Temporális logikák és modell ellenırzés

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Temporális logikák és modell ellenırzés"

Átírás

1 Temporális logikák és modell ellenırzés

2 Temporális logikák Modális logika: kijelentések különböző módjainak tanulmányozására vezették be (eredetileg filozófusok). Ilyen módok: esetleg, mindig, szükségszerűen, valamikor biztosan Temporális logikák: a modális logikák egy formális rendszerét képezik arra, hogy kijelentések igazságának időbeli (sorrendiségi) változását vizsgálhassuk. Erre a célra temporális operátorok állnak rendelkezésünkre (pl. mindig P akkor igaz, ha a P kijelentés minden jövőbeli pillanatban igaz, valamikor Q akkor igaz, ha van olyan jövőbeli pillanat, amikor Q igaz. Az időbeliség logikai időre, az időpillanatok sorrendiségére vonatkozik (a valós idő múlását az operátorok nem kezelik)

3 Temporális logikák Elsősorban folyamatosan működő rendszerek (pl. operációs rendszerek, beágyazott rendszerek stb.) tulajdonságainak leírására használjuk. Ezekben a rendszerekben a bemenetek és kimenetek kapcsolata nem adható meg transzformációként, a helyesség nem fogalmazható meg a kezdeti és végállapotokra vonatkozó elő- és utófeltételek formájában (pl. nem értelmezhető a végállapot) A tulajdonságok egy része lokális, tehát egy-egy aktuális időpillanathoz köthető, más részük elérhetőségi, azaz a működés során jövőbeli időpillanatokra vonatkozik. Utóbbiakat a biztonság illetve élőség kategóriákba soroljuk. Biztonsági tulajdonságok: veszélyes, nemkívánatos helyzetek elkerülését fogalmazzák meg, univerzális kvantorokat alkalmaznak az időpillanatokra ( minden pillanatban igaz, hogy a rendszer biztonságos állapotban van ). Induktív módszerekkel bizonyíthatóak. Pl. egy többprocesszes rendszer esetében ilyenek: holtpontmentesség (minden időpillanatban van egy futásra kész processz), kölcsönös kizárás (soha nincs két processz egyszerre kritikus szakaszban), adatbiztonság (soha nincs jogosulatlan hozzáférés)

4 Temporális logikák Az élő jellegű tulajdonságok bizonyos kívánatos helyzetek elérését írják elő (pl. kérésre válasz érkezik, eredmény előáll stb.). Ezeket az időpillanatokon alkalmazott egzisztenciális kvantorokkal lehet megfogalmazni. Nehézség, hogy induktív módon nem levezethetőek. Általában azt kell megmutatni, hogy a rendszer mindig közelebb kerül a kívánatos helyzethez. Például: Elküldött üzenet megérkezik (ha egy üzenetküldés történt, akkor valamikor bekövetkezik az az időpillanat, amikor az üzenet megérkezik) Kérés kiszolgálása megtörténik Nincs kiéheztetés (minden processz előbb-utóbb futhat, létezik olyan jövőbeli időpillanat amikor a processz futó állapotba kerül) Terminálás: a program előbb-utóbb eléri végállapotát Egyes tulajdonságok (pl. egy adott helyzet végtelenül sokszor fennáll) nem sorolhatóak ezekbe a kategóriákba

5 Temporális logikák osztályozása Kijelentés- illetve elsőrendű logikák: a temporális kijelentéslogikák a temporális operátok mellett a klasszikus kijelentéslogika eszköztárát használják, hasonlóan az elsőrendű temporális logikák a temporális operátorok mellett alkalmazzák az elsőrendű logikák eszköztárát Pont- illetve intervallumlogikák: a pont logikák jellemzője, hogy a temporális operátorokat egy-egy időpillanatban értékeljük ki, míg az intervallumlogikák esetében időintervallumokra definiáljuk és értékeljük ki őket Diszkrét- illetve folytonos idejű logikák: a legtöbb esetben (pl. programok vagy állapotgépek vizsgálata) elégséges az idő diszkrét kezelése (egymás utáni időpillanatokat feleltetünk meg a természetes számok sorozatának), de hibrid (pl. analóg elemeket is tartalmazó) valósidejű rendszerek esetében szükséges lehet a folytonos idő kezelése)

6 Temporális logikák osztályozása Lineáris- illetve elágazó idejű logikák: az első esetben az egymás utáni időpillanatokat mint lineáris rendszert kezeljük: minden időpillanatnak csak egy-egy rákövetkező időpillanata értelmezett (egyféle jövőt veszünk figyelembe). A második esetben az egymás utáni időpillanatok egy elágazó fastruktúrát alkotnak, minden pillanatnak több rákövetkezője értelmezett (többféle lehetséges jövő) Lineáris idejű temporális logika (LTL Linear Time Temporal Logic): az időpillanatok egy idővonal mentén követik egymást, erre az idővonalra vonatkoztatjuk a temporális operátorokat Elágazó idejű temporális logikák (BTL Branching Time Temporal Logic): az időpillanatok fa struktúrában elágazó idővonalak mentén követik egymást, az operátok az elágazásokra is vonatkoznak, nemcsak a vonalakra (pl. kifejezhető: valami minden elágazásra igaz, valami legalább egy idővonalra igaz) Múlt illetve jövő kezelése: általában a jövőre vonatkoznak, de néhány tulajdonság leírásának megkönnyítése érdekében a múltra is vonatkozhatnak

7 Esetünkben a temporális logikák által leírt tulajdonságokat (pl. az útkereszteződésben a lámpa valamikor zöld lesz ) diszkrét állapotokkal és akciókkal (műveletekkel) rendelkező rendszereken (pl. számítógépes programok, állapotgépek pl. a közlekedési lámpa vezérlője) szeretnénk ellenőrizni A jelen időpillanat az aktuális állapotot vagy akciót, a jövő időpillanatok pedig rákövetkező állapotokat vagy akciókat jelölnek, tehát az egymás utáni időpillanatok az állapotok vagy akciók egymásutániságának (szekvenciájának) felelnek meg. A temporális logikák modelljeiként matematikailag jól kezelhető struktúrákat és formalizmusokat alkalmazunk, és módszereket amelyek lehetővé teszik a temporális logikai kijelentések igazságának ellenőrzését. A modellek általában származtathatóak a tervezéshez közelebb álló félformális modellekből (állapottérképek, adatfolyam gráfok)

8 Kripke struktúrák: Legyen AP atomi kijelentések véges halmaza (az alkalmazásban tovább nem bontható kijelentések, pl. a lámpa piros, x>25, a processz kritikus szakaszban van stb. A kijelentéseket P, Q, nagybetűkkel jelöljük Egy adott AP mellett a Kripke-struktúra a következő hármas: M=(S, R, L), ahol S az állapotok véges halmaza R S S állapotátmeneti reláció L:S 2 AP az állapotok címkézése atomi kijelentésekkel. Egy állapotot több kijelentés is címkézhet. Minden s állapotra true L(s) és false L(s) Kripke struktúrát alkalmazunk, ha rendszerünk működését legjobban állapotok segítségével tudjuk leírni, az állapotokat lokálisan az adott állapotra igaz kijelentésekkel tudjuk jellemezni. A temporális logika segítségével leírt tulajdonságokat az egyes állapotokra érvényes lokális kijelentések alapján értékeljük ki.

9 Kripke struktúrák példa: Jelzőlámpa: AP = {zöld, sárga, piros, villogó sárga} {z öld } {sárga} {piros} {piros, sárga} s1 s2 s3 s4 s5 {villogó_sárga}

10 Cimkézett állapotátmeneti (tranzíciós) rendszerek (LTS Labeled Transition systems): Az állapotátmenetekhez akciókat rendelünk, melyek tovább nem bonthatóak, és általában egy-egy alkalmazás-specifikus műveletet (üzenetet, a környezettel való kölcsönhatást) jelentenek, kisbetűkkel jelöljük őket (a,b,c) Egy LTS a T=(S, Act, ) hármas, ahol: S az állapotok véges halmaza Act=(a,b,c, ) az akciók véges halmaza S Act S címkézet állapot-átmeneti reláció. Egy állapotátmenetet egy akció címkézhet LTS modelleket használunk, ha rendszerünket leginkább az állapotátmenetek során bekövetkezett akciók sorozatával tudjuk leírni (az egyes állapotokat kevésbé tudjuk lokálisan jellemezni). Pl. kommunikációs (üzenetet küldő/fogadó) rendszerek. A temporális logikák segítségével leírt tulajdonságok igazságát a lehetséges akciósorozatok alapján értékeljük ki

11 LTS példa: Italautomata: pénz tea kávé

12 Kripke állapot-átmeneti rendszerek (KTS - Kripke Transition Systems): Az állapotokat kijelentésekkel, az átmeneteket akciókkal címkézzük. Adott AP és Act mellett tehát a KTS a K=(S,,L) hármas. KTL modelleket használunk programok esetén az utasítások (akciók) és változók (állapotokhoz rendelt kijelentések) egyidejű megadására. Példa: z:=0; i:=0; while (i!=y) do z:=z+x; i:=i+1; end z:=z+x i:=i+1 [i!=y] {true} z:=0 i:=0 {i!=y, z=i*x} {z=i*x} [i=y] {z=y*x}

13 Automaták véges szavakon: Véges hosszúságú szavakon értelmezhetjük az A=(Σ, S, S 0, ρ, F) automatát, ahol: Σ - az ábécé (a betűk nem üres halmaza) S az állapotok véges, nem üres halmaza S 0 S a kezdőállapotok halmaza ρ: S Σ 2 S az állapot-átmeneti reláció (egy beérkező betű hatására új állapotba lép az automata) F az elfogadó állapotok halmaza Egy ω = (a 0,,a n-1 ) szót elfogad az automata, ha létezik rá elfogadó futás. Az automata által elfogadott nyelv: L(A)={ω Σ ω elfogadott} Ilyen automatákat használhatunk pl. véges hosszúságú bemenetek feldolgozásának leírására. A temporális logika segítségével leírt tulajdonságokat az elfogadott nyelv alapján értékeljük ki.

14 Büchi automaták: Végtelen hosszúságú szavakon értelmezzük, így módosítanunk kell az elfogadás kritériumát, mivel nincsen végállapot Az A automata futása egy beérkező a 0,a 1 végtelen betűsorozat (szó) hatására az r=(s 0,s 1, ) állapotsorozat, ahol s 0 S 0 és 0 i re s i+1 =ρ(s i,a i ). A végtelen futás jellemzője azon s S állapotok halmaza, amelyeket a futás végtelenül sokszor érint: lim(r) = {s s=s i végtelenül sokszor} Egy futást elfogadónak nevezünk, ha lim(r) F. Egy ω végtelenül hosszú szót elfogad az automata, ha létezik rá elfogadó futás. A Büchi automata által elfogadott nyelv: L(A)={ω Σ ω elfogadott} A temporális logika által leírt tulajdonságokat az elfogadott nyelv alapján értékeljük ki.

Részletes szoftver tervek ellenőrzése

Részletes szoftver tervek ellenőrzése Részletes szoftver tervek ellenőrzése Majzik István Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs Rendszerek Tanszék http://www.mit.bme.hu/~majzik/ Tartalomjegyzék A részletes

Részletesebben

Modellellenőrzés. dr. Majzik István BME Méréstechnika és Információs Rendszerek Tanszék

Modellellenőrzés. dr. Majzik István BME Méréstechnika és Információs Rendszerek Tanszék Modellellenőrzés dr. Majzik István BME Méréstechnika és Információs Rendszerek Tanszék 1 Mit szeretnénk elérni? Informális vagy félformális tervek Informális követelmények Formális modell: KS, LTS, TA

Részletesebben

Követelmények formalizálása: Temporális logikák. dr. Majzik István BME Méréstechnika és Információs Rendszerek Tanszék

Követelmények formalizálása: Temporális logikák. dr. Majzik István BME Méréstechnika és Információs Rendszerek Tanszék Követelmények formalizálása: Temporális logikák dr. Majzik István BME Méréstechnika és Információs Rendszerek Tanszék 1 Mire kellenek a temporális logikák? 2 Motivációs mintapélda: Kölcsönös kizárás 2

Részletesebben

Formális módszerek GM_IN003_1 Program verifikálás, formalizmusok

Formális módszerek GM_IN003_1 Program verifikálás, formalizmusok Formális módszerek GM_IN003_1 Program verifikálás, formalizmusok Program verifikálás Konkurens programozási megoldások terjedése -> verifikálás szükséges, (nehéz) logika Legszélesebb körben alkalmazott

Részletesebben

Alapszintű formalizmusok

Alapszintű formalizmusok Alapszintű formalizmusok dr. Majzik István BME Méréstechnika és Információs Rendszerek Tanszék 1 Mit szeretnénk elérni? Informális tervek Informális követelmények Formális modell Formalizált követelmények

Részletesebben

Modellellenőrzés. dr. Majzik István BME Méréstechnika és Információs Rendszerek Tanszék

Modellellenőrzés. dr. Majzik István BME Méréstechnika és Információs Rendszerek Tanszék Modellellenőrzés dr. Majzik István BME Méréstechnika és Információs Rendszerek Tanszék 1 Mit szeretnénk elérni? Informális vagy félformális tervek Informális követelmények Formális modell: KS, LTS, TA

Részletesebben

Valószínűségi modellellenőrzés Markov döntési folyamatokkal

Valószínűségi modellellenőrzés Markov döntési folyamatokkal Valószínűségi modellellenőrzés Markov döntési folyamatokkal Hajdu Ákos Szoftver verifikáció és validáció 2015.12.09. Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs Rendszerek

Részletesebben

Gyakorló feladatok: Formális modellek, temporális logikák, modellellenőrzés. Majzik István BME Méréstechnika és Információs Rendszerek Tanszék

Gyakorló feladatok: Formális modellek, temporális logikák, modellellenőrzés. Majzik István BME Méréstechnika és Információs Rendszerek Tanszék Gyakorló feladatok: Formális modellek, temporális logikák, modellellenőrzés Majzik István BME Méréstechnika és Információs Rendszerek Tanszék Formális modellek használata és értelmezése Formális modellek

Részletesebben

Formális verifikáció Modellezés és modellellenőrzés

Formális verifikáció Modellezés és modellellenőrzés Formális verifikáció Modellezés és modellellenőrzés Rendszertervezés és -integráció előadás dr. Majzik István Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs Rendszerek Tanszék

Részletesebben

Követelmények formalizálása: Temporális logikák. dr. Majzik István BME Méréstechnika és Információs Rendszerek Tanszék

Követelmények formalizálása: Temporális logikák. dr. Majzik István BME Méréstechnika és Információs Rendszerek Tanszék Követelmények formalizálása: Temporális logikák dr. Majzik István BME Méréstechnika és Információs Rendszerek Tanszék 1 Mintapélda: Kölcsönös kizárás 2 résztvevőre, 3 megosztott változóval (H. Hyman, 1966)

Részletesebben

Zárthelyi mintapéldák. Majzik István BME Méréstechnika és Információs Rendszerek Tanszék

Zárthelyi mintapéldák. Majzik István BME Méréstechnika és Információs Rendszerek Tanszék Zárthelyi mintapéldák Majzik István BME Méréstechnika és Információs Rendszerek Tanszék Elméleti kérdések Indokolja meg, hogy az A (X Stop F Start) kifejezés szintaktikailag helyes kifejezés-e CTL illetve

Részletesebben

Követelmények formalizálása: Temporális logikák

Követelmények formalizálása: Temporális logikák Követelmények formalizálása: Temporális logikák dr. Bartha Tamás BME Közlekedés- és Járműirányítási Tanszék dr. Majzik István BME Méréstechnika és Információs Rendszerek Tanszék 1 Miért jó a követelményeket

Részletesebben

Alapszintű formalizmusok

Alapszintű formalizmusok Alapszintű formalizmusok dr. Majzik István BME Méréstechnika és Információs Rendszerek Tanszék 1 Mit szeretnénk elérni? Informális tervek Informális követelmények Formális modell Formalizált követelmények

Részletesebben

Formális modellezés és verifikáció

Formális modellezés és verifikáció Formális modellezés és verifikáció Rendszertervezés és -integráció előadás dr. Majzik István Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs Rendszerek Tanszék BME-MIT Célkitűzések

Részletesebben

Alapszintű formalizmusok

Alapszintű formalizmusok Alapszintű formalizmusok dr. Majzik István BME Méréstechnika és Információs Rendszerek Tanszék 1 Modellek a formális ellenőrzéshez Leképzések Mérnöki modellek Magasabb szintű formalizmusok PN, CPN, DFN,

Részletesebben

Kiterjesztések sek szemantikája

Kiterjesztések sek szemantikája Kiterjesztések sek szemantikája Példa D Integer = {..., -1,0,1,... }; D Boolean = { true, false } D T1... T n T = D T 1... D Tn D T Az összes függvf ggvény halmaza, amelyek a D T1,..., D Tn halmazokból

Részletesebben

Hardver és szoftver rendszerek verifikációja Röviden megválaszolható kérdések

Hardver és szoftver rendszerek verifikációja Röviden megválaszolható kérdések Hardver és szoftver rendszerek verifikációja Röviden megválaszolható kérdések 1. Az informatikai rendszereknél mit ellenőriznek validációnál és mit verifikációnál? 2. A szoftver verifikációs technikák

Részletesebben

Formális módszerek. A formális modellezés és a formális verifikáció alapjai. dr. Bartha Tamás BME Közlekedés- és Járműirányítási Tanszék

Formális módszerek. A formális modellezés és a formális verifikáció alapjai. dr. Bartha Tamás BME Közlekedés- és Járműirányítási Tanszék Formális módszerek A formális modellezés és a formális verifikáció alapjai dr. Bartha Tamás BME Közlekedés- és Járműirányítási Tanszék dr. Majzik István Dr. Pataricza András BME Méréstechnika és Információs

Részletesebben

Sztochasztikus temporális logikák

Sztochasztikus temporális logikák Sztochasztikus temporális logikák Teljesítmény és szolgáltatásbiztonság jellemzők formalizálása és ellenőrzése Majzik István Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs

Részletesebben

Időzített átmeneti rendszerek

Időzített átmeneti rendszerek Időzített átmeneti rendszerek Legyen A egy ábécé, A = A { (d) d R 0 }. A feletti (valós idejű) időzített átmeneti rendszer olyan A = (S, T,,, ) címkézett átmeneti rendszert ( : T A ), melyre teljesülnek

Részletesebben

... S n. A párhuzamos programszerkezet két vagy több folyamatot tartalmaz, melyek egymással közös változó segítségével kommunikálnak.

... S n. A párhuzamos programszerkezet két vagy több folyamatot tartalmaz, melyek egymással közös változó segítségével kommunikálnak. Párhuzamos programok Legyen S parbegin S 1... S n parend; program. A párhuzamos programszerkezet két vagy több folyamatot tartalmaz, melyek egymással közös változó segítségével kommunikálnak. Folyamat

Részletesebben

Automaták mint elfogadók (akceptorok)

Automaták mint elfogadók (akceptorok) Automaták mint elfogadók (akceptorok) Ha egy iniciális Moore-automatában a kimenőjelek halmaza csupán kételemű: {elfogadom, nem fogadom el}, és az utolsó kimenőjel dönti el azt a kérdést, hogy elfogadható-e

Részletesebben

Rendszermodellezés. Modellellenőrzés. Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs Rendszerek Tanszék

Rendszermodellezés. Modellellenőrzés. Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs Rendszerek Tanszék Rendszermodellezés Modellellenőrzés Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs Rendszerek Tanszék Ismétlés: Mire használunk modelleket? Kommunikáció, dokumentáció Gondolkodás,

Részletesebben

Algoritmusok helyességének bizonyítása. A Floyd-módszer

Algoritmusok helyességének bizonyítása. A Floyd-módszer Algoritmusok helyességének bizonyítása A Floyd-módszer Algoritmusok végrehajtása Egy A algoritmus esetében a változókat három változótípusról beszélhetünk, melyeket az X, Y és Z vektorokba csoportosítjuk

Részletesebben

Véges automaták, reguláris nyelvek

Véges automaták, reguláris nyelvek Véges automaták, reguláris nyelvek Kiegészítő anyag az lgoritmuselmélet tárgyhoz (a Rónyai Ivanyos Szabó: lgoritmusok könyv mellé) Friedl Katalin BME SZIT friedl@cs.bme.hu 27. augusztus 3. véges automata

Részletesebben

Részletes tervek ellenőrzése

Részletes tervek ellenőrzése Szoftverellenőrzési technikák Részletes tervek ellenőrzése Majzik István http://www.inf.mit.bme.hu/ 1 Tartalomjegyzék Áttekintés Milyen szerepe van a részletes terveknek? Milyen ellenőrzési módszerek vannak?

Részletesebben

Elérhetőségi analízis Petri hálók dinamikus tulajdonságai

Elérhetőségi analízis Petri hálók dinamikus tulajdonságai Elérhetőségi analízis Petri hálók dinamikus tulajdonságai dr. Bartha Tamás Dr. Pataricza András BME Méréstechnika és Információs Rendszerek Tanszék Petri hálók vizsgálata Az elemzés mélysége szerint: Vizsgálati

Részletesebben

Matematikai logika és halmazelmélet

Matematikai logika és halmazelmélet Matematikai logika és halmazelmélet Wettl Ferenc előadása alapján 2015-09-07 Wettl Ferenc előadása alapján Matematikai logika és halmazelmélet 2015-09-07 1 / 21 Tartalom 1 Matematikai kijelentések szerkezete

Részletesebben

Pásztor Attila. Algoritmizálás és programozás tankönyv az emeltszintű érettségihez

Pásztor Attila. Algoritmizálás és programozás tankönyv az emeltszintű érettségihez Pásztor Attila Algoritmizálás és programozás tankönyv az emeltszintű érettségihez 3. ADATTÍPUSOK...26 3.1. AZ ADATOK LEGFONTOSABB JELLEMZŐI:...26 3.2. ELEMI ADATTÍPUSOK...27 3.3. ÖSSZETETT ADATTÍPUSOK...28

Részletesebben

Logika és informatikai alkalmazásai kiskérdések február Mikor mondjuk, hogy az F formula a G-nek részformulája?

Logika és informatikai alkalmazásai kiskérdések február Mikor mondjuk, hogy az F formula a G-nek részformulája? ,,Alap kiskérdések Logika és informatikai alkalmazásai kiskérdések 2012. február 19. 1. Hogy hívjuk a 0 aritású függvényjeleket? 2. Definiálja a termek halmazát. 3. Definiálja a formulák halmazát. 4. Definiálja,

Részletesebben

A modellellenőrzés érdekes alkalmazása: Tesztgenerálás modellellenőrzővel

A modellellenőrzés érdekes alkalmazása: Tesztgenerálás modellellenőrzővel A modellellenőrzés érdekes alkalmazása: Tesztgenerálás modellellenőrzővel Majzik István Micskei Zoltán BME Méréstechnika és Információs Rendszerek Tanszék 1 Modell alapú fejlesztési folyamat (részlet)

Részletesebben

A digitális számítás elmélete

A digitális számítás elmélete A digitális számítás elmélete 8. előadás ápr. 16. Turing gépek és nyelvtanok A nyelvosztályok áttekintése Turing gépek és a természetes számokon értelmezett függvények Áttekintés Dominó Bizonyítások: L

Részletesebben

Jelek és rendszerek 1. 10/9/2011 Dr. Buchman Attila Informatikai Rendszerek és Hálózatok Tanszék

Jelek és rendszerek 1. 10/9/2011 Dr. Buchman Attila Informatikai Rendszerek és Hálózatok Tanszék Jelek és rendszerek 1 10/9/2011 Dr. Buchman Attila Informatikai Rendszerek és Hálózatok Tanszék 1 Ajánlott irodalom: FODOR GYÖRGY : JELEK ÉS RENDSZEREK EGYETEMI TANKÖNYV Műegyetemi Kiadó, Budapest, 2006

Részletesebben

A modellellenőrzés érdekes alkalmazása: Tesztgenerálás modellellenőrzővel

A modellellenőrzés érdekes alkalmazása: Tesztgenerálás modellellenőrzővel A modellellenőrzés érdekes alkalmazása: Tesztgenerálás modellellenőrzővel Majzik István Micskei Zoltán BME Méréstechnika és Információs Rendszerek Tanszék 1 Modell alapú fejlesztési folyamat (részlet)

Részletesebben

A Formális nyelvek vizsga teljesítése. a) Normál A vizsgán 60 pont szerezhet, amely két 30 pontos részb l áll össze az alábbi módon:

A Formális nyelvek vizsga teljesítése. a) Normál A vizsgán 60 pont szerezhet, amely két 30 pontos részb l áll össze az alábbi módon: A Formális nyelvek vizsga teljesítése a) Normál A vizsgán 60 pont szerezhet, amely két 30 pontos részb l áll össze az alábbi módon: 1. Öt kis kérdés megválaszolása egyenként 6 pontért, melyet minimum 12

Részletesebben

Korlátos modellellenőrzés. dr. Majzik István BME Méréstechnika és Információs Rendszerek Tanszék

Korlátos modellellenőrzés. dr. Majzik István BME Méréstechnika és Információs Rendszerek Tanszék Korlátos modellellenőrzés dr. Majzik István BME Méréstechnika és Információs Rendszerek Tanszék 1 Hol tartunk most? Alacsony szintű formalizmusok (KS, LTS, KTS) Magasabb szintű formalizmusok Temporális

Részletesebben

Szekvenciális hálózatok és automaták

Szekvenciális hálózatok és automaták Szekvenciális hálózatok a kombinációs hálózatokból jöhetnek létre tárolási tulajdonságok hozzáadásával. A tárolás megvalósítása történhet a kapcsolás logikáját képező kombinációs hálózat kimeneteinek visszacsatolásával

Részletesebben

Logika es sz am ıt aselm elet I. r esz Logika Harmadik el oad as 1/33

Logika es sz am ıt aselm elet I. r esz Logika Harmadik el oad as 1/33 1/33 Logika és számításelmélet I. rész Logika Harmadik előadás Tartalom 2/33 Elsőrendű logika bevezetés Az elsőrendű logika szintaxisa 3/33 Nulladrendű állítás Az ítéletlogikában nem foglalkoztunk az álĺıtások

Részletesebben

Emlékeztető: LR(0) elemzés. LR elemzések (SLR(1) és LR(1) elemzések)

Emlékeztető: LR(0) elemzés. LR elemzések (SLR(1) és LR(1) elemzések) Emlékeztető Emlékeztető: LR(0) elemzés A lexikális által előállított szimbólumsorozatot balról jobbra olvassuk, a szimbólumokat az vermébe tesszük. LR elemzések (SLR() és LR() elemzések) Fordítóprogramok

Részletesebben

Automatikus tesztgenerálás modell ellenőrző segítségével

Automatikus tesztgenerálás modell ellenőrző segítségével Méréstechnika és Információs Rendszerek Tanszék Automatikus tesztgenerálás modell ellenőrző segítségével Micskei Zoltán műszaki informatika, V. Konzulens: Dr. Majzik István Tesztelés Célja: a rendszerben

Részletesebben

Temporális adatbázisok. Kunok Balázs szakdolgozata alapján

Temporális adatbázisok. Kunok Balázs szakdolgozata alapján Temporális adatbázisok Kunok Balázs szakdolgozata alapján Miért? Döntéshozatalok körülményeinek meghatározása. Nem csak az a lényeges, hogy hogyan változott az adat, hanem az is, hogy miért. Adatok helyreállíthatók

Részletesebben

Hatékony technikák modellellenőrzéshez: Szimbolikus technikák (ROBDD)

Hatékony technikák modellellenőrzéshez: Szimbolikus technikák (ROBDD) Hatékony technikák modellellenőrzéshez: Szimbolikus technikák (ROBDD) dr. Majzik István dr. Pataricza András dr. Bartha Tamás BME Méréstechnika és Információs Rendszerek Tanszék 1 Hol tartunk? Alacsony

Részletesebben

Logikai ágensek. Mesterséges intelligencia március 21.

Logikai ágensek. Mesterséges intelligencia március 21. Logikai ágensek Mesterséges intelligencia 2014. március 21. Bevezetés Eddigi példák tudásra: állapotok halmaza, lehetséges operátorok, ezek költségei, heurisztikák Feltételezés: a világ (lehetséges állapotok

Részletesebben

Algoritmizálás, adatmodellezés tanítása 1. előadás

Algoritmizálás, adatmodellezés tanítása 1. előadás Algoritmizálás, adatmodellezés 1. előadás Az algoritmus fogalma végrehajtható (van hozzá végre-hajtó) lépésenként hajtható végre a lépések maguk is algoritmusok pontosan definiált, adott végre-hajtási

Részletesebben

Elsőrendű logika. Mesterséges intelligencia március 28.

Elsőrendű logika. Mesterséges intelligencia március 28. Elsőrendű logika Mesterséges intelligencia 2014. március 28. Bevezetés Ítéletkalkulus: deklaratív nyelv (mondatok és lehetséges világok közti igazságrelációk) Részinformációkat is kezel (diszjunkció, negáció)

Részletesebben

Bánsághi Anna 2014 Bánsághi Anna 1 of 68

Bánsághi Anna 2014 Bánsághi Anna 1 of 68 IMPERATÍV PROGRAMOZÁS Bánsághi Anna anna.bansaghi@mamikon.net 3. ELŐADÁS - PROGRAMOZÁSI TÉTELEK 2014 Bánsághi Anna 1 of 68 TEMATIKA I. ALAPFOGALMAK, TUDOMÁNYTÖRTÉNET II. IMPERATÍV PROGRAMOZÁS Imperatív

Részletesebben

SÚLYOS BALESETEK ELEMZÉSE. 3. téma: Kvalitatív módszerek - Hibafa

SÚLYOS BALESETEK ELEMZÉSE. 3. téma: Kvalitatív módszerek - Hibafa Az oktatási anyag a szerzők szellemi terméke. Az anyag kizárólag a 2014.01.22-23 23-i OKF Továbbképzés céljaira használható. Sokszorosítás, utánközlés és mindennemű egyéb felhasználás a szerzők engedélyéhez

Részletesebben

Modell alapú tesztelés mobil környezetben

Modell alapú tesztelés mobil környezetben Modell alapú tesztelés mobil környezetben Micskei Zoltán Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs Rendszerek Tanszék A terület behatárolása Testing is an activity performed

Részletesebben

folyamatrendszerek modellezése

folyamatrendszerek modellezése Diszkrét eseményű folyamatrendszerek modellezése Hangos Katalin Számítástudomány Alkalmazása Tanszék Veszprémi Egyetem Haladó Folyamatmodellezés és modell analízis PhD kurzus p. 1/36 Tartalom Diszkrét

Részletesebben

0-49 pont: elégtelen, pont: elégséges, pont: közepes, pont: jó, pont: jeles

0-49 pont: elégtelen, pont: elégséges, pont: közepes, pont: jó, pont: jeles Matematika szigorlat, Mérnök informatikus szak I. 2013. jan. 10. Név: Neptun kód: Idő: 180 perc Elm.: 1. f. 2. f. 3. f. 4. f. 5. f. Fel. össz.: Össz.: Oszt.: Az elérhető pontszám 40 (elmélet) + 60 (feladatok)

Részletesebben

2. Logika gyakorlat Függvények és a teljes indukció

2. Logika gyakorlat Függvények és a teljes indukció 2. Logika gyakorlat Függvények és a teljes indukció Folláth János Debreceni Egyetem - Informatika Kar 2012/13. I. félév Áttekintés 1 Függvények Relációk Halmazok 2 Természetes számok Formulák Definíció

Részletesebben

Matematika szigorlat, Mérnök informatikus szak I máj. 12. Név: Nept. kód: Idő: 1. f. 2. f. 3. f. 4. f. 5. f. 6. f. Össz.: Oszt.

Matematika szigorlat, Mérnök informatikus szak I máj. 12. Név: Nept. kód: Idő: 1. f. 2. f. 3. f. 4. f. 5. f. 6. f. Össz.: Oszt. Matematika szigorlat, Mérnök informatikus szak I. 2009. máj. 12. Név: Nept. kód: Idő: 1. f. 2. f. 3. f. 4. f. 5. f. 6. f. Össz.: Oszt.: 180 perc 0-49 pont: elégtelen, 50-61 pont: elégséges, 62-73 pont:

Részletesebben

Termelő-fogyaszt. fogyasztó modell

Termelő-fogyaszt. fogyasztó modell Termelő-fogyaszt fogyasztó modell A probléma absztrakt megfogalmazása Adott egy N 1 kapacitású közös tároló. Adott a folyamatok két csoportja, amelyek a tárolót használják. n 1 termelő folyamat, m 1 fogyasztó

Részletesebben

Dr. Mileff Péter

Dr. Mileff Péter Dr. Mileff Péter 1 2 1 Szekvencia diagram Szekvencia diagram Feladata: objektumok egymás közti üzenetváltásainak ábrázolása egy időtengely mentén elhelyezve. Az objektumok életvonala egy felülről lefelé

Részletesebben

Szoftverminőségbiztosítás

Szoftverminőségbiztosítás NGB_IN003_1 SZE 2017-18/2 (9) Szoftverminőségbiztosítás Specifikáció alapú (black-box) technikák A szoftver mint leképezés Szoftverhiba Hibát okozó bement Hibás kimenet Input Szoftver Output Funkcionális

Részletesebben

Programok értelmezése

Programok értelmezése Programok értelmezése Kód visszafejtés. Izsó Tamás 2016. szeptember 22. Izsó Tamás Programok értelmezése/ 1 Section 1 Programok értelmezése Izsó Tamás Programok értelmezése/ 2 programok szemantika értelmezése

Részletesebben

2014. november 5-7. Dr. Vincze Szilvia

2014. november 5-7. Dr. Vincze Szilvia 24. november 5-7. Dr. Vincze Szilvia A differenciálszámítás az emberiség egyik legnagyobb találmánya és ez az állítás nem egy matek-szakbarbár fellengzős kijelentése. A differenciálszámítás segítségével

Részletesebben

Temporális logikai specifikációk vizsgálata

Temporális logikai specifikációk vizsgálata Budapesti Műszaki és Gazdaságtudományi Egyetem Villamosmérnöki és Informatikai Kar Méréstechnika és Információs Rendszerek Tanszék Temporális logikai specifikációk vizsgálata Diplomaterv Készítette Segesdi

Részletesebben

Elsőrendű logika szintaktikája és szemantikája. Logika (3. gyakorlat) 0-adrendű szemantika 2009/10 II. félév 1 / 1

Elsőrendű logika szintaktikája és szemantikája. Logika (3. gyakorlat) 0-adrendű szemantika 2009/10 II. félév 1 / 1 Elsőrendű logika szintaktikája és szemantikája Logika és számításelmélet, 3. gyakorlat 2009/10 II. félév Logika (3. gyakorlat) 0-adrendű szemantika 2009/10 II. félév 1 / 1 Az elsőrendű logika Elemek egy

Részletesebben

Házi feladatok megoldása. Nyelvek használata adatszerkezetek, képek leírására

Házi feladatok megoldása. Nyelvek használata adatszerkezetek, képek leírására Nyelvek használata adatszerkezetek, képek leírására Formális nyelvek, 2. gyakorlat 1. feladat Módosított : belsejében lehet _ jel is. Kezdődhet, de nem végződhet vele, két aláhúzás nem lehet egymás mellett.

Részletesebben

Szekvencia diagram. Szekvencia diagram Dr. Mileff Péter

Szekvencia diagram. Szekvencia diagram Dr. Mileff Péter Dr. Mileff Péter 1 2 Szekvencia diagram Feladata:objektumok egymás közti üzenetváltásainak ábrázolása egy időtengely mentén elhelyezve. Az objektumok életvonala egy felülről lefelé mutató időtengelyt képvisel.

Részletesebben

Szkriptnyelvek. 1. UNIX shell

Szkriptnyelvek. 1. UNIX shell Szkriptnyelvek 1. UNIX shell Szkriptek futtatása Parancsértelmez ő shell script neve paraméterek shell script neve paraméterek Ebben az esetben a szkript tartalmazza a parancsértelmezőt: #!/bin/bash Szkriptek

Részletesebben

A számítógépes nyelvészet elmélete és gyakorlata. Automaták

A számítógépes nyelvészet elmélete és gyakorlata. Automaták A számítógépes nyelvészet elmélete és gyakorlata Automaták Nyelvek és automaták A nyelvek automatákkal is jellemezhetőek Automaták hierarchiája Chomsky-féle hierarchia Automata: új eszköz a nyelvek komplexitásának

Részletesebben

1. Alapfogalmak Algoritmus Számítási probléma Specifikáció Algoritmusok futási ideje

1. Alapfogalmak Algoritmus Számítási probléma Specifikáció Algoritmusok futási ideje 1. Alapfogalmak 1.1. Algoritmus Az algoritmus olyan elemi műveletekből kompozíciós szabályok szerint felépített összetett művelet, amelyet megadott feltételt teljesítő bemeneti adatra végrehajtva, a megkívánt

Részletesebben

Bevezetés a számításelméletbe (MS1 BS)

Bevezetés a számításelméletbe (MS1 BS) Matematika szigorlat - konzultációs szeminárium Azoknak, akik másodszorra vagy többedszerre veszik fel a Matematika szigorlat (NAMMS1SAND) tárgyat. Bevezetés a számításelméletbe (MS1 BS) FŐBB TÉMAKÖRÖK

Részletesebben

5. előadás. Programozás-elmélet. Programozás-elmélet 5. előadás

5. előadás. Programozás-elmélet. Programozás-elmélet 5. előadás Elemi programok Definíció Az S A A program elemi, ha a A : S(a) { a, a, a, a,..., a, b b a}. A definíció alapján könnyen látható, hogy egy elemi program tényleg program. Speciális elemi programok a kövekezők:

Részletesebben

Java II. I A Java programozási nyelv alapelemei

Java II. I A Java programozási nyelv alapelemei Java II. I A Java programozási nyelv alapelemei Miskolci Egyetem Általános Informatikai Tanszék Utolsó módosítás: 2008. 02. 19. Java II.: Alapelemek JAVA2 / 1 A Java formalizmusa A C, illetve az annak

Részletesebben

6. Közös változóval rendelkező párhuzamos program, Közös változó,

6. Közös változóval rendelkező párhuzamos program, Közös változó, 6. Közös változóval rendelkező párhuzamos program, Közös változó, Reynold kritérium. Atomi művelet, atomi utasítás. szintaxis, szemantika, tulajdonságok. Szinkronizációs párhuzamos program, szintaxis,

Részletesebben

5. A kiterjesztési elv, nyelvi változók

5. A kiterjesztési elv, nyelvi változók 5. A kiterjesztési elv, nyelvi változók Gépi intelligencia I. Fodor János BMF NIK IMRI NIMGI1MIEM Tartalomjegyzék I 1 A kiterjesztési elv 2 Nyelvi változók A kiterjesztési elv 237 A KITERJESZTÉSI ELV A

Részletesebben

Osztott rendszer. Osztott rendszer informális definíciója

Osztott rendszer. Osztott rendszer informális definíciója Osztott rendszer Osztott rendszer informális definíciója Egymástól elkülönülten létező program-komponensek egy halmaza. A komponensek egymástól függetlenül dolgoznak saját erőforrásukkal. A komponensek

Részletesebben

Szoftverminőségbiztosítás

Szoftverminőségbiztosítás NGB_IN003_1 SZE 2014-15/2 (13) Szoftverminőségbiztosítás Szoftverminőség és formális módszerek Formális módszerek Formális módszer formalizált módszer(tan) Formális eljárások alkalmazása a fejlesztésben

Részletesebben

ELEMI PROGRAMOZÁSI TÉTELEK

ELEMI PROGRAMOZÁSI TÉTELEK ELEMI PROGRAMOZÁSI TÉTELEK 1. FELADATMEGOLDÁS PROGRAMOZÁSI TÉTELEKKEL 1.1 A programozási tétel fogalma A programozási tételek típusalgoritmusok, amelyek alkalmazásával garantáltan helyes megoldást adhatunk

Részletesebben

Szoftver-modellellenőrzés absztrakciós módszerekkel

Szoftver-modellellenőrzés absztrakciós módszerekkel Szoftver-modellellenőrzés absztrakciós módszerekkel Hajdu Ákos Formális módszerek 2017.03.22. Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs Rendszerek Tanszék 1 BEVEZETŐ 2

Részletesebben

Hatékony technikák modellellenőrzéshez: Szimbolikus technikák (ROBDD)

Hatékony technikák modellellenőrzéshez: Szimbolikus technikák (ROBDD) Hatékony technikák modellellenőrzéshez: Szimbolikus technikák (ROBDD) dr. Majzik István dr. Pataricza András dr. Bartha Tamás BME Méréstechnika és Információs Rendszerek Tanszék 1 Hol tartunk? Alacsony

Részletesebben

AWK programozás, minták, vezérlési szerkezetek

AWK programozás, minták, vezérlési szerkezetek 10 AWK programozás, minták, vezérlési szerkezetek AWK futtatási módok AWK parancs, közvetlen programkódmegadás: awk 'PROGRAMKÓD' FILE példa: ls -l awk '{print $1, $5}' a programkód helyére minden indentálás

Részletesebben

Hatékony technikák modellellenőrzéshez: Korlátos modellellenőrzés. dr. Majzik István BME Méréstechnika és Információs Rendszerek Tanszék

Hatékony technikák modellellenőrzéshez: Korlátos modellellenőrzés. dr. Majzik István BME Méréstechnika és Információs Rendszerek Tanszék Hatékony technikák modellellenőrzéshez: Korlátos modellellenőrzés dr. Majzik István BME Méréstechnika és Információs Rendszerek Tanszék 1 Hol tartunk most? Alacsony szintű formalizmusok (KS, LTS, KTS)

Részletesebben

Múlt és jövő: Új algoritmusok lineáris temporális tulajdonságok szaturáció-alapú modellellenőrzésére

Múlt és jövő: Új algoritmusok lineáris temporális tulajdonságok szaturáció-alapú modellellenőrzésére Budapesti Műszaki és Gazdaságtudományi Egyetem Villamosmérnöki és Informatikai Kar Méréstechnika és Információs Rendszerek Tanszék Múlt és jövő: Új algoritmusok lineáris temporális tulajdonságok szaturáció-alapú

Részletesebben

ALAPFOGALMAK 1. A reláció az program programfüggvénye, ha. Azt mondjuk, hogy az feladat szigorúbb, mint az feladat, ha

ALAPFOGALMAK 1. A reláció az program programfüggvénye, ha. Azt mondjuk, hogy az feladat szigorúbb, mint az feladat, ha ALAPFOGALMAK 1 Á l l a p o t t é r Legyen I egy véges halmaz és legyenek A i, i I tetszőleges véges vagy megszámlálható, nem üres halmazok Ekkor az A= A i halmazt állapottérnek, az A i halmazokat pedig

Részletesebben

Időt kezelő modellek és temporális logikák

Időt kezelő modellek és temporális logikák Időt kezelő modellek és temporális logikák Valósidejű rendszerek követelményeinek formalizálása és ellenőrzése Majzik István Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs

Részletesebben

Szoftverarchitektúrák 3. előadás (második fele) Fornai Viktor

Szoftverarchitektúrák 3. előadás (második fele) Fornai Viktor Szoftverarchitektúrák 3. előadás (második fele) Fornai Viktor A szotverarchitektúra fogalma A szoftverarchitektúra nagyon fiatal diszciplína. A fogalma még nem teljesen kiforrott. Néhány definíció: A szoftverarchitektúra

Részletesebben

Algoritmusok Tervezése. 6. Előadás Algoritmusok 101 Dr. Bécsi Tamás

Algoritmusok Tervezése. 6. Előadás Algoritmusok 101 Dr. Bécsi Tamás Algoritmusok Tervezése 6. Előadás Algoritmusok 101 Dr. Bécsi Tamás Mi az algoritmus? Lépések sorozata egy feladat elvégzéséhez (legáltalánosabban) Informálisan algoritmusnak nevezünk bármilyen jól definiált

Részletesebben

NEM-DETERMINISZTIKUS PROGRAMOK HELYESSÉGE. Szekvenciális programok kategóriái. Hoare-Dijkstra-Gries módszere

NEM-DETERMINISZTIKUS PROGRAMOK HELYESSÉGE. Szekvenciális programok kategóriái. Hoare-Dijkstra-Gries módszere Szekvenciális programok kategóriái strukturálatlan strukturált NEM-DETERMINISZTIKUS PROGRAMOK HELYESSÉGE Hoare-Dijkstra-Gries módszere determinisztikus valódi korai nem-determinisztikus általános fejlett

Részletesebben

Algoritmusok Tervezése. Fuzzy rendszerek Dr. Bécsi Tamás

Algoritmusok Tervezése. Fuzzy rendszerek Dr. Bécsi Tamás Algoritmusok Tervezése Fuzzy rendszerek Dr. Bécsi Tamás Bevezetés Mese a homokkupacról és a hidegről és a hegyekről Bevezetés, Fuzzy történet Két értékű logika, Boole algebra Háromértékű logika n értékű

Részletesebben

SZÁMÍTÁSTUDOMÁNY ALAPJAI

SZÁMÍTÁSTUDOMÁNY ALAPJAI SZÁMÍTÁSTUDOMÁNY ALAPJAI INBGM0101-17 Előadó: Dr. Mihálydeák Tamás Sándor Gyakorlatvezető: Kovács Zita 2017/2018. I. félév 2. gyakorlat Az alábbi összefüggések közül melyek érvényesek minden A, B halmaz

Részletesebben

8. Komponens elvű programfejlesztés. Ágens, akció, cél, kontraktus.

8. Komponens elvű programfejlesztés. Ágens, akció, cél, kontraktus. 8. Komponens elvű programfejlesztés. Ágens, akció, cél, kontraktus. Ágens rendszer definíciója. Példák. Fairness. (Fair tulajdonság). Gyenge fair követelmény. A fair nem determinisztikus szemantika definíciója

Részletesebben

9. előadás. Programozás-elmélet. Programozási tételek Elemi prog. Sorozatszámítás Eldöntés Kiválasztás Lin. keresés Megszámolás Maximum.

9. előadás. Programozás-elmélet. Programozási tételek Elemi prog. Sorozatszámítás Eldöntés Kiválasztás Lin. keresés Megszámolás Maximum. Programozási tételek Programozási feladatok megoldásakor a top-down (strukturált) programtervezés esetén három vezérlési szerkezetet használunk: - szekvencia - elágazás - ciklus Eddig megismertük az alábbi

Részletesebben

Bevezetés az informatikába

Bevezetés az informatikába Bevezetés az informatikába 6. előadás Dr. Istenes Zoltán Eötvös Loránd Tudományegyetem Informatikai Kar Programozáselmélet és Szoftvertechnológiai Tanszék Matematikus BSc - I. félév / 2008 / Budapest Dr.

Részletesebben

Automaták és formális nyelvek

Automaták és formális nyelvek Automaták és formális nyelvek Bevezetés a számítástudomány alapjaiba 1. Formális nyelvek 2006.11.13. 1 Automaták és formális nyelvek - bevezetés Automaták elmélete: információs gépek általános absztrakt

Részletesebben

Hardver és szoftver rendszerek verifikációja Röviden megválaszolható kérdések

Hardver és szoftver rendszerek verifikációja Röviden megválaszolható kérdések Hardver és szoftver rendszerek verifikációja Röviden megválaszolható kérdések 1. Az informatikai rendszereknél mit ellenőriznek validációnál és mit verifikációnál? 2. A szoftver verifikációs technikák

Részletesebben

Formális nyelvek és automaták

Formális nyelvek és automaták Formális nyelvek és automaták Nagy Sára gyakorlatai alapján Készítette: Nagy Krisztián Utolsó óra MINTA ZH Eötvös Loránd Tudományegyetem Informatikai Kar 2012.05.18 1. feladat: KMP (Knuth-Morris-Prett)

Részletesebben

előadás Diszkrét idejű tömegkiszolgálási modellek Poisson-folyamat Folytonos idejű Markov-láncok Folytonos idejű sorbanállás

előadás Diszkrét idejű tömegkiszolgálási modellek Poisson-folyamat Folytonos idejű Markov-láncok Folytonos idejű sorbanállás 13-14. előadás Diszkrét idejű tömegkiszolgálási modellek Poisson-folyamat Folytonos idejű Markov-láncok Folytonos idejű sorbanállás 2016. november 28. és december 5. 13-14. előadás 1 / 35 Bevezetés A diszkrét

Részletesebben

Dinamikus modell: állapotdiagram, szekvencia diagram

Dinamikus modell: állapotdiagram, szekvencia diagram Programozási : állapotdiagram, szekvencia diagram osztályszerep Informatikai Kar Eötvös Loránd Tudományegyetem 1 osztályszerep Tartalom 1 2 3 osztályszerep 2 Bevezető Állapot Interakciós Tevékenység osztályszerep

Részletesebben

1. tétel. Valószínűségszámítás vizsga Frissült: 2013. január 19. Valószínűségi mező, véletlen tömegjelenség.

1. tétel. Valószínűségszámítás vizsga Frissült: 2013. január 19. Valószínűségi mező, véletlen tömegjelenség. 1. tétel Valószínűségszámítás vizsga Frissült: 2013. január 19. Valószínűségi mező, véletlen tömegjelenség. A valószínűségszámítás tárgya: véletlen tömegjelenségek vizsgálata. véletlen: a kísérlet kimenetelét

Részletesebben

Algoritmuselmélet 12. előadás

Algoritmuselmélet 12. előadás Algoritmuselmélet 12. előadás Katona Gyula Y. Budapesti Műszaki és Gazdaságtudományi Egyetem Számítástudományi Tsz. I. B. 137/b kiskat@cs.bme.hu 2002 Április 9. ALGORITMUSELMÉLET 12. ELŐADÁS 1 Turing-gépek

Részletesebben

A Formális nyelvek vizsga teljesítése. a) Normál A vizsgán 60 pont szerezhet, amely két 30 pontos részb l áll össze az alábbi módon:

A Formális nyelvek vizsga teljesítése. a) Normál A vizsgán 60 pont szerezhet, amely két 30 pontos részb l áll össze az alábbi módon: A Formális nyelvek vizsga teljesítése a) Normál A vizsgán 60 pont szerezhet, amely két 30 pontos részb l áll össze az alábbi módon: 1. Öt rövid kérdés megválaszolása egyenként 6 pontért, melyet minimum

Részletesebben

A matematika nyelvér l bevezetés

A matematika nyelvér l bevezetés A matematika nyelvér l bevezetés Wettl Ferenc 2012-09-06 Wettl Ferenc () A matematika nyelvér l bevezetés 2012-09-06 1 / 19 Tartalom 1 Matematika Matematikai kijelentések 2 Logikai m veletek Állítások

Részletesebben

Logika es sz am ıt aselm elet I. r esz Logika Negyedik el oad as 1/26

Logika es sz am ıt aselm elet I. r esz Logika Negyedik el oad as 1/26 1/26 Logika és számításelmélet I. rész Logika Negyedik előadás Tartalom 2/26 Az elsőrendű logika szemantikája Formulák és formulahalmazok szemantikus tulajdonságai Elsőrendű logikai nyelv interpretációja

Részletesebben

5. Hét Sorrendi hálózatok

5. Hét Sorrendi hálózatok 5. Hét Sorrendi hálózatok Digitális technika 2015/2016 Bevezető példák Példa 1: Italautomata Legyen az általunk vizsgált rendszer egy italautomata, amelyről az alábbi dolgokat tudjuk: 150 Ft egy üdítő

Részletesebben

Programfejlesztési Modellek

Programfejlesztési Modellek Programfejlesztési Modellek Programfejlesztési fázisok: Követelmények leírása (megvalósíthatósági tanulmány, funkcionális specifikáció) Specifikáció elkészítése Tervezés (vázlatos és finom) Implementáció

Részletesebben

Diszkrét matematika 2.C szakirány

Diszkrét matematika 2.C szakirány Diszkrét matematika 2.C szakirány 207. tavasz. Diszkrét matematika 2.C szakirány 9. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék 207.

Részletesebben