a római számk halmaza, amely intuitív szintaxissal rendelkezik, hiszen pl. IIV-t VX-et vagy IIII-t nem fgadjuk el római számnak (habár v.ö. tarkk-kártya vagy némely óra

Részletesebben

Nagy Gábor compalg.inf.elte.hu/ nagy

Nagy Gábor  compalg.inf.elte.hu/ nagy Diszkrét matematika 3. estis képzés 2018. ősz 1. Diszkrét matematika 3. estis képzés 10. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék

Részletesebben

Matematika szigorlat június 17. Neptun kód:

Matematika szigorlat június 17. Neptun kód: Név Matematika szigorlat 014. június 17. Neptun kód: 1.. 3. 4. 5. Elm. Fel. Össz. Oszt. Az eredményes szigorlat feltétele elméletből legalább 0 pont, feladatokból pedig legalább 30 pont elérése. A szigorlat

Részletesebben

MintaFeladatok 2.ZH Megoldások

MintaFeladatok 2.ZH Megoldások Kérem e-mail-ben jelezze, ha hibát talál: (veanna@inf.elte.hu, vagy veanna@elte.hu ) 1. feladat megoldása a b 1 2 3 2 4 2 3 2 1 4 6 3 5 10 6 6 8 7 7 9 7 8 8 9 9 8 8 10 5 1 I. Összefüggőség vizsgálat. H0={1}

Részletesebben

Nagy Gábor compalg.inf.elte.hu/ nagy ősz

Nagy Gábor  compalg.inf.elte.hu/ nagy ősz Diszkrét matematika 1. középszint 2017. ősz 1. Diszkrét matematika 1. középszint 8. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján Komputeralgebra

Részletesebben

Matematika (mesterképzés)

Matematika (mesterképzés) Matematika (mesterképzés) Környezet- és Településmérnököknek Debreceni Egyetem Műszaki Kar, Műszaki Alaptárgyi Tanszék Vinczéné Varga A. Környezet- és Településmérnököknek 2016/2017/I 1 / 29 Lineáris tér,

Részletesebben

Formális Nyelvek és Automaták. Dömösi, Pál Falucskai, János Horváth, Géza Mecsei, Zoltán Nagy, Benedek

Formális Nyelvek és Automaták. Dömösi, Pál Falucskai, János Horváth, Géza Mecsei, Zoltán Nagy, Benedek Formális Nyelvek és Automaták Dömösi, Pál Falucskai, János Horváth, Géza Mecsei, Zoltán Nagy, Benedek Formális Nyelvek és Automaták Dömösi, Pál Falucskai, János Horváth, Géza Mecsei, Zoltán Nagy, Benedek

Részletesebben

Programozási módszertan

Programozási módszertan 1 Programozási módszertan 1. Alapfogalmak Feldhoffer Gergely 2012 Féléves tananyag terve 2 Program helyességének bizonyítása Reprezentáció Logikai-matematikai eszköztár Programozási tételek bizonyítása

Részletesebben

5. előadás. Programozás-elmélet. Programozás-elmélet 5. előadás

5. előadás. Programozás-elmélet. Programozás-elmélet 5. előadás Elemi programok Definíció Az S A A program elemi, ha a A : S(a) { a, a, a, a,..., a, b b a}. A definíció alapján könnyen látható, hogy egy elemi program tényleg program. Speciális elemi programok a kövekezők:

Részletesebben

A PÁRHUZAMOSSÁG VIZSGÁLATA A KLASSZIKUS FORMÁLIS NYELVEKHEZ KAPCSOLÓDÓAN. Nagy Benedek Debreceni Egyetem Informatikai Kar Számítógéptudományi Tanszék

A PÁRHUZAMOSSÁG VIZSGÁLATA A KLASSZIKUS FORMÁLIS NYELVEKHEZ KAPCSOLÓDÓAN. Nagy Benedek Debreceni Egyetem Informatikai Kar Számítógéptudományi Tanszék A PÁRHUZAMOSSÁG VIZSGÁLATA A KLASSZIKUS FORMÁLIS NYELVEKHEZ KAPCSOLÓDÓAN ON THE CONCEPT OF PARALLELISM CONNECTED TO CLASSICAL FORMAL LANGUAGE THEORY Nagy Benedek Debreceni Egyetem Informatikai Kar Számítógéptudományi

Részletesebben

Logika es sz am ıt aselm elet I. r esz Logika Harmadik el oad as 1/33

Logika es sz am ıt aselm elet I. r esz Logika Harmadik el oad as 1/33 1/33 Logika és számításelmélet I. rész Logika Harmadik előadás Tartalom 2/33 Elsőrendű logika bevezetés Az elsőrendű logika szintaxisa 3/33 Nulladrendű állítás Az ítéletlogikában nem foglalkoztunk az álĺıtások

Részletesebben

ALGEBRAI AUTOMATAELMÉLET

ALGEBRAI AUTOMATAELMÉLET Babcsányi István ALGEBRAI AUTOMATAELMÉLET 2011 Ismertető Tartalomjegyzék Pályázati támogatás Gondozó Szakmai vezető Lektor Technikai szerkesztő Copyright A jegyzet az automaták algebrai elméletének alapjait

Részletesebben

Házi feladatok megoldása. Nyelvek felismerése. Házi feladatok megoldása. Házi feladatok megoldása. Formális nyelvek, 5. gyakorlat

Házi feladatok megoldása. Nyelvek felismerése. Házi feladatok megoldása. Házi feladatok megoldása. Formális nyelvek, 5. gyakorlat Házi feladatok megoldása Nyelvek felismerése Formális nyelvek, 5. gyakorlat 1. feladat Adjunk a következő nyelvet generáló 3. típusú nyelvtant! Azon M-áris számrendszerbeli számok, melyek d-vel osztva

Részletesebben

HALMAZELMÉLET feladatsor 1.

HALMAZELMÉLET feladatsor 1. HALMAZELMÉLET feladatsor 1. Egy (H,, ) algebrai struktúra háló, ha (H, ) és (H, ) kommutatív félcsoport, és teljesül az ún. elnyelési tulajdonság: A, B H: A (A B) = A, A (A B) = A. A (H,, ) háló korlátos,

Részletesebben

17. előadás: Vektorok a térben

17. előadás: Vektorok a térben 17. előadás: Vektorok a térben Szabó Szilárd A vektor fogalma A mai előadásban n 1 tetszőleges egész szám lehet, de az egyszerűség kedvéért a képletek az n = 2 esetben szerepelnek. Vektorok: rendezett

Részletesebben

15. LINEÁRIS EGYENLETRENDSZEREK

15. LINEÁRIS EGYENLETRENDSZEREK 15 LINEÁRIS EGYENLETRENDSZEREK 151 Lineáris egyenletrendszer, Gauss elimináció 1 Definíció Lineáris egyenletrendszernek nevezzük az (1) a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a

Részletesebben

Dicsőségtabló Beadós programozási feladatok

Dicsőségtabló Beadós programozási feladatok Dicsőségtabló Beadós programozási feladatok Hallgatói munkák 2017 2018 Szavak kiírása ábécé felett Készítő: Maurer Márton (GI, nappali, 2017) Elméleti háttér Adott véges Ʃ ábécé felett megszámlálhatóan

Részletesebben