Diszkrét állapotú rendszerek modellezése. Petri-hálók

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Diszkrét állapotú rendszerek modellezése. Petri-hálók"

Átírás

1 Diszkrét állapotú rendszerek modellezése Petri-hálók

2 Diszkrét eseményű rendszerek Discret Event (Dynamic) Systems DES, DEDS állapotterük diszkrét halmaz állapotváltozásuk kizárólag az időben aszinkron módon megjelenő, diszkrét eseményektől függ modelljeik számára a differenciál-, illetve differenciaegyenletek nem megfelelőek az idő közvetlenül nem befolyásolja az ilyen rendszer vezérlését, így a megfelelő modellekben nem lehet független változó Diszkrét állapotú rendszerek modellezése, Petri-hálók 2

3 Diszkrét eseményű rendszerek Feladat: a megfelelő modellezési eljárás megtalálása. Kell egy olyan eszköz, amely képes egy jól definiált szabályok szerinti nyelv reprezentálására. Automata modell Markov-modell Sorbanállási modell Petri-háló Diszkrét állapotú rendszerek modellezése, Petri-hálók 3

4 Automata modell Leírás: irányított gráf állapotátmeneti diagram csomópontok állapotok: X={x, y, z} címkézett élek állapotátmenetek: E={a, b, g} címkék az átmenetet kiváltó események f: X E X f x, a = x f x, g = z f y, a = x f y, b = y f z, b = z f z, a = f z, g = y a a x y g a,g z b Diszkrét állapotú rendszerek modellezése, Petri-hálók 4 b

5 Automata modell Determinisztikus, véges állapotú automata G = (X, E, f) X az állapotok véges halmaza Automata állapotgép generátor Deterministic Finite-state Automaton DFA Finite-State Machine FSM E a G-beli állapotátmenetekkel társított események véges halmaza f: X E X az átmeneti függvény, a determinisztikus jelleg forrása f x, e = x azt jelenti, hogy létezik egy e címkével jelzett esemény által kiváltott x x állapotátmenet, ahol x, x X Diszkrét állapotú rendszerek modellezése, Petri-hálók 5

6 Markov-modell Sztochasztikus állapotátmenetek modellezésére lásd Közlekedési automatika 3λ 2λ 2 μ 2μ Diszkrét állapotú rendszerek modellezése, Petri-hálók 6

7 Sorbanállási modell Sorbanállás: bizonyos források használata céljából várakozni kell. A három alapelem: a vevők (customers) a kiszolgáló egységek (servers) a sor (queue). lásd Közlekedési üzemtan Modell vizsgálata: elsősorban szimulációval Diszkrét állapotú rendszerek modellezése, Petri-hálók 7

8 Sorbanállási modell VEVŐ ÉRKEZIK a SOR SZERVER d VEVŐ TÁVOZIK Állapotváltozó: a sorban álló vevők száma (a sor hossza) X={,, 2, } Esemény: érkezés, (kiszolgálás), távozás E={a, d} Egyszerű sorbanállási rendszer jellemzői az érkezési és kiszolgálási folyamat eloszlása, intenzitása a szerver kapacitása (csatornák száma) a sorbanállási (kiszolgálási) rend Diszkrét állapotú rendszerek modellezése, Petri-hálók 8

9 Petri-háló Carl Adam Petri (926-2) Ötlet (3 évesen!) Kidolgozás: 962. doktori disszertáció Diszkrét állapotú rendszerek modellezése, Petri-hálók 9

10 Petri-háló A Petri-hálók (PN) az információ-áramlás absztrakt formális modelljei. Kiválóan alkalmasak a DES modellezésére grafikus reprezentációval (átláthatóság) formális matematikai leírással (egyértelműség). A PN egyik erőssége az egyidejű események modellezése Diszkrét állapotú rendszerek modellezése, Petri-hálók

11 Petri-háló alapelemek Tranzíciók események Helyek bemeneti az események előfeltételei kimeneti az események következményei Élek: a helyek és a tranzíciók között levő kapcsolatok leírása Tokenek jelölők, a PN állapotának leírása Diszkrét állapotú rendszerek modellezése, Petri-hálók

12 Petri-háló struktúrája Grafikus reprezentáció PN: irányított, súlyozott, páros gráf Kétféle csomópont hely tranzíció Élek: hely tranzíció, tranzíció hely A PN állapota: a tokenek eloszlása az egyes helyeken Diszkrét állapotú rendszerek modellezése, Petri-hálók 2

13 Petri-háló struktúrája Formális definíció Petri-háló Helyek halmaza Tranzíciók halmaza Élek halmaza Súlyfüggvény Kezdőállapot PN P,T,E,W,M P p, p2, p T t, t, t 2 E P T T P w * : E N M : P N Diszkrét állapotú rendszerek modellezése, Petri-hálók 3

14 Petri-háló struktúrája P={p, p 2, p 3 } T={t } w (p, t )= 2 w + (t, p 2 )= w + (t, p 3 )= 3 M ={m(p ), m(p 2 ), m(p 3 )}={3,, } 2 Ősök: p =Ø t =p p 2 =t p 3 =t Utódok: p =t t ={p 2, p 3 } p 2 =Ø p 3 =Ø Diszkrét állapotú rendszerek modellezése, Petri-hálók 4

15 Petri-háló struktúrája Speciális csomópontok forrás és nyelő tranzíciók bemenő és kimenő hely nélküli ( t=ø és t =Ø) forrás tranzíció minden esetben tud tüzelni egy PN tiszta, ha nincsenek önhurkai, azaz minden t T tranzícióra: t t = Ø Diszkrét állapotú rendszerek modellezése, Petri-hálók 5

16 Petri-háló dinamikája Állapotváltozás tranzíciók engedélyezettsége tranzíció tüzelése tokenek vándorlása a bemeneti helyekről: p t a kimeneti helyekre: p t token eloszlás megváltozása: M M Diszkrét állapotú rendszerek modellezése, Petri-hálók 6

17 Petri-háló dinamikája Tranzíciók engedélyezettsége egy t j tranzíció akkor engedélyezett, ha a tokenek száma valamennyi p i bemeneti hely vonatkozásában legalább akkora, mint a p i helyet a t j tranzícióval összekötő él súlya m(p i ) w (p i, t j ) valamennyi p i t j Diszkrét állapotú rendszerek modellezése, Petri-hálók 7

18 Petri-háló dinamikája Tranzíció tüzelése ha egy tranzíció engedélyezett, akkor tüzelhet egyszerre mindig csak egy tranzíció tüzel tokenek elvétele a bemeneti helyekről tokenek kirakása a kimeneti helyekre m p i = m p i w p i, t j + w + p i, t j valamennyi p i t j t j Diszkrét állapotú rendszerek modellezése, Petri-hálók 8

19 Petri-háló dinamikája Token eloszlás megváltozása 2 3 M ={3,, } 2 3 M ={, 2, 3} Diszkrét állapotú rendszerek modellezése, Petri-hálók 9

20 Petri-háló dinamikája Token eloszlás megváltozása p t p 2 p 3 t 2 t 3 p 4 M ={2,,, } p 4 p t p 2 p 3 t 2 t 3 M ={,,, } Diszkrét állapotú rendszerek modellezése, Petri-hálók 2

21 Petri-háló dinamikája Formális leírás tüzelő tranzíció tüzelési vektor u = t t j t τ T = T szomszédossági mátrix w ij = w p i, t j + w + p i, t j W T mátrix (dimenziója: π τ): w p p i p π t t j t τ w ij w πτ Diszkrét állapotú rendszerek modellezése, Petri-hálók 2

22 Petri-háló dinamikája szomszédossági mátrix 2 3 W T = 2 3 p t p 2 p 3 t 2 t 3 p 4 W T = Diszkrét állapotú rendszerek modellezése, Petri-hálók 22

23 Petri-háló dinamikája szomszédossági mátrix W T = állapotátmeneti függvény, állapotegyenlet M = f(m, t j ) M = M + W T u t 2 p 2 t 2 2 p p 3 t Diszkrét állapotú rendszerek modellezése, Petri-hálók 23

24 Petri-háló dinamikája állapotegyenlet M = M + W T u = = M = p p t t p 2 p 3 p 2 p 3 t 2 t 3 t 2 t 3 p 4 p Diszkrét állapotú rendszerek modellezése, Petri-hálók 24

25 Petri-háló dinamikája állapotegyenlet M 2 = M + W T u + + = 2 = M 2 = p p t t p 2 p 3 p 2 p 3 t 2 t 3 t 2 t 3 p 4 p Diszkrét állapotú rendszerek modellezése, Petri-hálók 25

26 Petri-háló dinamikája állapotegyenlet M 2b = M + W T u + + = = M 2b = p p t t p 2 p 3 p 2 p 3 t 2 t 3 t 2 t 3 p 4 p Diszkrét állapotú rendszerek modellezése, Petri-hálók 26

27 Petri-háló jellemzők felkészülés. versenyző 2. versenyző rajt futás Petri-háló jellemzők azonnali tüzelések Modellezési tulajdonságok elemi (atomi) esemény bíró időmérés Szinkronizálás! Diszkrét állapotú rendszerek modellezése, Petri-hálók 27

28 Petri-háló jellemzők Petri-háló jellemzők Modellezési tulajdonságok pakolás a bőröndbe utazás külföldre azonnali tüzelések aszinkron tüzelések elemi (atomi) esemény események szekvenciájának függetlensége mozijegy vásárlás filmnézés Diszkrét állapotú rendszerek modellezése, Petri-hálók 28

29 Petri-háló jellemzők Petri-háló jellemzők Modellezési tulajdonságok papír papírrepülő azonnali tüzelések aszinkron tüzelések elemi (atomi) esemény események szekvenciájának függetlensége dolgozat nemdeterminisztikus konkurencia toll Implicit időfogalom! Diszkrét állapotú rendszerek modellezése, Petri-hálók 29

30 Petri-háló jellemzők Petri-háló jellemzők Modellezési tulajdonságok tej cappuccino azonnali tüzelések aszinkron tüzelések elemi (atomi) esemény események szekvenciájának függetlensége kávé ír kávé nemdeterminisztikus legalább egy közös előfeltétel konkurencia konfliktus whisky Diszkrét állapotú rendszerek modellezése, Petri-hálók 3

31 Petri-háló jellemzők Petri-háló jellemzők Modellezési tulajdonságok alvás munka azonnali tüzelések aszinkron tüzelések elemi (atomi) esemény események szekvenciájának függetlensége nemdeterminisztikus konkurencia legalább egy közös előfeltétel konfliktus neminterpretált absztrakt tulajdonságok Diszkrét állapotú rendszerek modellezése, Petri-hálók 3

32 Petri-háló jellemzők alvás munka késésben öltözés reggeli utazás Petri-háló jellemzők azonnali tüzelések aszinkron tüzelések nemdeterminisztikus legalább egy közös előfeltétel neminterpretált absztrakció és finomítás Modellezési tulajdonságok elemi (atomi) esemény események szekvenciájának függetlensége konkurencia konfliktus absztrakt tulajdonságok hierarchikus modellezés Diszkrét állapotú rendszerek modellezése, Petri-hálók 32

33 Petri-háló példák Gyalogos jelzőlámpa nyomógombbal Diszkrét állapotú rendszerek modellezése, Petri-hálók 33

34 Petri-háló példák Jelzőlámpa gyalogátkelőhellyel Diszkrét állapotú rendszerek modellezése, Petri-hálók 34

35 Petri-háló példák Jelzőlámpa meghibásodással Diszkrét állapotú rendszerek modellezése, Petri-hálók 35

36 Petri-háló példák Vasúti útátjáró fail-safe meghibásodással Diszkrét állapotú rendszerek modellezése, Petri-hálók 36

37 Petri-háló példák Váltóállítás Diszkrét állapotú rendszerek modellezése, Petri-hálók 37

38 Petri-háló kiterjesztések Helyek kapacitáskorlátja Cél: véges erőforráskészlet megjelenítése Minden helyhez rendelhetünk kapacitást: K(p i ) Tüzelési szabály kiegészítése: egy t j tranzíció csak akkor engedélyezett, ha a feltételezett tüzelés után kimenő helyek tokenszáma nem haladja meg az adott hely kapacitáskorlátját: m p i + w + p i, t j K p i p i t Diszkrét állapotú rendszerek modellezése, Petri-hálók 38

39 Petri-háló kiterjesztések Helyek kapacitáskorlátja Példa 2 K=3 feladat kezd dolgozik végez Megvalósítható kiegészítő hely felhasználásával is szabad kapacitás feladat 2 kezd 2 dolgozik végez Diszkrét állapotú rendszerek modellezése, Petri-hálók 39

40 Petri-háló kiterjesztések Tiltó élek használata Cél: negatív feltételek ellenőrzése (zéró teszt) Tüzelési szabály kiegészítése: ha a tranzícióhoz kapcsolódó tiltó él súlyánál több token van az adott bemenő helyen, akkor a tüzelés nem hajtható végre kész feladat kezd dolgozik végez feladat kezd dolgozik végez Diszkrét állapotú rendszerek modellezése, Petri-hálók 4

41 Petri-háló kiterjesztések Prioritás bevezetése Cél: nemdeterminizmus korlátozása A tranzíciókhoz prioritást rendelünk Tüzelési szabály kiegészítése: az engedélyezett tranzíciók közül egy alacsonyabb prioritású mindaddig nem tüzelhet, amíg egy magasabb prioritású tranzíció engedélyezve van Prioritási szinten belül továbbra is nemdeterminisztikus választás :T N Diszkrét állapotú rendszerek modellezése, Petri-hálók 4

42 Petri-háló kiterjesztések Időzített Petri-hálók (Time PN TPN) Cél: teljesítményanalízis és ütemezési feladatok A tüzelések végrehajtásához időt rendelünk Determinisztikus időfogalom A tüzelések végrehajtásának ideje fix Alkalmazás: pl. maximális ciklusidő modellezése Sztochasztikus időfogalom A tüzelések végrehajtásának ideje valamilyen valószínűségi eloszlást követ Alkalmazás: pl. sorbanállás, megbízhatósági számítások Diszkrét állapotú rendszerek modellezése, Petri-hálók 42

43 Petri-háló kiterjesztések Színezett Petri-hálók (Coloured PN CPN) Cél: kompaktabb megjelenítés Tokenek helyett színes tokenek: adattípusok Diszkrét állapotú rendszerek modellezése, Petri-hálók 43

44 Kapcsolat más modellekkel Automata transzformálása Petri-hálóvá Egy véges állapotú automata mindig transzformálható egy olyan Petri-hálóvá, amely ugyanazt a nyelvet generálja, mint az automata: e x x L(N) = L(G) e x t (x, e, x ) x Diszkrét állapotú rendszerek modellezése, Petri-hálók 44

45 Kapcsolat más modellekkel Sorbanállási feladat modellezése Automata modell 2 3 Petri-háló x = 2 a a a a d d d d M = [,,,, ] a a a a VEVŐ ÉRKEZIK a SOR SZERVER d M = [2] a Q VEVŐ TÁVOZIK d d d d Diszkrét állapotú rendszerek modellezése, Petri-hálók 45 d

46 Automata transzformálása Petri-hálóvá Egy véges állapotú automata mindig transzformálható egy olyan Petri-hálóvá, amely ugyanazt a nyelvet generálja, mint az automata: e x x. P=X 2. x =[, ], e, x' x t T L(N) = L(G) e x t (x, e, x ) x 3. x, e, x ' 4. t x, e, x' e E 5. x, e, x' x, t x, e, x' A és t x, e, x' 6. w=, x' A

47 Sorbanállás automata és Petri-háló modellje VEVŐ ÉRKEZIK a SOR SZERVER d VEVŐ TÁVOZIK a a a a 2 3 d d d d a a a a x = 2 A d d d d x = [,,,, ]

48 Továbbfejlesztett tüzelési szabályok () Prioritás A tranzíciókhoz prioritást rendelünk: az engedélyezett tranzíciók közül egy alacsonyabb prioritású mindaddig nem tüzelhet, amíg egy magasabb prioritású tranzíció engedélyezve van Cél: nem-determinizmus korlátozása

49 Továbbfejlesztett PN Időfogalom bevezetése Teljesítményanalízis és ütemezési problémák Determinisztikus időfogalom Időzített PN A tüzelések végrehajtásához időt rendelünk Alkalmazás: pl. maximális ciklusidő modellezése Sztochasztikus időfogalom Sztochasztikus PN A tüzelések végrehajtásának ideje valamilyen valószínűségi eloszlást követ Színezett PN Tokenek helyett színes tokenek: adattípusok Kompaktabb megjelenítés

50 PN analízis célja. modellezzük a rendszert 2. megvizsgáljuk a modell bizonyos tulajdonságait 3. ezeket a tulajdonságokat (amennyiben a modell megfelelő volt) visszavetítjük az eredeti rendszerre, így 4. az eredeti rendszer bizonyos tulajdonságait vizsgálhatjuk anélkül, hogy magát a rendszert megépítenénk

51 PN tulajdonságok Elérhetőség Valamely kezdőállapotból egy másik állapot vagy állapotok halmaza egy tetszőleges tüzelési szekvenvcia mellett elérhető-e. Pl. elérhető-e egy nem biztonságos állapot

52 PN tulajdonságok Korlátosság A helyeken felhalmozódó tokenek száma véges Alkalmazás: erőforrás-használat modellezése. Azt vizsgáljuk, hogy a modellezett rendszerben a feladatok elvégzése garantált-e. Az -korlátos hálót biztonságosnak nevezzük.

53 PN tulajdonságok Élőség Azt vizsgálja, hogy a modell valamennyi tranzíciója értelmes-e, azaz valamennyi tranzíciója végrehajtható-e. Megfordíthatóság/visszatérő állapot A ciklikus működésű hálózat viselkedésében keresi a ciklusokat (valóban ciklikus-e, nincs-e dead-lock)

54 PN tulajdonságok Perzisztencia Azt vizsgáljuk, hogy az eredetileg párhuzamosnak szánt tevékenységek nem befolyásolják-e egymást. Fairség Arra keres garanciát, hogy a rendszerbeli párhuzamos folyamatok nem tartják-e fel egymást keresztbehatásuk révén, azaz előbb-utóbb minden folyamat végbemegy-e.

55 Analízis eljárások Elérhetőségi gráf módszer Az összes elérhető állapotot vizsgálja (tulajdonképpen állapotgráfot állít elő) Probléma: túl nagy állapottér Algebrai megközelítés A háló algebrai reprezentációján végzett műveletek/bizonyítások/levezetések segítségével vizsgálja a tulajdonságokat

56 Bővítés (2) p p 4 t t 3 p 7 p t 8 5 p 2 p t 5 6 t 2 t 4 p 3 p 6

57 Elérhetőségi gráf p p 4 t 5 x t 6 t t 3 t t 3 x 2 x 4 p p 7 p t 8 p t 6 t 2 t 4 x 3 x 5 t 2 t 4 p 3 p 6

58 Elérhetőségi gráf p p 4 t 5 x t 6 t t 3 t t 3 x 2 x 4 p p 7 p t 8 p t 6 t 2 t 4 x 3 x 5 t 2 t 4 t 3 p 3 p 6 x 6 t 6 t 4 x 7

59 Elérhetőségi gráf p p 4 t 5 x t 6 t t 3 t t 3 x 2 x 4 p p 7 p t 8 p t 6 t 2 t 4 x 3 x 5 t 2 t 4 t 3 t p 3 p 6 x 6 x 8 t 6 t 4 t 2 x 7

60 Elérhetőségi gráf p p 4 t 5 x t 6 t t 3 t t 3 x 2 x 4 p p 7 p t 8 p t 6 t 2 t 4 x 3 x 5 t 2 t 4 t 3 t p 3 p 6 x 6 x 8 t 6 t 4 t 2 t 5 x 7

61 Elérhetőségi gráf p p 4 t 5 x t 6 t t 3 t t 3 x 2 x 4 p p 7 p t 8 p t 6 t 2 t 5 t 4 x 3 x 5 t 2 t 4 t 3 t p 3 p 6 x 6 x 8 t 6 t 4 t 2 t 5 x 7

62 Elérhetőségi gráf p p 4 t 5 x t 6 t t 3 t t 3 x 2 x 4 p p 7 p t 8 p t 6 t 2 t 6 t 5 t 4 x 3 x 5 t 2 t 4 t 3 t p 3 p 6 x 6 x 8 t 6 t 4 t 2 t 5 x 7

63 Beléptető állomás Csomag érkezése Belépés engedélyezése F szabad, F2 zár Bejelentkezés Leolvasás Cél megadása Kilépés engedélyezése Várakozás Csomag tovább F zár, F2 szabad Várakozási idő

64 Váltóállítás Váltóvezérlés A2 Váltóvezérlés A Váltóállás A Váltófutás ideje Váltóállás A2

65 Irányítás, kiléptetés Csomag tovább Váltóvezérlés A2 Váltóvezérlés A Érkezés jelzése Futásidő Áthaladás az elosztó ponton Váltóállás A Váltófutás ideje Váltóállás A2 Kilépés jelzés Futásidő Kilépés A Kilépés A2

66 Órajel Léptető regiszter

67 Multiplexer - Demultiplexer 3. csatorna 3. csatorna 2. csatorna 2. csatorna. csatorna. csatorna Az együttállás biztosítása Órajel

Diszkrét állapotú rendszerek modellezése. Petri-hálók

Diszkrét állapotú rendszerek modellezése. Petri-hálók Diszkrét állapotú rendszerek modellezése Petri-hálók Diszkrét eseményű rendszerek Discret Event (Dynamic) Systems DES, DEDS állapotterük diszkrét halmaz állapotváltozásuk kizárólag az időben aszinkron

Részletesebben

Petri hálók: alapfogalmak, kiterjesztések

Petri hálók: alapfogalmak, kiterjesztések Petri hálók: alapfogalmak, kiterjesztések dr. Bartha Tamás Dr. Pataricza András BME Méréstechnika és Információs Rendszerek Tanszék A Petri hálók eredete Petri háló: Mi az? Carl Adam Petri: német matematikus,

Részletesebben

Elérhetőségi analízis Petri hálók dinamikus tulajdonságai

Elérhetőségi analízis Petri hálók dinamikus tulajdonságai Elérhetőségi analízis Petri hálók dinamikus tulajdonságai dr. Bartha Tamás Dr. Pataricza András BME Méréstechnika és Információs Rendszerek Tanszék Petri hálók vizsgálata Az elemzés mélysége szerint: Vizsgálati

Részletesebben

Petri hálók: Alapelemek és kiterjesztések

Petri hálók: Alapelemek és kiterjesztések Petri hálók: Alapelemek és kiterjesztések dr. Bartha Tamás dr. Pataricza András dr. Majzik István BME Méréstechnika és Információs Rendszerek Tanszék Modellek a formális ellenőrzéshez Mivel nyújt többet

Részletesebben

Petri hálók: Alapelemek és kiterjesztések

Petri hálók: Alapelemek és kiterjesztések Petri hálók: Alapelemek és kiterjesztések dr. Bartha Tamás dr. Pataricza András dr. Majzik István BME Méréstechnika és Információs Rendszerek Tanszék Modellek a formális ellenőrzéshez Mivel nyújt többet

Részletesebben

Petri hálók: alapfogalmak, kiterjesztések

Petri hálók: alapfogalmak, kiterjesztések Petri hálók: alapfogalmak, kiterjesztések dr. Bartha Tamás Dr. Pataricza András BME Méréstechnika és Információs Rendszerek Tanszék Petri hálók felépítése, működése A Petri hálók eredete Petri háló: Mi

Részletesebben

Elérhetőségi probléma egyszerűsítése: Állapottér és struktúra redukció Petri-háló alosztályok

Elérhetőségi probléma egyszerűsítése: Állapottér és struktúra redukció Petri-háló alosztályok Elérhetőségi probléma egyszerűsítése: Állapottér és struktúra redukció Petri-háló alosztályok dr. Bartha Tamás Dr. Pataricza András BME Méréstechnika és Információs Rendszerek Tanszék Elérhetőségi probléma

Részletesebben

folyamatrendszerek modellezése

folyamatrendszerek modellezése Diszkrét eseményű folyamatrendszerek modellezése Hangos Katalin Számítástudomány Alkalmazása Tanszék Veszprémi Egyetem Haladó Folyamatmodellezés és modell analízis PhD kurzus p. 1/36 Tartalom Diszkrét

Részletesebben

2.előadás. alapfogalmak, formális definíció

2.előadás. alapfogalmak, formális definíció 2.előadás Források: -Molnár Ágnes: Formális módszerek az informatikában (1), NetAkadámia Tudástár -dr. Pataricza András, dr. Bartha Tamás: Petri hálók: alapfogalmak, formális definíció Validáció és verifikáció

Részletesebben

Színezett Petri hálók

Színezett Petri hálók Színezett Petri hálók dr. Bartha Tamás dr. Majzik István BME Méréstechnika és Információs Rendszerek Tanszék Étkező filozófusok Petri-háló modellje Motiváció 2 Motiváció Miért nem így? 3 Motiváció Tokenek

Részletesebben

Alapszintű formalizmusok

Alapszintű formalizmusok Alapszintű formalizmusok dr. Majzik István BME Méréstechnika és Információs Rendszerek Tanszék 1 Mit szeretnénk elérni? Informális tervek Informális követelmények Formális modell Formalizált követelmények

Részletesebben

Színezett Petri hálók

Színezett Petri hálók Színezett Petri hálók dr. Bartha Tamás dr. Majzik István BME Méréstechnika és Információs Rendszerek Tanszék Motiváció Étkező filozófusok Petri-háló modellje: C1 P1 C2 P5 C5 P2 C3 P4 C4 P3 2 Motiváció

Részletesebben

Elérhetőségi analízis Petri hálók dinamikus és strukturális tulajdonságai

Elérhetőségi analízis Petri hálók dinamikus és strukturális tulajdonságai Elérhetőségi analízis Petri hálók dinamikus és strukturális tulajdonságai dr. Bartha Tamás BME Közlekedés- és Járműirányítási Tanszék Dr. Pataricza András BME Méréstechnika és Információs Rendszerek Tanszék

Részletesebben

Adat és folyamat modellek

Adat és folyamat modellek Adat és folyamat modellek Előadásvázlat dr. Kovács László Folyamatmodell nyersanyag miből termék mit funkció ki munkaerő eszköz mivel Objektumok Tevékenységek Adatmodell Funkció modell Folyamat modell

Részletesebben

Színezett Petri-hálók

Színezett Petri-hálók Színezett Petri-hálók dr. Bartha Tamás BME Méréstechnika és Információs Rendszerek Tanszék Bevezetés Mik a színezett Petri-hálók? A színezett Petri-hálók olyan modellek, amik a grafikus reprezentációt

Részletesebben

Petri hálók strukturális tulajdonságai Invariánsok és számításuk

Petri hálók strukturális tulajdonságai Invariánsok és számításuk Petri hálók strukturális tulajdonságai Invariánsok és számításuk dr. Bartha Tamás Dr. Pataricza András BME Méréstechnika és Információs Rendszerek Tanszék Az elemzés mélysége szerint: Vizsgálati lehetőségek

Részletesebben

E.4 Markov-láncok E.4 Markov-láncok. Sok sorbanállási hálózat viselkedése leírható "folytonos idejű Markovláncok " segítségével.

E.4 Markov-láncok E.4 Markov-láncok. Sok sorbanállási hálózat viselkedése leírható folytonos idejű Markovláncok  segítségével. E.4 Markov-láncok Sok sorbanállási hálózat viselkedése leírható "folytonos idejű Markovláncok " segítségével. Egy Markov-láncot (MC) meghatároznak az alapját adó sorbanállási hálózat állapotai és az ezek

Részletesebben

Modellezés Petri hálókkal. dr. Bartha Tamás dr. Majzik István dr. Pataricza András BME Méréstechnika és Információs Rendszerek Tanszék

Modellezés Petri hálókkal. dr. Bartha Tamás dr. Majzik István dr. Pataricza András BME Méréstechnika és Információs Rendszerek Tanszék Modellezés Petri hálókkal dr. Bartha Tamás dr. Majzik István dr. Pataricza András BME Méréstechnika és Információs Rendszerek Tanszék Modellező eszközök: DNAnet, Snoopy, PetriDotNet A DNAnet modellező

Részletesebben

Sztochasztikus temporális logikák

Sztochasztikus temporális logikák Sztochasztikus temporális logikák Teljesítmény és szolgáltatásbiztonság jellemzők formalizálása és ellenőrzése Majzik István Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs

Részletesebben

2. gyakorlat Állapot alapú modellezés Megoldások. 1. feladat. Rendszermodellezés (BMEVIMIAA00), tavaszi félév

2. gyakorlat Állapot alapú modellezés Megoldások. 1. feladat. Rendszermodellezés (BMEVIMIAA00), tavaszi félév 2. gyakorlat Állapot alapú modellezés ok Figyelem: Jelen anyag belső használatra készült megoldási útmutató, melyet a ZH felkészülés segítése érdekében publikáltunk. A feladatok részletesebb megoldása

Részletesebben

Adatfolyam hálók Dr. Bartha Tamás, Dr. Pataricza András fóliái

Adatfolyam hálók Dr. Bartha Tamás, Dr. Pataricza András fóliái Adatfolyam hálók Dr. Bartha Tamás, Dr. Pataricza András fóliái Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs Rendszerek Tanszék Adatfolyam modellezés Nem determinisztikus

Részletesebben

12. előadás - Markov-láncok I.

12. előadás - Markov-láncok I. 12. előadás - Markov-láncok I. 2016. november 21. 12. előadás 1 / 15 Markov-lánc - definíció Az X n, n N valószínűségi változók sorozatát diszkrét idejű sztochasztikus folyamatnak nevezzük. Legyen S R

Részletesebben

Valószínűségi modellellenőrzés Markov döntési folyamatokkal

Valószínűségi modellellenőrzés Markov döntési folyamatokkal Valószínűségi modellellenőrzés Markov döntési folyamatokkal Hajdu Ákos Szoftver verifikáció és validáció 2015.12.09. Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs Rendszerek

Részletesebben

Sztochasztikus Petri-hálók

Sztochasztikus Petri-hálók Sztochasztikus Petri-hálók Teljesítmény és megbízhatóság modellezés dr. Majzik István BME Méréstechnika és Információs Rendszerek Tanszék 1 Áttekintés Motiváció Sztochasztikus folyamatok és modellek Folytonos

Részletesebben

Diszkrét Eseményű Rendszerek Diagnosztikája és Irányítása

Diszkrét Eseményű Rendszerek Diagnosztikája és Irányítása Diszkrét és hibrid diagnosztikai és irányítórendszerek Diszkrét Eseményű Rendszerek Diagnosztikája és Irányítása Hangos Katalin Közlekedésautomatika Tanszék Rendszer- és Irányításelméleti Kutató Laboratórium

Részletesebben

Gyakorló feladatok: Formális modellek, temporális logikák, modellellenőrzés. Majzik István BME Méréstechnika és Információs Rendszerek Tanszék

Gyakorló feladatok: Formális modellek, temporális logikák, modellellenőrzés. Majzik István BME Méréstechnika és Információs Rendszerek Tanszék Gyakorló feladatok: Formális modellek, temporális logikák, modellellenőrzés Majzik István BME Méréstechnika és Információs Rendszerek Tanszék Formális modellek használata és értelmezése Formális modellek

Részletesebben

5. Hét Sorrendi hálózatok

5. Hét Sorrendi hálózatok 5. Hét Sorrendi hálózatok Digitális technika 2015/2016 Bevezető példák Példa 1: Italautomata Legyen az általunk vizsgált rendszer egy italautomata, amelyről az alábbi dolgokat tudjuk: 150 Ft egy üdítő

Részletesebben

Logisztikai szimulációs módszerek

Logisztikai szimulációs módszerek Üzemszervezés Logisztikai szimulációs módszerek Dr. Juhász János Integrált, rugalmas gyártórendszerek tervezésénél használatos szimulációs módszerek A sztochasztikus külső-belső tényezőknek kitett folyamatok

Részletesebben

Számítógép-rendszerek fontos jellemzői (Hardver és Szoftver):

Számítógép-rendszerek fontos jellemzői (Hardver és Szoftver): B Motiváció B Motiváció Számítógép-rendszerek fontos jellemzői (Hardver és Szoftver): Helyesség Felhasználóbarátság Hatékonyság Modern számítógép-rendszerek: Egyértelmű hatékonyság (például hálózati hatékonyság)

Részletesebben

A Markovi forgalomanalízis legújabb eredményei és ezek alkalmazása a távközlő hálózatok teljesítményvizsgálatában

A Markovi forgalomanalízis legújabb eredményei és ezek alkalmazása a távközlő hálózatok teljesítményvizsgálatában A Markovi forgalomanalízis legújabb eredményei és ezek alkalmazása a távközlő hálózatok teljesítményvizsgálatában Horváth Gábor ghorvath@hit.bme.hu (Horváth András, Telek Miklós) - p. 1 Motiváció, problémafelvetés

Részletesebben

Zárthelyi mintapéldák. Majzik István BME Méréstechnika és Információs Rendszerek Tanszék

Zárthelyi mintapéldák. Majzik István BME Méréstechnika és Információs Rendszerek Tanszék Zárthelyi mintapéldák Majzik István BME Méréstechnika és Információs Rendszerek Tanszék Elméleti kérdések Indokolja meg, hogy az A (X Stop F Start) kifejezés szintaktikailag helyes kifejezés-e CTL illetve

Részletesebben

Markov-láncok stacionárius eloszlása

Markov-láncok stacionárius eloszlása Markov-láncok stacionárius eloszlása Adatbányászat és Keresés Csoport, MTA SZTAKI dms.sztaki.hu Kiss Tamás 2013. április 11. Tartalom Markov láncok definíciója, jellemzése Visszatérési idők Stacionárius

Részletesebben

előadás Diszkrét idejű tömegkiszolgálási modellek Poisson-folyamat Folytonos idejű Markov-láncok Folytonos idejű sorbanállás

előadás Diszkrét idejű tömegkiszolgálási modellek Poisson-folyamat Folytonos idejű Markov-láncok Folytonos idejű sorbanállás 13-14. előadás Diszkrét idejű tömegkiszolgálási modellek Poisson-folyamat Folytonos idejű Markov-láncok Folytonos idejű sorbanállás 2016. november 28. és december 5. 13-14. előadás 1 / 35 Bevezetés A diszkrét

Részletesebben

Irányítástechnika GÁSPÁR PÉTER. Prof. BOKOR JÓZSEF útmutatásai alapján

Irányítástechnika GÁSPÁR PÉTER. Prof. BOKOR JÓZSEF útmutatásai alapján Irányítástechnika GÁSPÁR PÉTER Prof. BOKOR JÓZSEF útmutatásai alapján Irányítástechnika rendszerek Irányítástechnika Budapest, 2008 2 Az előadás felépítése 1. 2. 3. 4. Irányítástechnika Budapest, 2008

Részletesebben

Szekvenciális hálózatok és automaták

Szekvenciális hálózatok és automaták Szekvenciális hálózatok a kombinációs hálózatokból jöhetnek létre tárolási tulajdonságok hozzáadásával. A tárolás megvalósítása történhet a kapcsolás logikáját képező kombinációs hálózat kimeneteinek visszacsatolásával

Részletesebben

Sztochasztikus folyamatok alapfogalmak

Sztochasztikus folyamatok alapfogalmak Matematikai Modellalkotás Szeminárium 2012. szeptember 4. 1 Folytonos idejű Markov láncok 2 3 4 1 Folytonos idejű Markov láncok 2 3 4 Folytonos idejű Markov láncok I Adott egy G = (V, E) gráf Folytonos

Részletesebben

Idõ-ütemterv há lók - I. t 5 4

Idõ-ütemterv há lók - I. t 5 4 lõadás:folia.doc Idõ-ütemterv há lók - I. t s v u PRT time/cost : ( Program valuation & Review Technique ) ( Program Értékelõ és Áttekintõ Technika ) semény-csomópontú, valószínûségi változókkal dolgozó

Részletesebben

A modellellenőrzés érdekes alkalmazása: Tesztgenerálás modellellenőrzővel

A modellellenőrzés érdekes alkalmazása: Tesztgenerálás modellellenőrzővel A modellellenőrzés érdekes alkalmazása: Tesztgenerálás modellellenőrzővel Majzik István Micskei Zoltán BME Méréstechnika és Információs Rendszerek Tanszék 1 Modell alapú fejlesztési folyamat (részlet)

Részletesebben

Ellátási lánc optimalizálás P-gráf módszertan alkalmazásával mennyiségi és min ségi paraméterek gyelembevételével

Ellátási lánc optimalizálás P-gráf módszertan alkalmazásával mennyiségi és min ségi paraméterek gyelembevételével Ellátási lánc optimalizálás P-gráf módszertan alkalmazásával mennyiségi és min ségi paraméterek gyelembevételével Pekárdy Milán, Baumgartner János, Süle Zoltán Pannon Egyetem, Veszprém XXXII. Magyar Operációkutatási

Részletesebben

Számítógép hálózatok, osztott rendszerek 2009

Számítógép hálózatok, osztott rendszerek 2009 Számítógép hálózatok, osztott rendszerek 2009 1: Bevezetés: Internet, rétegmodell Alapok: aszimptótika, gráfok 1 Az előadáshoz Előadás: Hétfő 10:00 12:00 óra Gyakorlat: Hétfő 14:00-16:00 óra Honlap: http://people.inf.elte.hu/lukovszki/courses/0910nwmsc

Részletesebben

Formális módszerek GM_IN003_1 Program verifikálás, formalizmusok

Formális módszerek GM_IN003_1 Program verifikálás, formalizmusok Formális módszerek GM_IN003_1 Program verifikálás, formalizmusok Program verifikálás Konkurens programozási megoldások terjedése -> verifikálás szükséges, (nehéz) logika Legszélesebb körben alkalmazott

Részletesebben

2) Tervezzen Stibitz kód szerint működő, aszinkron decimális előre számlálót! A megvalósításához

2) Tervezzen Stibitz kód szerint működő, aszinkron decimális előre számlálót! A megvalósításához XIII. szekvenciális hálózatok tervezése ) Tervezzen digitális órához, aszinkron bináris előre számláló ciklus rövidítésével, 6-os számlálót! megvalósításához negatív élvezérelt T típusú tárolót és NN kaput

Részletesebben

Diagnosztika Petri háló modellek felhasználásával

Diagnosztika Petri háló modellek felhasználásával Diagnosztika - Ea9. p. 1/2 Modell Alapú Diagnosztika Diszkrét Módszerekkel Diagnosztika Petri háló modellek felhasználásával Hangos Katalin PE Villamosmérnöki és Információs Rendszerek Tanszék Diagnosztika

Részletesebben

1: Bevezetés: Internet, rétegmodell Alapok: aszimptótika, gráfok. HálózatokII, 2007

1: Bevezetés: Internet, rétegmodell Alapok: aszimptótika, gráfok. HálózatokII, 2007 Hálózatok II 2007 1: Bevezetés: Internet, rétegmodell Alapok: aszimptótika, gráfok 1 Az előadáshoz Előadás: Szerda 17:00 18:30 Gyakorlat: nincs Vizsga írásbeli Honlap: http://people.inf.elte.hu/lukovszki/courses/g/07nwii

Részletesebben

Hálózati Folyamok Alkalmazásai. Mályusz Levente BME Építéskivitelezési és Szervezési Tanszék

Hálózati Folyamok Alkalmazásai. Mályusz Levente BME Építéskivitelezési és Szervezési Tanszék Hálózati Folyamok Alkalmazásai Mályusz Levente BME Építéskivitelezési és Szervezési Tanszék Maximális folyam 7 7 9 3 2 7 source 8 4 7 sink 7 2 9 7 5 7 6 Maximális folyam feladat Adott [N, A] digráf (irányított

Részletesebben

A modellellenőrzés érdekes alkalmazása: Tesztgenerálás modellellenőrzővel

A modellellenőrzés érdekes alkalmazása: Tesztgenerálás modellellenőrzővel A modellellenőrzés érdekes alkalmazása: Tesztgenerálás modellellenőrzővel Majzik István Micskei Zoltán BME Méréstechnika és Információs Rendszerek Tanszék 1 Modell alapú fejlesztési folyamat (részlet)

Részletesebben

Jelek és rendszerek 1. 10/9/2011 Dr. Buchman Attila Informatikai Rendszerek és Hálózatok Tanszék

Jelek és rendszerek 1. 10/9/2011 Dr. Buchman Attila Informatikai Rendszerek és Hálózatok Tanszék Jelek és rendszerek 1 10/9/2011 Dr. Buchman Attila Informatikai Rendszerek és Hálózatok Tanszék 1 Ajánlott irodalom: FODOR GYÖRGY : JELEK ÉS RENDSZEREK EGYETEMI TANKÖNYV Műegyetemi Kiadó, Budapest, 2006

Részletesebben

8. Komponens elvű programfejlesztés. Ágens, akció, cél, kontraktus.

8. Komponens elvű programfejlesztés. Ágens, akció, cél, kontraktus. 8. Komponens elvű programfejlesztés. Ágens, akció, cél, kontraktus. Ágens rendszer definíciója. Példák. Fairness. (Fair tulajdonság). Gyenge fair követelmény. A fair nem determinisztikus szemantika definíciója

Részletesebben

Idő-ütemterv hálók - I. t 5 4

Idő-ütemterv hálók - I. t 5 4 Építésikivitelezés-Vállalkozás / : Hálós ütemtervek - I lőadás:folia.doc Idő-ütemterv hálók - I. t s v u PRT time/cost : ( Program valuation & Review Technique ) ( Program Értékelő és Áttekintő Technika

Részletesebben

Modellek ellenőrzése és tesztelése

Modellek ellenőrzése és tesztelése Modellek ellenőrzése és tesztelése Rendszermodellezés imsc gyakorlat Budapesti Műszaki és Gazdaságtudományi Egyetem Hibatűrő Rendszerek Kutatócsoport Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika

Részletesebben

Bevezetés az informatikába

Bevezetés az informatikába Bevezetés az informatikába 6. előadás Dr. Istenes Zoltán Eötvös Loránd Tudományegyetem Informatikai Kar Programozáselmélet és Szoftvertechnológiai Tanszék Matematikus BSc - I. félév / 2008 / Budapest Dr.

Részletesebben

Adatszerkezetek 2. Dr. Iványi Péter

Adatszerkezetek 2. Dr. Iványi Péter Adatszerkezetek 2. Dr. Iványi Péter 1 Fák Fákat akkor használunk, ha az adatok között valamilyen alá- és fölérendeltség van. Pl. könyvtárszerkezet gyökér (root) Nincsennek hurkok!!! 2 Bináris fák Azokat

Részletesebben

Szoftverminőségbiztosítás

Szoftverminőségbiztosítás NGB_IN003_1 SZE 2014-15/2 (13) Szoftverminőségbiztosítás Szoftverminőség és formális módszerek Formális módszerek Formális módszer formalizált módszer(tan) Formális eljárások alkalmazása a fejlesztésben

Részletesebben

17. előadás: Vektorok a térben

17. előadás: Vektorok a térben 17. előadás: Vektorok a térben Szabó Szilárd A vektor fogalma A mai előadásban n 1 tetszőleges egész szám lehet, de az egyszerűség kedvéért a képletek az n = 2 esetben szerepelnek. Vektorok: rendezett

Részletesebben

Kriptográfia 0. A biztonság alapja. Számítás-komplexitási kérdések

Kriptográfia 0. A biztonság alapja. Számítás-komplexitási kérdések Kriptográfia 0 Számítás-komplexitási kérdések A biztonság alapja Komplexitás elméleti modellek független, egyenletes eloszlású véletlen változó értéke számítással nem hozható kapcsolatba más információval

Részletesebben

Tartalom. Állapottér reprezentációk tulajdonságai stabilitás irányíthatóság megfigyelhetőség minimalitás

Tartalom. Állapottér reprezentációk tulajdonságai stabilitás irányíthatóság megfigyelhetőség minimalitás Tartalom Állapottér reprezentációk tulajdonságai stabilitás irányíthatóság megfigyelhetőség minimalitás 2018 1 Állapottér reprezentációk tulajdonságai Általánosan egy lineáris, SISO dinamikus rendszer

Részletesebben

Összeállította Horváth László egyetemi tanár

Összeállította Horváth László egyetemi tanár Óbudai Egyetem Neumann János Informatikai Kar Intelligens Mérnöki Rendszerek Intézet Intelligens Mérnöki Rendszerek Szakirány a Mérnök informatikus alapszakon Összeállította Horváth László Budapest, 2011

Részletesebben

Diszkrét dinamikus rendszerek viselkedésének felderítése ellenpélda-alapú absztrakció finomítás (CEGAR) segítségével

Diszkrét dinamikus rendszerek viselkedésének felderítése ellenpélda-alapú absztrakció finomítás (CEGAR) segítségével Budapesti Műszaki és Gazdaságtudományi Egyetem Villamosmérnöki és Informatikai Kar Méréstechnika és Információs Rendszerek Tanszék Diszkrét dinamikus rendszerek viselkedésének felderítése ellenpélda-alapú

Részletesebben

Az UPPAAL egyes modellezési lehetőségeinek összefoglalása. Majzik István BME Méréstechnika és Információs Rendszerek Tanszék

Az UPPAAL egyes modellezési lehetőségeinek összefoglalása. Majzik István BME Méréstechnika és Információs Rendszerek Tanszék Az UPPAAL egyes modellezési lehetőségeinek összefoglalása Majzik István BME Méréstechnika és Információs Rendszerek Tanszék Résztvevők együttműködése (1) Automaták interakciói üzenetküldéssel Szinkron

Részletesebben

Véges automaták, reguláris nyelvek

Véges automaták, reguláris nyelvek Véges automaták, reguláris nyelvek Kiegészítő anyag az lgoritmuselmélet tárgyhoz (a Rónyai Ivanyos Szabó: lgoritmusok könyv mellé) Friedl Katalin BME SZIT friedl@cs.bme.hu 27. augusztus 3. véges automata

Részletesebben

3. gyakorlat Folyamatmodellek, kooperáló viselkedésmodellek Megoldások

3. gyakorlat Folyamatmodellek, kooperáló viselkedésmodellek Megoldások 3. gyakorlat Folyamatmodellek, kooperáló viselkedésmodellek ok Figyelem: Jelen anyag belső használatra készült megoldási útmutató, melyet a ZH felkészülés segítése érdekében publikáltunk. A feladatok részletesebb

Részletesebben

2.1.A SZOFTVERFEJLESZTÉS STRUKTÚRÁJA

2.1.A SZOFTVERFEJLESZTÉS STRUKTÚRÁJA 2.Szoftverfejlesztés 2.1.A SZOFTVERFEJLESZTÉS STRUKTÚRÁJA Szoftverfejlesztés: magában foglalja mindazon elveket, módszereket és eszközöket, amelyek célja a programok megbízható és hatékony elkészítésének

Részletesebben

Hálózati Folyamok Alkalmazásai. Mályusz Levente BME Építéskivitelezési és Szervezési Tanszék

Hálózati Folyamok Alkalmazásai. Mályusz Levente BME Építéskivitelezési és Szervezési Tanszék Hálózati Folyamok Alkalmazásai Mályusz Levente BME Építéskivitelezési és Szervezési Tanszék Alsó felső korlátos maximális folyam 3,9 3 4,2 4,8 4 3,7 2 Transzformáljuk több forrást, több nyelőt tartalmazó

Részletesebben

Véges állapotú gépek (FSM) tervezése

Véges állapotú gépek (FSM) tervezése Véges állapotú gépek (FSM) tervezése F1. A digitális tervezésben gyakran szükséges a logikai jelek változását érzékelni és jelezni. A változásdetektorok készülhetnek csak egy típusú változás (0 1, vagy

Részletesebben

Szimuláció. Fault Tolerant Systems Research Group. Budapest University of Technology and Economics. Department of Measurement and Information Systems

Szimuláció. Fault Tolerant Systems Research Group. Budapest University of Technology and Economics. Department of Measurement and Information Systems Szimuláció Budapest University of Technology and Economics Fault Tolerant Systems Research Group Budapest University of Technology and Economics Department of Measurement and Information Systems 1 Mérés:

Részletesebben

Számítógép és programozás 2

Számítógép és programozás 2 Számítógép és programozás 2 6. Előadás Problémaosztályok http://digitus.itk.ppke.hu/~flugi/ Emlékeztető A specifikáció egy előfeltételből és utófeltételből álló leírása a feladatnak Léteznek olyan feladatok,

Részletesebben

Kiterjesztések sek szemantikája

Kiterjesztések sek szemantikája Kiterjesztések sek szemantikája Példa D Integer = {..., -1,0,1,... }; D Boolean = { true, false } D T1... T n T = D T 1... D Tn D T Az összes függvf ggvény halmaza, amelyek a D T1,..., D Tn halmazokból

Részletesebben

Hardver és szoftver rendszerek verifikációja Röviden megválaszolható kérdések

Hardver és szoftver rendszerek verifikációja Röviden megválaszolható kérdések Hardver és szoftver rendszerek verifikációja Röviden megválaszolható kérdések 1. Az informatikai rendszereknél mit ellenőriznek validációnál és mit verifikációnál? 2. A szoftver verifikációs technikák

Részletesebben

Budapesti Műszaki és Gazdaságtudományi Egyetem Villamosmérnöki és Informatikai Kar. TDK dolgozat. Semeráth Oszkár, doktorandusz október 22.

Budapesti Műszaki és Gazdaságtudományi Egyetem Villamosmérnöki és Informatikai Kar. TDK dolgozat. Semeráth Oszkár, doktorandusz október 22. Budapesti Műszaki és Gazdaságtudományi Egyetem Villamosmérnöki és Informatikai Kar Méréstechnika és Információs Rendszerek Tanszék Absztrakt interpretációt használó keresési stratégiák Petri-háló alapú

Részletesebben

Operációs rendszerek II. Folyamatok ütemezése

Operációs rendszerek II. Folyamatok ütemezése Folyamatok ütemezése Folyamatok modellezése az operációs rendszerekben Folyamatok állapotai alap állapotok futásra kész fut és várakozik felfüggesztett állapotok, jelentőségük Állapotátmeneti diagram Állapotátmenetek

Részletesebben

Részletes szoftver tervek ellenőrzése

Részletes szoftver tervek ellenőrzése Részletes szoftver tervek ellenőrzése Majzik István Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs Rendszerek Tanszék http://www.mit.bme.hu/~majzik/ Tartalomjegyzék A részletes

Részletesebben

Temporális logikák és modell ellenırzés

Temporális logikák és modell ellenırzés Temporális logikák és modell ellenırzés Temporális logikák Modális logika: kijelentések különböző módjainak tanulmányozására vezették be (eredetileg filozófusok). Ilyen módok: esetleg, mindig, szükségszerűen,

Részletesebben

Modell alapú tesztelés mobil környezetben

Modell alapú tesztelés mobil környezetben Modell alapú tesztelés mobil környezetben Micskei Zoltán Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs Rendszerek Tanszék A terület behatárolása Testing is an activity performed

Részletesebben

1. Generátorrendszer. Házi feladat (fizikából tudjuk) Ha v és w nem párhuzamos síkvektorok, akkor generátorrendszert alkotnak a sík vektorainak

1. Generátorrendszer. Házi feladat (fizikából tudjuk) Ha v és w nem párhuzamos síkvektorok, akkor generátorrendszert alkotnak a sík vektorainak 1. Generátorrendszer Generátorrendszer. Tétel (Freud, 4.3.4. Tétel) Legyen V vektortér a T test fölött és v 1,v 2,...,v m V. Ekkor a λ 1 v 1 + λ 2 v 2 +... + λ m v m alakú vektorok, ahol λ 1,λ 2,...,λ

Részletesebben

(Diszkrét idejű Markov-láncok állapotainak

(Diszkrét idejű Markov-láncok állapotainak (Diszkrét idejű Markov-láncok állapotainak osztályozása) March 21, 2019 Markov-láncok A Markov-láncok anaĺızise főként a folyamat lehetséges realizációi valószínűségeinek kiszámolásával foglalkozik. Ezekben

Részletesebben

A Számítástudomány alapjai

A Számítástudomány alapjai Mechatronika, Optika és Gépészeti Informatika Tanszék A Számítástudomány alapjai Szemelvények az Elméleti Számítástudomány területéről Fogalmak: Számítástechnika Realizáció, technológia Elméleti számítástudomány

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 10 X. SZIMULÁCIÓ 1. VÉLETLEN számok A véletlen számok fontos szerepet játszanak a véletlen helyzetek generálásában (pénzérme, dobókocka,

Részletesebben

MINTA Írásbeli Záróvizsga Mechatronikai mérnök MSc. Debrecen,

MINTA Írásbeli Záróvizsga Mechatronikai mérnök MSc. Debrecen, MINTA Írásbeli Záróvizsga Mechatronikai mérnök MSc Debrecen, 2017. 01. 03. Név: Neptun kód: Megjegyzések: A feladatok megoldásánál használja a géprajz szabályait, valamint a szabványos áramköri elemeket.

Részletesebben

Miskolci Egyetem Gépészmérnöki és Informatikai Kar Informatikai Intézet Alkalmazott Informatikai Intézeti Tanszék

Miskolci Egyetem Gépészmérnöki és Informatikai Kar Informatikai Intézet Alkalmazott Informatikai Intézeti Tanszék Miskolci Egyetem Gépészmérnöki és Informatikai Kar Informatikai Intézet Alkalmazott Informatikai Intézeti Tanszék 06/7. félév 7. Előadás Dr. Kulcsár Gyula egyetemi docens Tartalom. A projektütemezés alapjai..

Részletesebben

Közlekedési áramlatok MSc. Csomóponti-, útvonali eljutási lehetőségek minősítése

Közlekedési áramlatok MSc. Csomóponti-, útvonali eljutási lehetőségek minősítése Közlekedési áramlatok MSc Csomóponti-, útvonali eljutási lehetőségek minősítése minősítése jogszabályi esetben Az alárendelt áramlatból egy meghatározott forgalmi művelet csak akkor végezhető el, ha a

Részletesebben

Statisztika - bevezetés Méréselmélet PE MIK MI_BSc VI_BSc 1

Statisztika - bevezetés Méréselmélet PE MIK MI_BSc VI_BSc 1 Statisztika - bevezetés 00.04.05. Méréselmélet PE MIK MI_BSc VI_BSc Bevezetés Véletlen jelenség fogalma jelenséget okok bizonyos rendszere hozza létre ha mindegyik figyelembe vehető egyértelmű leírás általában

Részletesebben

ALAPFOGALMAK 1. A reláció az program programfüggvénye, ha. Azt mondjuk, hogy az feladat szigorúbb, mint az feladat, ha

ALAPFOGALMAK 1. A reláció az program programfüggvénye, ha. Azt mondjuk, hogy az feladat szigorúbb, mint az feladat, ha ALAPFOGALMAK 1 Á l l a p o t t é r Legyen I egy véges halmaz és legyenek A i, i I tetszőleges véges vagy megszámlálható, nem üres halmazok Ekkor az A= A i halmazt állapottérnek, az A i halmazokat pedig

Részletesebben

Tartalomjegyzék. Tartalomjegyzék... 3 Előszó... 9

Tartalomjegyzék. Tartalomjegyzék... 3 Előszó... 9 ... 3 Előszó... 9 I. Rész: Evolúciós számítások technikái, módszerei...11 1. Bevezetés... 13 1.1 Evolúciós számítások... 13 1.2 Evolúciós algoritmus alapfogalmak... 14 1.3 EC alkalmazásokról általában...

Részletesebben

Digitális technika (VIMIAA02) Laboratórium 4

Digitális technika (VIMIAA02) Laboratórium 4 BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Digitális technika (VIMIAA02) Laboratórium 4 Fehér Béla Raikovich Tamás,

Részletesebben

Valószínűségi változók. Várható érték és szórás

Valószínűségi változók. Várható érték és szórás Matematikai statisztika gyakorlat Valószínűségi változók. Várható érték és szórás Valószínűségi változók 2016. március 7-11. 1 / 13 Valószínűségi változók Legyen a (Ω, A, P) valószínűségi mező. Egy X :

Részletesebben

Modellellenőrzés a vasút automatikai rendszerek fejlesztésében. XIX. Közlekedésfejlesztési és beruházási konferencia Bükfürdő

Modellellenőrzés a vasút automatikai rendszerek fejlesztésében. XIX. Közlekedésfejlesztési és beruházási konferencia Bükfürdő Modellellenőrzés a vasút automatikai rendszerek fejlesztésében XIX. Közlekedésfejlesztési és beruházási konferencia Bükfürdő 2018.04.25-27. Tartalom 1. Formális módszerek state of the art 2. Esettanulmány

Részletesebben

Programkonstrukciók A programkonstrukciók programfüggvényei Levezetési szabályok. 6. előadás. Programozás-elmélet. Programozás-elmélet 6.

Programkonstrukciók A programkonstrukciók programfüggvényei Levezetési szabályok. 6. előadás. Programozás-elmélet. Programozás-elmélet 6. Programkonstrukciók Definíció Legyen π feltétel és S program A-n. A DO A A relációt az S-ből a π feltétellel képezett ciklusnak nevezzük, és (π, S)-sel jelöljük, ha 1. a / [π] : DO (a) = { a }, 2. a [π]

Részletesebben

Algoritmusok Tervezése. 6. Előadás Algoritmusok 101 Dr. Bécsi Tamás

Algoritmusok Tervezése. 6. Előadás Algoritmusok 101 Dr. Bécsi Tamás Algoritmusok Tervezése 6. Előadás Algoritmusok 101 Dr. Bécsi Tamás Mi az algoritmus? Lépések sorozata egy feladat elvégzéséhez (legáltalánosabban) Informálisan algoritmusnak nevezünk bármilyen jól definiált

Részletesebben

Soros felépítésű folytonos PID szabályozó

Soros felépítésű folytonos PID szabályozó Soros felépítésű folytonos PID szabályozó Főbb funkciók: A program egy PID szabályozót és egy ez által szabályozott folyamatot szimulál, a kimeneti és a beavatkozó jel grafikonon való ábrázolásával. A

Részletesebben

2. gyakorlat Állapot alapú modellezés Megoldások

2. gyakorlat Állapot alapú modellezés Megoldások 2. gyakorlat Állapot alapú modellezés ok 1. Közlekedési lámpa Közlekedési lámpát vezérlő elektronikát tervezünk. a) Készítsük el egy egyszerű piros sárga zöld közlekedési lámpa olyan állapotterét, amely

Részletesebben

Logisztikai hálózatok funkcionális elemekre bontása intralogisztikai

Logisztikai hálózatok funkcionális elemekre bontása intralogisztikai Logisztikai hálózatok funkcionális elemekre bontása intralogisztikai rendszerekben Minden rendszer, és így a logisztikai hálózatok is egymással meghatározott kapcsolatban lévő rendszerelemekből, illetve

Részletesebben

Állapotalapú modellezés

Állapotalapú modellezés Hibatűrő Rendszerek Kutatócsoport 2018 Tartalomjegyzék 1. Egyszerű állapotgépek 1 1.1. Állapottér.............. 1 1.2. Állapotátmenet, esemény..... 2 1.3. Végrehajtási szekvencia...... 4 2. Hierarchia

Részletesebben

2. gyakorlat Állapot alapú modellezés Megoldások

2. gyakorlat Állapot alapú modellezés Megoldások 2. gyakorlat Állapot alapú modellezés ok 1. Közlekedési lámpa Közlekedési lámpát vezérlő elektronikát tervezünk. a) Készítsük el egy egyszerű piros sárga zöld közlekedési lámpa olyan állapotterét, amely

Részletesebben

Digitális technika (VIMIAA02) Laboratórium 4

Digitális technika (VIMIAA02) Laboratórium 4 BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Digitális technika (VIMIAA02) Laboratórium 4 Fehér Béla Raikovich Tamás,

Részletesebben

Dinamikus modellek szerkezete, SDG modellek

Dinamikus modellek szerkezete, SDG modellek Diagnosztika - 3. p. 1/2 Modell Alapú Diagnosztika Diszkrét Módszerekkel Dinamikus modellek szerkezete, SDG modellek Hangos Katalin PE Villamosmérnöki és Információs Rendszerek Tanszék Diagnosztika - 3.

Részletesebben

5. gyakorlat Modellek ellenőrzése és tesztelése Megoldások

5. gyakorlat Modellek ellenőrzése és tesztelése Megoldások 5. gyakorlat Modellek ellenőrzése és tesztelése Megoldások Figyelem: Jelen anyag belső használatra készült megoldási útmutató, melyet a ZH felkészülés segítése érdekében publikáltunk. A feladatok részletesebb

Részletesebben

Megkülönböztetett kiszolgáló routerek az

Megkülönböztetett kiszolgáló routerek az Megkülönböztetett kiszolgáló routerek az Interneten Megkülönböztetett kiszolgálás A kiszolgáló architektúrák minősége az Interneten: Integrált kiszolgálás (IntServ) Megkülönböztetett kiszolgálás (DiffServ)

Részletesebben

Diszkrét matematika 2.C szakirány

Diszkrét matematika 2.C szakirány Diszkrét matematika 2.C szakirány 2017. tavasz 1. Diszkrét matematika 2.C szakirány 3. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék 2017.

Részletesebben

Bevezetés az állapottér-elméletbe Dinamikus rendszerek állapottér reprezentációi

Bevezetés az állapottér-elméletbe Dinamikus rendszerek állapottér reprezentációi Tartalom Bevezetés az állapottér-elméletbe Irányítható alak Megfigyelhetőségi alak Diagonális alak Állapottér transzformáció 2018 1 A szabályozáselmélet klasszikus, BODE, NICHOLS, NYQUIST nevéhez kötődő,

Részletesebben

22. GRÁFOK ÁBRÁZOLÁSA

22. GRÁFOK ÁBRÁZOLÁSA 22. GRÁFOK ÁBRÁZOLÁSA A megoldandó feladatok, problémák modellezése során sokszor gráfokat alkalmazunk. A gráf fogalmát a matematikából ismertnek vehetjük. A modellezés során a gráfok több változata is

Részletesebben