Formális verifikáció Modellezés és modellellenőrzés

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Formális verifikáció Modellezés és modellellenőrzés"

Átírás

1 Formális verifikáció Modellezés és modellellenőrzés Rendszertervezés és -integráció előadás dr. Majzik István Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs Rendszerek Tanszék BME-MIT

2 Célkitűzések BME-MIT 2.

3 Ellenőrzések a tervezési fázisban Követelmények elemzése Rendszer specifikálás Üzemeltetés, karbantartás Rendszer validáció Statikus analízis: modellek, tervek, kód vizsgálata Veszély analízis Formális verifikáció: Rendszer verifikáció formális modellek esetén Architektúra tervezés Rendszer integrálás Modul tervezés Modul verifikáció Modul implementáció BME-MIT 3.

4 IEC 61508: Functional safety in electrical / electronic / programmable electronic safety-related systems Példa: Szoftver architektúra tervezés Módszerek és intézkedések BME-MIT 4.

5 Mit szeretnénk elérni? Rendszer modellje Követelmény megadása i Automatikus modellellenőrző n OK Ellenpélda BME-MIT 5.

6 Modellezés: Időzített automaták BME-MIT 6.

7 Mit szeretnénk elérni? Modellezés időzített automatákkal Magasabb szintű modellekből automatikus transzformációval származtatható Rendszer modellje Követelmény megadása i Automatikus modellellenőrző n OK Ellenpélda BME-MIT 7.

8 Automaták és változók Cél: Állapot alapú viselkedés modellezése Alap formalizmus: Véges állapotú automata (FSM) o Állapotok (névvel hivatkozhatók) o Állapotátmenetek Kiterjesztés: Egész értékű változók használata o Változók értéktartománya megadható o Konstansok definiálhatók o Egész aritmetika használható Állapotátmenetek kiterjesztése: o Őrfeltétel hozzárendelése: A változókon kiértékelhető predikátum Az átmenet bekövetkezéséhez igaz kell legyen o Akció hozzárendelése: Értékadás változóknak BME-MIT 8.

9 Kiterjesztések óraváltozókkal Cél: Idő függvényében változó viselkedés vizsgálata o Idő telik az állapotokban o Eltelt időtől (nem csak az állapottól) függő viselkedés o Ellenőrizhető: Adott időn belül elérhető állapotok Modellezési kiterjesztés: Óraváltozók o Azonos rátával haladó konkurens órák (időzítők) o Relatív időmérés (pl. time-out): Időzítők resetelése és leolvasása Használat állapotátmenetekben: o Akciók: Óraváltozók nullázása (resetelés), egymástól függetlenül o Őrfeltételek: Óraváltozók és konstansok a feltételekben Használat állapotokban: o Állapot invariánsok: Óraváltozók és konstansok segítségével megadja, meddig állhat fenn az adott állapot BME-MIT 9.

10 Időzített automata Állapot név clock x; Őrfeltétel Invariáns Akció BME-MIT 10.

11 Az invariánsok és őrfeltételek szerepe clock x; Őrfeltétel Invariáns Az open állapot elhagyásakor a [4, 8] tartományban lehet x értéke 4 8 t BME-MIT 11.

12 Kiterjesztések elosztott rendszerekhez Cél: Együttműködő automaták hálózatának modellezése o Szinkronizáció az egyes automaták között o Együttlépő átmenetek (randevú): szinkron kommunikáció Üzenet küldés és fogadás csak együtt valósulhat meg (küldő vár) (Ezzel aszinkron kommunikáció is leírható) Kiterjesztés: Szinkronizált akciók o Csatornák definiálása (szinkron csatorna) o Üzenetküldés:! operátor a csatornára Üzenetfogadás:? operátor a csatornára Pl: az a nevű csatorna esetén a! és a? akciók a! a? chan a BME-MIT 12.

13 Példa óraváltozókra és szinkronizálásra Deklarációk: clock t, u; chan press; Kapcsoló: Üzenet fogadás Felhasználó: Üzenet küldés BME-MIT 13.

14 További lehetőségek Committed állapot: Atomi végrehajtást ír elő o A kimenő átmenet végrehajtása előtt más automata átmenete nem lehet végrehajtva: bemenő és kimenő átmenet egy atomi műveletként végrehajtva Urgent állapot: késleltetés korlátozása o Nem telhet idő az adott állapotban, ha anélkül lehetséges a kilépés Urgent csatorna: késleltetés korlátozása o Késleltetés nélkül, azonnal végrehajtandó szinkronizáció (de előtte átlapolt végrehajtás lehet) urgent chan a; a! C Nem szerepelhet itt invariáns U Nem szerepelhet itt időzítés őrfeltétel Broadcast csatorna o Egy küldő (mindig tud küldeni) o Több fogadó (ha éppen tud, akkor szinkronizál a küldővel) broadcast chan a; a! a? a? a? BME-MIT 14.

15 Az UPPAAL eszköz Fejlesztése (1999-): o Uppsala University, Svédország o Aalborg University, Dánia Web lap (információk, letöltés, példák): Kapcsolódó eszközök: o UPPAAL CoVer: Tesztgenerálás o UPPAAL TRON: On-line tesztelés o UPPAAL PORT: Komponens alapú rendszerek tervezése o Kereskedelmi verzió: BME-MIT 15.

16 Automata modell BME-MIT 16.

17 Szimulátor BME-MIT 17.

18 Követelmények formalizálása: Temporális logikák --> BME-MIT 18.

19 Mit szeretnénk elérni? Automatikusan ellenőrizhető, precíz követelmények megadása Rendszer modellje Követelmény megadása i Automatikus modellellenőrző n OK Ellenpélda BME-MIT 19.

20 Ellenőrizendő követelmények (példa) Egy példa az ellenőrizendő követelmények jellegére: Egy klímaberendezés állapotai: o Kikapcsolva, bekapcsolva, elromlott, gyengén hűt, erősen hűt, fűt, szellőztet A klíma néhány működési követelménye: o Bekapcsolás után szellőztetést kezd o Erős hűtés csak gyenge hűtés után következhet o A fűtési fázis befejezése után szellőztetni kell o Ha a klíma elromlott, nem fűthet o... BME-MIT 20.

21 Állapotokra vonatkozó követelmények Lokális: Egy-egy állapotra vonatkozó o Az adott állapotban eldönthető a teljesítése (pl. az állapotváltozók értékei alapján) o Példa: A kezdeti állapotban legyen szellőztetés Elérhetőségi: Több állapot bekövetkezési sorrendjére vonatkozó követelmények o Az állapottér vizsgálatával dönthető el a teljesítése o Példa: A fűtési fázis befejezése után szellőztetni kell o Folyamatosan működő rendszerekre is alkalmas o A tipikus követelmények jellege: A rendszer biztonsága A rendszer élő jellege BME-MIT 21.

22 A követelmények típusai Biztonsági jellegű követelmények Veszélyes, nemkívánatos helyzetek elkerülését írják elő: o Minden állapotban kisebb a nyomás a kritikusnál. o A présgép csak becsukott ajtó mellett üzemel. o A processzek között mindig teljesül a kölcsönös kizárás. Formálisan: Invariáns tulajdonság o Minden elérhető állapotban igaz, hogy Élő jellegű követelmények Kívánatos helyzetek elérését írják elő o Az indítás után a présgép kiadja az elkészült terméket. o A zavarás után a folyamat visszakerül stabil állapotba. o Az elküldött üzenet feldolgozása megtörténik a fogadónál. Formálisan: Állapotok elérését fogalmazzák meg: o Elérhető olyan állapot, hogy BME-MIT 22.

23 Követelmények leíró nyelve Elérhetőség: Több állapot bekövetkezési sorrendjére vonatkozó követelmények o Állapotok egymásutánisága mint logikai idő: Jelen időpillanat: Aktuális állapot Következő időpillanat(ok): Rákövetkező állapot(ok) o Temporális (logikai időbeli, sorrendi) operátorok használhatók a követelmények kifejezésére Temporális logikák: o Formális nyelv arra, hogy kijelentések igazságának logikai időbeli változását vizsgálhassuk o Temporális operátorok: mindig, valamikor, mielőtt, addig, amíg, azelőtt, hogy, BME-MIT 23.

24 Temporális logikák Lineáris: Egymás utáni állapotok egy sorozatot alkotnak (minden állapotnak egy rákövetkezője van) logikai idő mint idővonal {Zöld} {Sárga} {Piros} s1 s 2 s 3 {Piros, Sárga} Elágazó: {Zöld} s1 Egymás utáni lehetséges {Villogó} állapotok egy fa struktúrában s5 (minden állapotnak {Piros} s3 több rákövetkezője lehet) logikai idő elágazó idővonalak mentén s4 {Sárga} s5 s2 {Villogó} {Piros} s3 BME-MIT 24.

25 A rendszer működése mint számítási fa {Zöld} {Sárga} {Piros} {Piros, Sárga} s1 s 2 s 3 s4 {Villogó} s5 Automata címkézett állapotokkal s5 {Villogó} {Sárga} s2 {Piros} s3 {Villogó} s5 {Piros,Sárga} s4 {Piros} s3 Számítási fa: Lehetséges elágazások {Zöld} s1 s5 {Piros} s3 {Villogó} s5 {Villogó} {Piros,Sárga} s4 BME-MIT 25.

26 Az utak és állapotok leszámolása Adott állapotból (kezdőállapotból) induló utakat leszámoló operátorok o A: minden útvonalra o E: egy létező útvonalra ( for All ) ( Exists ) Adott úton az egymás után bejárt állapotokat leszámoló operátorok o G: minden állapotra o F: egy jövőbeli állapotra ( Globally) ( Future ) Együtt kell használni ezeket o Utakat mindenképpen le kell számolni o AG, AF, EG, EF összetett operátorok BME-MIT 26.

27 Temporális operátorok Operátor Informális jelentés UPPAAL jelölés AG AF EG EF Minden útvonalon minden állapotra Minden útvonalon a jövőben (előbb-utóbb) Egy létező útvonalon minden állapotra Egy létező útvonalon a jövőben (előbb-utóbb) A[] A<> E[] E<> AG( => AF ) -t követően mindig --> Sehol sincs holtpont A[] not deadlock UPPAAL: és Boole-logikai kifejezések órákon, változókon és állapotokon BME-MIT 27.

28 Minden útvonalra vonatkozó operátorok AG AF AG : Minden útvonalon minden állapotra igaz AF : Minden útvonalon a jövőben előbb-utóbb elérünk olyan állapotba, ahol igaz BME-MIT 28.

29 Egy-egy útvonalra vonatkozó operátorok EG EF EG : Létezik egy útvonal, ahol minden állapotra igaz Van-e kapcsolat AG és EF között? Van-e kapcsolat AF és EG között? EF : Létezik egy útvonal, ahol a jövőben előbbutóbb elérünk olyan állapotba, ahol igaz BME-MIT 29.

30 Feltételes elérhetőség --> AG( => AF ) = --> Minden útvonalra igaz, hogy bekövetkezése esetén előbbutóbb mindig elérünk olyan állapotba, ahol teljesül Időzítéssel együtt: --> ( and x <= t) ahol x egy óraváltozó, amit akkor reseteltünk, amikor igaz lett BME-MIT 30.

31 Néhány példa követelmények formalizálására Adott egy klímaberendezés, aminek a következő üzemmódokat kell biztosítania: {Kikapcsolva, Bekapcsolva, Elromlott, GyengénHűt, ErősenHűt, Fűt, Szellőztet} Ezekre az állapotokra hivatkozhatunk a követelmények formalizálása során A követelményeket a kezdőállapotra fogalmazzuk meg A követelmény formalizálás fázisában a teljes viselkedést még nem ismerjük (azt a modell írja le, amin ellenőrizzük majd a követelmények teljesülését) Példák formalizált követelményekre: A klíma bekapcsolás után előbb-utóbb mindig elromlik: AF (Elromlott) Ha a klíma elromlik, mindig megjavítják: AG(Elromlott => AF ( Elromlott)) vagy Elromlott --> ( Elromlott) Ha a klíma elromlott, nem fűthet: AG ( (Elromlott Fűt)) A klíma előbb-utóbb kikapcsolható, bármilyen működésbe kezdett: AF (Kikapcsolva) BME-MIT 31.

32 A modellellenőrzés működése Időzített automata Temporális logika Rendszer modellje Követelmény megadása i Automatikus modellellenőrző n OK Ellenpélda BME-MIT 32.

33 Az UPPAAL modellellenőrző Követelmények halmaza szerkeszthető Modell ellenőrzés egyenként is indítható Keresés az állapottérben beállítható: o Mélységi, véletlenszerű mélységi o Szélességi Állapottárolás különféle opciókkal: o Redukció o Alul- illetve felülbecslés Ellenpélda generálható invariánsokhoz: o Legrövidebb, leggyorsabb, vagy akármilyen o Betölthető a szimulátorba (végigjátszható) BME-MIT 33.

34 Az UPPAAL modellellenőrző ablaka BME-MIT 34.

35 Ellenpélda a szimulátorban BME-MIT 35.

36 Mintapélda BME-MIT 36.

37 Egy mintapélda: Kölcsönös kizárás 2 résztvevőre, 3 megosztott változóval (H. Hyman, 1966) o blocked0: Első résztvevő (P0) be akar lépni o blocked1: Második résztvevő (P1) be akar lépni o turn: Ki következik belépni (0 esetén P0, 1 esetén P1) while (true) { P0 blocked0 = true; while (turn!=0) { while (blocked1==true) { skip; } turn=0; } // Critical section blocked0 = false; // Do other things } while (true) { P1 blocked1 = true; while (turn!=1) { while (blocked0==true) { skip; } turn=1; } // Critical section blocked1 = false; // Do other things } Helyes-e ez az algoritmus? BME-MIT 37.

38 Ellenőrizendő követelmények Kölcsönös kizárás: o Egyszerre csak az egyik résztvevő lehet a kritikus szakaszban Lehetséges az elvárt viselkedés: o P0 egyáltalán beléphet a kritikus szakaszba o P1 egyáltalán beléphet a kritikus szakaszba Nincs kiéheztetés: o P0 mindenképpen be fog lépni a kritikus szakaszba o P1 mindenképpen be fog lépni a kritikus szakaszba Holtpontmentesség: o Nem alakul ki kölcsönös várakozás (leállás) BME-MIT 38.

39 Hogyan ellenőrizhetjük a követelményeket? Teszteléssel o Létre tudunk-e hozni minden lehetséges végrehajtást lefedő teszt eseteket? o A problémás esetek figyeléséhez külön ellenőrző kell o A hiba csak az implementáció után derül ki, drágán javítható Modellezéssel és szimulációval o Tudunk-e szimulálni minden lehetséges végrehajtást? o A problémás esetek detektálása nagy odafigyelést igényel o A hibák viszont olcsóbban javíthatók modell szinten Modellezéssel és az állapottér teljes ellenőrzésével o Szisztematikus algoritmus az állapottér teljes felvételéhez o Automatikus a követelmények teljesülésének figyelése Formalizálható követelményekre általános módszer a modell alapú ellenőrzésre BME-MIT 39.

40 A modell UPPAAL-ban (első változat) Deklarációk: bool blocked0; bool blocked1; int[0,1] turn=0; system P0, P1; A P0 automata: Kihasznált modellezési lehetőségek: Közös változók rendszerszintű deklarálása Korlátozott értékkészletű változók while (true) { blocked0 = true; while (turn!=0) { while (blocked1==true) { skip; } turn=0; } // Critical section blocked0 = false; // Do other things } P0 BME-MIT 40.

41 A modell UPPAAL-ban (második változat) Deklarációk: bool blocked[2]; int[0,1] turn; P0 = P(0); P1 = P(1); system P0,P1; A P automata (template) pid paraméterrel: Kihasznált modellezési lehetőségek: Közös változók rendszerszintű deklarálása Korlátozott értékkészletű változók Azonos viselkedésű résztvevők azonos automata template alapján Példányosítás paraméterezéssel Változó tömbök (résztvevőkhöz) while (true) { blocked0 = true; while (turn!=0) { while (blocked1==true) { skip; } turn=0; } // Critical section blocked0 = false; // Do other things } P0 BME-MIT 41.

42 UPPAAL: A követelmények formalizálása Kölcsönös kizárás: o Egyszerre csak az egyik résztvevő lehet a kritikus szakaszban: A[] not (P0.cs and P1.cs) Holtpontmentesség: o Nem alakul ki kölcsönös várakozás (leállás): A[] not deadlock Lehetséges az elvárt viselkedés: o P0 egyáltalán beléphet a kritikus szakaszba: E<>(P0.cs) o P1 egyáltalán beléphet a kritikus szakaszba: E<>(P1.cs) Nincs kiéheztetés: o P0 mindenképpen be fog lépni a kritikus szakaszba: A<>(P0.cs) o P1 mindenképpen be fog lépni a kritikus szakaszba: A<>(P1.cs) BME-MIT 42.

43 UPPAAL: A modellellenőrzés eredménye Nincs holtpont Az élő jellegű követelmények teljesülnek o Mindkét processz beléphet a kritikus szakaszba (lehetőség) Kiéheztetés elkerülése időzítések megadása nélkül nem vizsgálható o Kérdés: Mindenképpen belép-e a kritikus szakaszba? (szükségszerűség) o Speciális probléma: Lehet olyan útvonal is, hogy megáll pl. a kezdőállapotban Ez a valósidejű ellenőrzés jellegzetessége A kölcsönös kizárás nem teljesül! o Ellenpélda: Átlapolódás a két résztvevő között (végigjátszható a szimulátorban) BME-MIT 43.

44 Az algoritmus javítása Peterson algoritmusa P0 résztvevőre (P1 értelemszerű): Hyman: Peterson: while (true) { blocked0 = true; while (turn!=0) { while (blocked1==true) { skip; } turn=0; } // Critical section blocked0 = false; // Do other things } while (true) { blocked0 = true; turn=1; while (blocked1==true && turn!=0) { skip; } } // Critical section blocked0 = false; // Do other things BME-MIT 44.

45 A modellellenőrzés tulajdonságai BME-MIT 45.

46 A modellellenőrzés használata Követelmények elemzése Követelmények Üzemeltetés, karbantartás Rendszer validáció Rendszer specifikálás Modellek Rendszer verifikáció Architektúra tervezés Rendszer integrálás Modul tervezés Modul implementáció Modul verifikáció Új alkalmazások: Modellellenőrzés a forráskód alapján (modell visszafejtés, absztrakció) BME-MIT 46.

47 A modellellenőrzés tulajdonságai Kedvező tulajdonságok: o Garantált eredményt ad: Teljes állapottér bejárás o Lehetséges nagy modell állapotteret is kezelni Akár 10 20, de példa van méretű állapottér ellenőrzésére o Teljesen automatikus eszköz, nem szükséges tervezői intuíció és erős matematikai háttérismeret o Ellenpéldát generál, ami segít a hibák javításában Problémák: o Skálázhatóság nem biztosított (explicit állapottér bejárás) o Elsősorban vezérlés-orientált alkalmazásokra hatékony Komplex adatstruktúrák hatalmas állapotteret jelentenek o Nehéz az eredményeket általánosítani Ha egy protokoll helyes 2 résztvevő esetén, akkor helyes-e N esetén? o A követelmények formalizálása nehéz egy átlagos mérnök számára Nyelvjárások alakultak ki különböző alkalmazási területeken BME-MIT 47.

48 Továbblépés Az ellenőrzött modellek felhasználása Forráskód generálás Monitor szintézis futásidőbeli verifikációhoz Dokumentáció készítés BME-MIT 48.

Formális modellezés és verifikáció

Formális modellezés és verifikáció Formális modellezés és verifikáció Rendszertervezés és -integráció előadás dr. Majzik István Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs Rendszerek Tanszék BME-MIT Célkitűzések

Részletesebben

Alapszintű formalizmusok

Alapszintű formalizmusok Alapszintű formalizmusok dr. Majzik István BME Méréstechnika és Információs Rendszerek Tanszék 1 Mit szeretnénk elérni? Informális tervek Informális követelmények Formális modell Formalizált követelmények

Részletesebben

Követelmények formalizálása: Temporális logikák. dr. Majzik István BME Méréstechnika és Információs Rendszerek Tanszék

Követelmények formalizálása: Temporális logikák. dr. Majzik István BME Méréstechnika és Információs Rendszerek Tanszék Követelmények formalizálása: Temporális logikák dr. Majzik István BME Méréstechnika és Információs Rendszerek Tanszék 1 Mire kellenek a temporális logikák? 2 Motivációs mintapélda: Kölcsönös kizárás 2

Részletesebben

Alapszintű formalizmusok

Alapszintű formalizmusok Alapszintű formalizmusok dr. Majzik István BME Méréstechnika és Információs Rendszerek Tanszék 1 Mit szeretnénk elérni? Informális tervek Informális követelmények Formális modell Formalizált követelmények

Részletesebben

Az UPPAAL egyes modellezési lehetőségeinek összefoglalása. Majzik István BME Méréstechnika és Információs Rendszerek Tanszék

Az UPPAAL egyes modellezési lehetőségeinek összefoglalása. Majzik István BME Méréstechnika és Információs Rendszerek Tanszék Az UPPAAL egyes modellezési lehetőségeinek összefoglalása Majzik István BME Méréstechnika és Információs Rendszerek Tanszék Résztvevők együttműködése (1) Automaták interakciói üzenetküldéssel Szinkron

Részletesebben

Követelmények formalizálása: Temporális logikák. dr. Majzik István BME Méréstechnika és Információs Rendszerek Tanszék

Követelmények formalizálása: Temporális logikák. dr. Majzik István BME Méréstechnika és Információs Rendszerek Tanszék Követelmények formalizálása: Temporális logikák dr. Majzik István BME Méréstechnika és Információs Rendszerek Tanszék 1 Mintapélda: Kölcsönös kizárás 2 résztvevőre, 3 megosztott változóval (H. Hyman, 1966)

Részletesebben

Alapszintű formalizmusok

Alapszintű formalizmusok Alapszintű formalizmusok dr. Majzik István BME Méréstechnika és Információs Rendszerek Tanszék 1 Modellek a formális ellenőrzéshez Leképzések Mérnöki modellek Magasabb szintű formalizmusok PN, CPN, DFN,

Részletesebben

A modellellenőrzés érdekes alkalmazása: Tesztgenerálás modellellenőrzővel

A modellellenőrzés érdekes alkalmazása: Tesztgenerálás modellellenőrzővel A modellellenőrzés érdekes alkalmazása: Tesztgenerálás modellellenőrzővel Majzik István Micskei Zoltán BME Méréstechnika és Információs Rendszerek Tanszék 1 Modell alapú fejlesztési folyamat (részlet)

Részletesebben

A modellellenőrzés érdekes alkalmazása: Tesztgenerálás modellellenőrzővel

A modellellenőrzés érdekes alkalmazása: Tesztgenerálás modellellenőrzővel A modellellenőrzés érdekes alkalmazása: Tesztgenerálás modellellenőrzővel Majzik István Micskei Zoltán BME Méréstechnika és Információs Rendszerek Tanszék 1 Modell alapú fejlesztési folyamat (részlet)

Részletesebben

Rendszermodellezés. Modellellenőrzés. Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs Rendszerek Tanszék

Rendszermodellezés. Modellellenőrzés. Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs Rendszerek Tanszék Rendszermodellezés Modellellenőrzés Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs Rendszerek Tanszék Ismétlés: Mire használunk modelleket? Kommunikáció, dokumentáció Gondolkodás,

Részletesebben

Követelmények formalizálása: Temporális logikák

Követelmények formalizálása: Temporális logikák Követelmények formalizálása: Temporális logikák dr. Bartha Tamás BME Közlekedés- és Járműirányítási Tanszék dr. Majzik István BME Méréstechnika és Információs Rendszerek Tanszék 1 Miért jó a követelményeket

Részletesebben

A modell-ellenőrzés gyakorlata UPPAAL

A modell-ellenőrzés gyakorlata UPPAAL A modell-ellenőrzés gyakorlata UPPAAL Uppsalai Egyetem + Aalborgi Egyetem közös fejlesztése; 1995. első verzió megjelenése; részei: - grafikus modellt leíró eszköz (System editor) - szimulátor (Simulator)

Részletesebben

Korlátos modellellenőrzés. dr. Majzik István BME Méréstechnika és Információs Rendszerek Tanszék

Korlátos modellellenőrzés. dr. Majzik István BME Méréstechnika és Információs Rendszerek Tanszék Korlátos modellellenőrzés dr. Majzik István BME Méréstechnika és Információs Rendszerek Tanszék 1 Hol tartunk most? Alacsony szintű formalizmusok (KS, LTS, KTS) Magasabb szintű formalizmusok Temporális

Részletesebben

Temporális logikák és modell ellenırzés

Temporális logikák és modell ellenırzés Temporális logikák és modell ellenırzés Temporális logikák Modális logika: kijelentések különböző módjainak tanulmányozására vezették be (eredetileg filozófusok). Ilyen módok: esetleg, mindig, szükségszerűen,

Részletesebben

A formális módszerek szerepe

A formális módszerek szerepe A formális módszerek szerepe dr. Majzik István dr. Bartha Tamás dr. Pataricza András BME Méréstechnika és Információs Rendszerek Tanszék 1 Matematikai technikák, Formális módszerek elsősorban diszkrét

Részletesebben

Modellellenőrzés. dr. Majzik István BME Méréstechnika és Információs Rendszerek Tanszék

Modellellenőrzés. dr. Majzik István BME Méréstechnika és Információs Rendszerek Tanszék Modellellenőrzés dr. Majzik István BME Méréstechnika és Információs Rendszerek Tanszék 1 Mit szeretnénk elérni? Informális vagy félformális tervek Informális követelmények Formális modell: KS, LTS, TA

Részletesebben

Gyakorló feladatok: Formális modellek, temporális logikák, modellellenőrzés. Majzik István BME Méréstechnika és Információs Rendszerek Tanszék

Gyakorló feladatok: Formális modellek, temporális logikák, modellellenőrzés. Majzik István BME Méréstechnika és Információs Rendszerek Tanszék Gyakorló feladatok: Formális modellek, temporális logikák, modellellenőrzés Majzik István BME Méréstechnika és Információs Rendszerek Tanszék Formális modellek használata és értelmezése Formális modellek

Részletesebben

Automatikus tesztgenerálás modell ellenőrző segítségével

Automatikus tesztgenerálás modell ellenőrző segítségével Méréstechnika és Információs Rendszerek Tanszék Automatikus tesztgenerálás modell ellenőrző segítségével Micskei Zoltán műszaki informatika, V. Konzulens: Dr. Majzik István Tesztelés Célja: a rendszerben

Részletesebben

Részletes szoftver tervek ellenőrzése

Részletes szoftver tervek ellenőrzése Részletes szoftver tervek ellenőrzése Majzik István Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs Rendszerek Tanszék http://www.mit.bme.hu/~majzik/ Tartalomjegyzék A részletes

Részletesebben

Hatékony technikák modellellenőrzéshez: Korlátos modellellenőrzés. dr. Majzik István BME Méréstechnika és Információs Rendszerek Tanszék

Hatékony technikák modellellenőrzéshez: Korlátos modellellenőrzés. dr. Majzik István BME Méréstechnika és Információs Rendszerek Tanszék Hatékony technikák modellellenőrzéshez: Korlátos modellellenőrzés dr. Majzik István BME Méréstechnika és Információs Rendszerek Tanszék 1 Hol tartunk most? Alacsony szintű formalizmusok (KS, LTS, KTS)

Részletesebben

Időzített rendszerek és az UPPAAL II

Időzített rendszerek és az UPPAAL II Időzített rendszerek és az UPPAAL II Dr. Németh L. Zoltán (zlnemeth@inf.u-szeged.hu) SZTE, Informatikai Tanszékcsoport 2008/2009 I. félév 2008.11.15 MODELL 11 1 Rendszerek leírása az UPPAAL-ban Modellelenőrzés

Részletesebben

Szoftver-modellellenőrzés absztrakciós módszerekkel

Szoftver-modellellenőrzés absztrakciós módszerekkel Szoftver-modellellenőrzés absztrakciós módszerekkel Hajdu Ákos Formális módszerek 2017.03.22. Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs Rendszerek Tanszék 1 BEVEZETŐ 2

Részletesebben

Modellellenőrzés. dr. Majzik István BME Méréstechnika és Információs Rendszerek Tanszék

Modellellenőrzés. dr. Majzik István BME Méréstechnika és Információs Rendszerek Tanszék Modellellenőrzés dr. Majzik István BME Méréstechnika és Információs Rendszerek Tanszék 1 Mit szeretnénk elérni? Informális vagy félformális tervek Informális követelmények Formális modell: KS, LTS, TA

Részletesebben

Formális módszerek. A formális modellezés és a formális verifikáció alapjai. dr. Bartha Tamás BME Közlekedés- és Járműirányítási Tanszék

Formális módszerek. A formális modellezés és a formális verifikáció alapjai. dr. Bartha Tamás BME Közlekedés- és Járműirányítási Tanszék Formális módszerek A formális modellezés és a formális verifikáció alapjai dr. Bartha Tamás BME Közlekedés- és Járműirányítási Tanszék dr. Majzik István Dr. Pataricza András BME Méréstechnika és Információs

Részletesebben

Modellellenőrzés a vasút automatikai rendszerek fejlesztésében. XIX. Közlekedésfejlesztési és beruházási konferencia Bükfürdő

Modellellenőrzés a vasút automatikai rendszerek fejlesztésében. XIX. Közlekedésfejlesztési és beruházási konferencia Bükfürdő Modellellenőrzés a vasút automatikai rendszerek fejlesztésében XIX. Közlekedésfejlesztési és beruházási konferencia Bükfürdő 2018.04.25-27. Tartalom 1. Formális módszerek state of the art 2. Esettanulmány

Részletesebben

Részletes tervek ellenőrzése

Részletes tervek ellenőrzése Szoftverellenőrzési technikák Részletes tervek ellenőrzése Majzik István http://www.inf.mit.bme.hu/ 1 Tartalomjegyzék Áttekintés Milyen szerepe van a részletes terveknek? Milyen ellenőrzési módszerek vannak?

Részletesebben

A formális módszerek szerepe

A formális módszerek szerepe A formális módszerek szerepe dr. Majzik István dr. Bartha Tamás dr. Pataricza András BME Méréstechnika és Információs Rendszerek Tanszék 1 Mik azok a formális módszerek? Matematikai technikák, elsősorban

Részletesebben

Hardver és szoftver rendszerek verifikációja Röviden megválaszolható kérdések

Hardver és szoftver rendszerek verifikációja Röviden megválaszolható kérdések Hardver és szoftver rendszerek verifikációja Röviden megválaszolható kérdések 1. Az informatikai rendszereknél mit ellenőriznek validációnál és mit verifikációnál? 2. A szoftver verifikációs technikák

Részletesebben

Valószínűségi modellellenőrzés Markov döntési folyamatokkal

Valószínűségi modellellenőrzés Markov döntési folyamatokkal Valószínűségi modellellenőrzés Markov döntési folyamatokkal Hajdu Ákos Szoftver verifikáció és validáció 2015.12.09. Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs Rendszerek

Részletesebben

... S n. A párhuzamos programszerkezet két vagy több folyamatot tartalmaz, melyek egymással közös változó segítségével kommunikálnak.

... S n. A párhuzamos programszerkezet két vagy több folyamatot tartalmaz, melyek egymással közös változó segítségével kommunikálnak. Párhuzamos programok Legyen S parbegin S 1... S n parend; program. A párhuzamos programszerkezet két vagy több folyamatot tartalmaz, melyek egymással közös változó segítségével kommunikálnak. Folyamat

Részletesebben

Időzített átmeneti rendszerek

Időzített átmeneti rendszerek Időzített átmeneti rendszerek Legyen A egy ábécé, A = A { (d) d R 0 }. A feletti (valós idejű) időzített átmeneti rendszer olyan A = (S, T,,, ) címkézett átmeneti rendszert ( : T A ), melyre teljesülnek

Részletesebben

Zárthelyi mintapéldák. Majzik István BME Méréstechnika és Információs Rendszerek Tanszék

Zárthelyi mintapéldák. Majzik István BME Méréstechnika és Információs Rendszerek Tanszék Zárthelyi mintapéldák Majzik István BME Méréstechnika és Információs Rendszerek Tanszék Elméleti kérdések Indokolja meg, hogy az A (X Stop F Start) kifejezés szintaktikailag helyes kifejezés-e CTL illetve

Részletesebben

Occam 1. Készítette: Szabó Éva

Occam 1. Készítette: Szabó Éva Occam 1. Készítette: Szabó Éva Párhuzamos programozás Egyes folyamatok (processzek) párhuzamosan futnak. Több processzor -> tényleges párhuzamosság Egy processzor -> Időosztásos szimuláció Folyamatok közötti

Részletesebben

Modell alapú tesztelés mobil környezetben

Modell alapú tesztelés mobil környezetben Modell alapú tesztelés mobil környezetben Micskei Zoltán Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs Rendszerek Tanszék A terület behatárolása Testing is an activity performed

Részletesebben

Szoftverminőségbiztosítás

Szoftverminőségbiztosítás NGB_IN003_1 SZE 2014-15/2 (13) Szoftverminőségbiztosítás Szoftverminőség és formális módszerek Formális módszerek Formális módszer formalizált módszer(tan) Formális eljárások alkalmazása a fejlesztésben

Részletesebben

Sztochasztikus temporális logikák

Sztochasztikus temporális logikák Sztochasztikus temporális logikák Teljesítmény és szolgáltatásbiztonság jellemzők formalizálása és ellenőrzése Majzik István Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs

Részletesebben

A fejlesztési szabványok szerepe a szoftverellenőrzésben

A fejlesztési szabványok szerepe a szoftverellenőrzésben A fejlesztési szabványok szerepe a szoftverellenőrzésben Majzik István majzik@mit.bme.hu http://www.inf.mit.bme.hu/ 1 Tartalomjegyzék Biztonságkritikus rendszerek A biztonságintegritási szint Az ellenőrzés

Részletesebben

Formális módszerek GM_IN003_1 Program verifikálás, formalizmusok

Formális módszerek GM_IN003_1 Program verifikálás, formalizmusok Formális módszerek GM_IN003_1 Program verifikálás, formalizmusok Program verifikálás Konkurens programozási megoldások terjedése -> verifikálás szükséges, (nehéz) logika Legszélesebb körben alkalmazott

Részletesebben

Elérhetőségi analízis Petri hálók dinamikus tulajdonságai

Elérhetőségi analízis Petri hálók dinamikus tulajdonságai Elérhetőségi analízis Petri hálók dinamikus tulajdonságai dr. Bartha Tamás Dr. Pataricza András BME Méréstechnika és Információs Rendszerek Tanszék Petri hálók vizsgálata Az elemzés mélysége szerint: Vizsgálati

Részletesebben

Osztott rendszer. Osztott rendszer informális definíciója

Osztott rendszer. Osztott rendszer informális definíciója Osztott rendszer Osztott rendszer informális definíciója Egymástól elkülönülten létező program-komponensek egy halmaza. A komponensek egymástól függetlenül dolgoznak saját erőforrásukkal. A komponensek

Részletesebben

Modellezés Petri hálókkal. dr. Bartha Tamás dr. Majzik István dr. Pataricza András BME Méréstechnika és Információs Rendszerek Tanszék

Modellezés Petri hálókkal. dr. Bartha Tamás dr. Majzik István dr. Pataricza András BME Méréstechnika és Információs Rendszerek Tanszék Modellezés Petri hálókkal dr. Bartha Tamás dr. Majzik István dr. Pataricza András BME Méréstechnika és Információs Rendszerek Tanszék Modellező eszközök: DNAnet, Snoopy, PetriDotNet A DNAnet modellező

Részletesebben

BPEL nyelvű üzleti folyamatok modellezése és formális ellenőrzése

BPEL nyelvű üzleti folyamatok modellezése és formális ellenőrzése BPEL nyelvű üzleti folyamatok modellezése és formális ellenőrzése Kovács Máté, Gönczy László {kovmate,gonczy}@mit.bme.hu Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs Rendszerek

Részletesebben

A formális módszerek szerepe

A formális módszerek szerepe A formális módszerek szerepe dr. Majzik István dr. Bartha Tamás dr. Pataricza András BME Méréstechnika és Információs ek Tanszék 1 Mik azok a formális módszerek? 2 Matematikai technikák Formális módszerek

Részletesebben

HORVÁTH ZSÓFIA 1. Beadandó feladat (HOZSAAI.ELTE) ápr 7. 8-as csoport

HORVÁTH ZSÓFIA 1. Beadandó feladat (HOZSAAI.ELTE) ápr 7. 8-as csoport 10-es Keressünk egy egész számokat tartalmazó négyzetes mátrixban olyan oszlopot, ahol a főátló alatti elemek mind nullák! Megolda si terv: Specifika cio : A = (mat: Z n m,ind: N, l: L) Ef =(mat = mat`)

Részletesebben

Hardver és szoftver rendszerek verifikációja Röviden megválaszolható kérdések

Hardver és szoftver rendszerek verifikációja Röviden megválaszolható kérdések Hardver és szoftver rendszerek verifikációja Röviden megválaszolható kérdések 1. Az informatikai rendszereknél mit ellenőriznek validációnál és mit verifikációnál? 2. A szoftver verifikációs technikák

Részletesebben

Időt kezelő modellek és temporális logikák

Időt kezelő modellek és temporális logikák Időt kezelő modellek és temporális logikák Valósidejű rendszerek követelményeinek formalizálása és ellenőrzése Majzik István Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs

Részletesebben

2. gyakorlat: Részletes tervek és forráskód ellenőrzése

2. gyakorlat: Részletes tervek és forráskód ellenőrzése 2. gyakorlat: Részletes tervek és forráskód ellenőrzése A gyakorlaton a részletes tervek ellenőrzésével és a forráskód verifikációját végző statikus ellenőrző eszközökkel fogunk foglalkozni. Részletes

Részletesebben

Nagy bonyolultságú rendszerek fejlesztőeszközei

Nagy bonyolultságú rendszerek fejlesztőeszközei Nagy bonyolultságú rendszerek fejlesztőeszközei Balogh András balogh@optxware.com A cég A BME spin-off-ja A Hibatűrő Rendszerek Kutatócsoport tagjai alapították Tisztán magánkézben Szakmai háttér Hibatűrő

Részletesebben

Intervenciós röntgen berendezés teljesítményszabályozójának automatizált tesztelése

Intervenciós röntgen berendezés teljesítményszabályozójának automatizált tesztelése Intervenciós röntgen berendezés teljesítményszabályozójának automatizált tesztelése Somogyi Ferenc Attila 2016. December 07. Szoftver verifikáció és validáció kiselőadás Forrás Mathijs Schuts and Jozef

Részletesebben

Digitális technika (VIMIAA02) Laboratórium 4

Digitális technika (VIMIAA02) Laboratórium 4 BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Digitális technika (VIMIAA02) Laboratórium 4 Fehér Béla Raikovich Tamás,

Részletesebben

Forráskód generálás formális modellek alapján

Forráskód generálás formális modellek alapján Forráskód generálás formális modellek alapján dr. Majzik István Horányi Gergő és Jeszenszky Balázs (TDK) BME Méréstechnika és Információs Rendszerek Tanszék 1 Modellek a formális ellenőrzéshez Hogyan használhatók

Részletesebben

Modellezés UPPAAL-ban

Modellezés UPPAAL-ban Modellezés UPPAAL-ban Házi feladat minta és megoldása dr. Bartha Tamás BME Méréstechnika és Információs Rendszerek Tanszék Tartalom Az előadás egy tipikus félévközi házi feladat megoldásának módját és

Részletesebben

BASH script programozás II. Vezérlési szerkezetek

BASH script programozás II. Vezérlési szerkezetek 06 BASH script programozás II. Vezérlési szerkezetek Emlékeztető Jelölésbeli különbség van parancs végrehajtása és a parancs kimenetére való hivatkozás között PARANCS $(PARANCS) Jelölésbeli különbség van

Részletesebben

Hibatűrés. Majzik István Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs Rendszerek Tanszék

Hibatűrés. Majzik István Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs Rendszerek Tanszék Hibatűrés Majzik István Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs Rendszerek Tanszék http://www.mit.bme.hu/ 1 Hibatűrés különféle hibák esetén Hardver tervezési hibák

Részletesebben

Kiterjesztések sek szemantikája

Kiterjesztések sek szemantikája Kiterjesztések sek szemantikája Példa D Integer = {..., -1,0,1,... }; D Boolean = { true, false } D T1... T n T = D T 1... D Tn D T Az összes függvf ggvény halmaza, amelyek a D T1,..., D Tn halmazokból

Részletesebben

Modellezési alapismeretek

Modellezési alapismeretek Modellezési alapismeretek Budapesti Műszaki és Gazdaságtudományi Egyetem Hibatűrő Rendszerek Kutatócsoport Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs Rendszerek Tanszék

Részletesebben

Hatékony technikák modellellenőrzéshez: Szimbolikus technikák (ROBDD)

Hatékony technikák modellellenőrzéshez: Szimbolikus technikák (ROBDD) Hatékony technikák modellellenőrzéshez: Szimbolikus technikák (ROBDD) dr. Majzik István dr. Pataricza András dr. Bartha Tamás BME Méréstechnika és Információs Rendszerek Tanszék 1 Hol tartunk? Alacsony

Részletesebben

Programozás Minta programterv a 1. házi feladathoz 1.

Programozás Minta programterv a 1. házi feladathoz 1. Programozás Minta programterv a 1. házi feladathoz 1. Gregorics Tibor 1. beadandó/0.feladat 2008. december 6. EHACODE.ELTE gt@inf.elte.hu 0.csoport Feladat Egy osztályba n diák jár, akik m darab tantárgyat

Részletesebben

Elosztott adatbázis-kezelő formális elemzése

Elosztott adatbázis-kezelő formális elemzése Elosztott adatbázis-kezelő formális elemzése Szárnyas Gábor szarnyas@mit.bme.hu 2014. december 10. Budapesti Műszaki és Gazdaságtudományi Egyetem Hibatűrő Rendszerek Kutatócsoport Budapesti Műszaki és

Részletesebben

Hardver leíró nyelvek (HDL)

Hardver leíró nyelvek (HDL) Hardver leíró nyelvek (HDL) Benesóczky Zoltán 2004 A jegyzetet a szerzıi jog védi. Azt a BME hallgatói használhatják, nyomtathatják tanulás céljából. Minden egyéb felhasználáshoz a szerzı belegyezése szükséges.

Részletesebben

Folyamatmodellezés és eszközei. Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs Rendszerek Tanszék

Folyamatmodellezés és eszközei. Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs Rendszerek Tanszék Folyamatmodellezés és eszközei Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs Rendszerek Tanszék Folyamat, munkafolyamat Munkafolyamat (Workflow): azoknak a lépéseknek a sorozata,

Részletesebben

Szoftverminőségbiztosítás

Szoftverminőségbiztosítás NGB_IN003_1 SZE 2017-18/2 (9) Szoftverminőségbiztosítás Specifikáció alapú (black-box) technikák A szoftver mint leképezés Szoftverhiba Hibát okozó bement Hibás kimenet Input Szoftver Output Funkcionális

Részletesebben

Programok értelmezése

Programok értelmezése Programok értelmezése Kód visszafejtés. Izsó Tamás 2016. szeptember 22. Izsó Tamás Programok értelmezése/ 1 Section 1 Programok értelmezése Izsó Tamás Programok értelmezése/ 2 programok szemantika értelmezése

Részletesebben

3. gyakorlat Folyamatmodellek, kooperáló viselkedésmodellek Megoldások

3. gyakorlat Folyamatmodellek, kooperáló viselkedésmodellek Megoldások 3. gyakorlat Folyamatmodellek, kooperáló viselkedésmodellek ok Figyelem: Jelen anyag belső használatra készült megoldási útmutató, melyet a ZH felkészülés segítése érdekében publikáltunk. A feladatok részletesebb

Részletesebben

Futásidőbeli verifikáció

Futásidőbeli verifikáció Futásidőbeli verifikáció Szoftver- és rendszerellenőrzés előadás dr. Majzik István Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs Rendszerek Tanszék Tartalomjegyzék Célkitűzések

Részletesebben

Formális módszerek. A formális modellezés és a formális verifikáció alapjai. dr. Bartha Tamás BME Közlekedés- és Járműirányítási Tanszék

Formális módszerek. A formális modellezés és a formális verifikáció alapjai. dr. Bartha Tamás BME Közlekedés- és Járműirányítási Tanszék Formális módszerek A formális modellezés és a formális verifikáció alapjai dr. Bartha Tamás BME Közlekedés- és Járműirányítási Tanszék dr. Majzik István Dr. Pataricza András BME Méréstechnika és Információs

Részletesebben

Digitális technika (VIMIAA02) Laboratórium 4

Digitális technika (VIMIAA02) Laboratórium 4 BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Digitális technika (VIMIAA02) Laboratórium 4 Fehér Béla Raikovich Tamás,

Részletesebben

ÁRAMKÖRÖK SZIMULÁCIÓJA

ÁRAMKÖRÖK SZIMULÁCIÓJA ÁRAMKÖRÖK SZIMULÁCIÓJA Az áramkörök szimulációja révén betekintést nyerünk azok működésébe. Meg tudjuk határozni az áramkörök válaszát különböző gerjesztésekre, különböző üzemmódokra. Végezhetők analóg

Részletesebben

Modellezési alapismeretek

Modellezési alapismeretek Modellezési alapismeretek Rendszermodellezés Budapesti Műszaki és Gazdaságtudományi Egyetem Hibatűrő Rendszerek Kutatócsoport Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs

Részletesebben

Informatika terméktervezőknek

Informatika terméktervezőknek Informatika terméktervezőknek C# alapok Névterület (namespace) using Osztály (class) és Obejtumok Metódus (function, procedure, method) main() static void string[] arg Szintaxis // /* */ \n \t Névadások

Részletesebben

Laborgyakorlat 3 A modul ellenőrzése szimulációval. Dr. Oniga István

Laborgyakorlat 3 A modul ellenőrzése szimulációval. Dr. Oniga István Laborgyakorlat 3 A modul ellenőrzése szimulációval Dr. Oniga István Szimuláció és verifikáció Szimulációs lehetőségek Start Ellenőrzés után Viselkedési Funkcionális Fordítás után Leképezés után Időzítési

Részletesebben

BUDAPESTI MÛSZAKI EGYETEM Méréstechnika és Információs Rendszerek Tanszék. SPIN Mérési útmutató. Készítette: Jávorszky Judit

BUDAPESTI MÛSZAKI EGYETEM Méréstechnika és Információs Rendszerek Tanszék. SPIN Mérési útmutató. Készítette: Jávorszky Judit BUDAPESTI MÛSZAKI EGYETEM Méréstechnika és Információs Rendszerek Tanszék SPIN Mérési útmutató Készítette: Jávorszky Judit Tartalomjegyzék 1. Bevezetés. 2 1.1. Általános leírás. 2 1.2. Módszertan. 3 1.3.

Részletesebben

Dr. Mileff Péter

Dr. Mileff Péter Dr. Mileff Péter 1 2 1 Szekvencia diagram Szekvencia diagram Feladata: objektumok egymás közti üzenetváltásainak ábrázolása egy időtengely mentén elhelyezve. Az objektumok életvonala egy felülről lefelé

Részletesebben

III. Alapfogalmak és tervezési módszertan SystemC-ben

III. Alapfogalmak és tervezési módszertan SystemC-ben III. Alapfogalmak és tervezési módszertan SystemC-ben A SystemC egy lehetséges válasz és egyben egyfajta tökéletesített, tovább fejlesztett tervezési módszertan az elektronikai tervezés területén felmerülő

Részletesebben

Automatikus kódgenerálás helyességének ellenőrzése

Automatikus kódgenerálás helyességének ellenőrzése Budapesti Műszaki és Gazdaságtudományi Egyetem Villamosmérnöki és Informatikai Kar Automatikus kódgenerálás helyességének ellenőrzése Készítette: Jeszenszky Balázs, V. Inf., jeszyb@gmail.com Konzulens:

Részletesebben

Specifikáció alapú teszttervezési módszerek

Specifikáció alapú teszttervezési módszerek Szoftverellenőrzési technikák Specifikáció alapú teszttervezési módszerek Majzik István, Micskei Zoltán http://www.inf.mit.bme.hu/ 1 Klasszikus tesztelési feladat A tesztelendő program beolvas 3 egész

Részletesebben

Teljesítmény Mérés. Tóth Zsolt. Miskolci Egyetem. Tóth Zsolt (Miskolci Egyetem) Teljesítmény Mérés / 20

Teljesítmény Mérés. Tóth Zsolt. Miskolci Egyetem. Tóth Zsolt (Miskolci Egyetem) Teljesítmény Mérés / 20 Teljesítmény Mérés Tóth Zsolt Miskolci Egyetem 2013 Tóth Zsolt (Miskolci Egyetem) Teljesítmény Mérés 2013 1 / 20 Tartalomjegyzék 1 Bevezetés 2 Visual Studio Kód metrikák Performance Explorer Tóth Zsolt

Részletesebben

8. Komponens elvű programfejlesztés. Ágens, akció, cél, kontraktus.

8. Komponens elvű programfejlesztés. Ágens, akció, cél, kontraktus. 8. Komponens elvű programfejlesztés. Ágens, akció, cél, kontraktus. Ágens rendszer definíciója. Példák. Fairness. (Fair tulajdonság). Gyenge fair követelmény. A fair nem determinisztikus szemantika definíciója

Részletesebben

Modell alapú tesztelés: célok és lehetőségek

Modell alapú tesztelés: célok és lehetőségek Szoftvertesztelés 2016 Konferencia Modell alapú tesztelés: célok és lehetőségek Dr. Micskei Zoltán Budapesti Műszaki és Gazdaságtudományi Egyetem Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika

Részletesebben

Specifikáció alapú teszttervezési módszerek

Specifikáció alapú teszttervezési módszerek Szoftverellenőrzési technikák Specifikáció alapú teszttervezési módszerek Majzik István, Micskei Zoltán http://www.inf.mit.bme.hu/ 1 Klasszikus tesztelési feladat A tesztelendő program beolvas 3 egész

Részletesebben

Formális módszerek GM_IN003_1 Bevezetés

Formális módszerek GM_IN003_1 Bevezetés Formális módszerek GM_IN003_1 Formális módszerek Formális módszer! formalizált módszer(tan) Formális eljárások alkalmazása a fejlesztésben nincs olyan formális eljárás, ami egy komplex rendszer minden

Részletesebben

Monitorok automatikus szintézise elosztott beágyazott rendszerek futásidőbeli verifikációjához

Monitorok automatikus szintézise elosztott beágyazott rendszerek futásidőbeli verifikációjához Budapesti Műszaki és Gazdaságtudományi Egyetem Villamosmérnöki és Informatikai Kar Méréstechnika és Információs Rendszerek Tanszék Monitorok automatikus szintézise elosztott beágyazott rendszerek futásidőbeli

Részletesebben

Elosztott biztonságkritikus rendszerek xtuml alapú modellvezérelt fejlesztése

Elosztott biztonságkritikus rendszerek xtuml alapú modellvezérelt fejlesztése Budapesti Műszaki és Gazdaságtudományi Egyetem Villamosmérnöki és Informatikai Kar Méréstechnika és Információs Rendszerek Tanszék Elosztott biztonságkritikus rendszerek xtuml alapú modellvezérelt fejlesztése

Részletesebben

Szekvencia diagram. Szekvencia diagram Dr. Mileff Péter

Szekvencia diagram. Szekvencia diagram Dr. Mileff Péter Dr. Mileff Péter 1 2 Szekvencia diagram Feladata:objektumok egymás közti üzenetváltásainak ábrázolása egy időtengely mentén elhelyezve. Az objektumok életvonala egy felülről lefelé mutató időtengelyt képvisel.

Részletesebben

Szoftver karbantartási lépések ellenőrzése

Szoftver karbantartási lépések ellenőrzése Szoftverellenőrzési technikák (vimim148) Szoftver karbantartási lépések ellenőrzése Majzik István Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs Rendszerek Tanszék http://www.inf.mit.bme.hu/

Részletesebben

Folyamatmodellezés és eszközei. Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs Rendszerek Tanszék

Folyamatmodellezés és eszközei. Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs Rendszerek Tanszék Folyamatmodellezés és eszközei Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs Rendszerek Tanszék Folyamat, munkafolyamat Ez vajon egy állapotgép-e? Munkafolyamat (Workflow):

Részletesebben

Java programozási nyelv

Java programozási nyelv Java programozási nyelv 2. rész Vezérlő szerkezetek Nyugat-Magyarországi Egyetem Faipari Mérnöki Kar Informatikai Intézet Soós Sándor 2005. szeptember A Java programozási nyelv Soós Sándor 1/23 Tartalomjegyzék

Részletesebben

6. Közös változóval rendelkező párhuzamos program, Közös változó,

6. Közös változóval rendelkező párhuzamos program, Közös változó, 6. Közös változóval rendelkező párhuzamos program, Közös változó, Reynold kritérium. Atomi művelet, atomi utasítás. szintaxis, szemantika, tulajdonságok. Szinkronizációs párhuzamos program, szintaxis,

Részletesebben

Megoldások a mintavizsga kérdések a VIMIAC04 tárgy ellenőrzési technikák részéhez kapcsolódóan (2017. május)

Megoldások a mintavizsga kérdések a VIMIAC04 tárgy ellenőrzési technikák részéhez kapcsolódóan (2017. május) Megoldások a mintavizsga kérdések a VIMIAC04 tárgy ellenőrzési technikák részéhez kapcsolódóan (2017. május) Teszt kérdések 1. Melyik állítás igaz a folytonos integrációval (CI) kapcsolatban? a. Folytonos

Részletesebben

V. Félév Információs rendszerek tervezése Komplex információs rendszerek tervezése dr. Illyés László - adjunktus

V. Félév Információs rendszerek tervezése Komplex információs rendszerek tervezése dr. Illyés László - adjunktus V. Félév Információs rendszerek tervezése Komplex információs rendszerek tervezése dr. Illyés László - adjunktus 1 Az előadás tartalma A GI helye az informatikában Az előadás tartalmának magyarázata A

Részletesebben

Modell alapú tesztelés

Modell alapú tesztelés Modell alapú tesztelés Majzik István és Micskei Zoltán Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs Rendszerek Tanszék http://www.inf.mit.bme.hu/ 1 Motiváció Tartalomjegyzék

Részletesebben

Szoftver értékelés és karbantartás

Szoftver értékelés és karbantartás Szoftver értékelés és karbantartás Majzik István Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs Rendszerek Tanszék http://www.mit.bme.hu/~majzik/ Emlékeztető: Biztonsági követelmények

Részletesebben

Hatékony technikák modellellenőrzéshez: Szimbolikus technikák (ROBDD)

Hatékony technikák modellellenőrzéshez: Szimbolikus technikák (ROBDD) Hatékony technikák modellellenőrzéshez: Szimbolikus technikák (ROBDD) dr. Majzik István dr. Pataricza András dr. Bartha Tamás BME Méréstechnika és Információs Rendszerek Tanszék 1 Hol tartunk? Alacsony

Részletesebben

Digitális technika (VIMIAA02) Laboratórium 5

Digitális technika (VIMIAA02) Laboratórium 5 BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Digitális technika (VIMIAA02) Laboratórium 5 Fehér Béla Raikovich Tamás,

Részletesebben

Biztonságkritikus rendszerek Gyakorlat: Architektúrák

Biztonságkritikus rendszerek Gyakorlat: Architektúrák Biztonságkritikus rendszerek Gyakorlat: Architektúrák Rendszertervezés és -integráció dr. Majzik István Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs Rendszerek Tanszék BME-MIT

Részletesebben

Digitális technika (VIMIAA02) Laboratórium 5

Digitális technika (VIMIAA02) Laboratórium 5 BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Digitális technika (VIMIAA02) Laboratórium 5 Fehér Béla Raikovich Tamás,

Részletesebben

Modell alapú tesztelés

Modell alapú tesztelés Modell alapú tesztelés Majzik István és Micskei Zoltán Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs Rendszerek Tanszék http://www.inf.mit.bme.hu/ 1 Motiváció Tartalomjegyzék

Részletesebben

Algoritmusok Tervezése. 6. Előadás Algoritmusok 101 Dr. Bécsi Tamás

Algoritmusok Tervezése. 6. Előadás Algoritmusok 101 Dr. Bécsi Tamás Algoritmusok Tervezése 6. Előadás Algoritmusok 101 Dr. Bécsi Tamás Mi az algoritmus? Lépések sorozata egy feladat elvégzéséhez (legáltalánosabban) Informálisan algoritmusnak nevezünk bármilyen jól definiált

Részletesebben

Java II. I A Java programozási nyelv alapelemei

Java II. I A Java programozási nyelv alapelemei Java II. I A Java programozási nyelv alapelemei Miskolci Egyetem Általános Informatikai Tanszék Utolsó módosítás: 2008. 02. 19. Java II.: Alapelemek JAVA2 / 1 A Java formalizmusa A C, illetve az annak

Részletesebben

Dinamikus modell: állapotdiagram, szekvencia diagram

Dinamikus modell: állapotdiagram, szekvencia diagram Programozási : állapotdiagram, szekvencia diagram osztályszerep Informatikai Kar Eötvös Loránd Tudományegyetem 1 osztályszerep Tartalom 1 2 3 osztályszerep 2 Bevezető Állapot Interakciós Tevékenység osztályszerep

Részletesebben